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Bovine tuberculosis (bTB) is a chronic zoonotic disease caused by Mycobacterium 
bovis. A large number of cattle are infected with bTB every year, resulting in huge 
economic losses. How to control bTB is an important issue in the current global 
livestock economy. In this study, the original transcriptome sequences related 
to this study were obtained from the dataset GSE192537 by searching the Gene 
Expression Omnibus (GEO) database. Our differential gene analysis showed 
that there were obvious biological activities related to immune activation 
and immune regulation in the early stage of bTB. Immune-related biological 
processes were more active in the early stage of bTB than in the late. There were 
obvious immune activation and immune cell recruitment in the early stage of 
bTB. Regulations in immune receptors are associated with pathophysiological 
processes of the early stage of bTB. A gene module consisting of 236 genes 
significantly related to the early stage of bTB was obtained by weighted gene 
co-expression network analysis, and 18 hub genes were further identified as 
potential biomarkers or therapeutic targets. Finally, by random forest algorithm 
and logistic regression modeling, FCRL1 was identified as a representative mRNA 
marker in early bTB blood. FCRL1 has the potential to be a diagnostic biomarker 
in early bTB.
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1 Introduction

Bovine tuberculosis (bTB) is a chronic zoonotic disease caused by Mycobacterium bovis 
(1). As a member of the M. tuberculosis complex (MTBC), Mycobacterium bovis is 99.9% 
similar to M. tuberculosis humans at the genomic level (2). A comprehensive econometric 
analysis combining agricultural production and human health indicators shows that bTB is 
currently one of the most serious livestock diseases in the world (3). According to statistics, 
about 50 million cattle worldwide are infected with M. bovis each year, and the associated 
economic losses can be as high as $3 billion (4). For the current global livestock economy, how 
to better control bTB is still an important issue (5). The disease was also defined as a Category 
B Animal disease by the World Organization for Animal Health (OIE) (6). As a common 
zoonotic disease, about 10% of human TB cases worldwide are caused by infection with 
Mycobacterium bovis (7, 8). It is of great importance for the development of animal husbandry 
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and human health to explore the molecular pathogenesis of bTB and 
the evolution of the disease, to formulate better prevention and control 
strategies (9).

The diagnostic criteria and methods of bTB are based on the 
tuberculin assay and the Interferon-gamma release assay (IGRA) to 
detect the level of host CMI response (10). The results of the tuberculin 
assay mainly depend on the virulence of M. bovis and the immunity 
of the host (11), and its accuracy is usually not satisfactory (12). IGRA 
is a new immunodetection method for Mycobacterium tuberculosis 
infection, and the accuracy of this method is more than 95% (13). 
However, its high experimental technical requirements also limit its 
wide promotion and application (14). The two detection methods are 
prone to misdiagnosis of infected cattle with low CMI response levels 
in the early stage of infection or with low immunity in the late stage 
of infection (15).

In recent years, with the rapid development of molecular biology 
technology, the wide application of new technologies has made it 
possible to find more accurate and efficient methods for early 
diagnosis of bTB (16). The emergence of Next-generation sequencing 
(NGS) technology has fundamentally changed the research methods 
of population genetics, quantitative genetics, molecular systematics, 
microbial ecology, and many other research fields (17). As the leader 
of the new generation sequencing technology, Expression profiling by 
high throughput sequencing (RNA-seq) can quickly and quantitatively 
analyze the entire transcriptome of an organism. By performing 
transcriptome profiling, researchers can explore the entire gene 
expression network of an organism and in this way discover important 
genes associated with various disease phenotypes. With the rapid 
development of bioinformatics technology, RNA-seq has become one 
of the standard techniques for molecular biology research (18). 
Weighted correlation network analysis, also known as weighted gene 
co-expression network analysis (WGCNA) (19), is a widely used 
computer bioinformatics data mining method. It is especially suitable 
for the study of biological networks based on pairwise correlations 
between variables (20). This algorithm is based on a Scale-free 
network (SFN), which is a network structure closest to the pattern of 
the biological metabolic network. Many experimental studies have 
observed the scale-free network phenomenon in biological activities 
(21–23). As an algorithm that can be applied to most high-dimensional 
data, it has been widely used in genomic research. The WGCNA 
method is very powerful for analyzing gene expression data and can 
yield results and insights that are not possible in typical differential 
expression studies (24).

By comparing transcriptome data from bovine blood samples that 
infected or uninfected with M. bovis, the objective of this study was to 
elucidate the molecular functional changes and corresponding gene 
expression signatures in the early and late stages of bTB. To screen out 
early specific candidate gene markers for bTB by searching for key 
genes, and to find potential gene targets with diagnostic and 
therapeutic value.

2 Materials and methods

2.1 Public data mining

The transcriptome data used in this study were obtained from the 
publicly available gene database GEO (The Gene Expression Omnibus, 

GEO) (25). Through retrieval, the original transcriptome sequences 
related to this study were obtained from the dataset GSE192537 (26) 
for bioinformatics analysis. The original blood samples were collected 
from bTB-free farms, and a total of 24 blood RNA-seq sequences were 
collected from 12 9-month-old castrated male calves. Blood samples 
of 6 calves artificially infected with bTB were collected in the 
experimental group, and 6 healthy calves were collected in the control 
group. The collection time and classification information of blood 
samples are shown in Table 1.

2.2 Differential gene analysis

By comparing the transcriptomic gene expression information 
in blood samples of calves with different phenotypes, we obtained 
the Differential expression genes (DEGs) of the blood samples of 
early bTB stage with other blood samples, the blood samples of 
early bTB stage with the blood samples of late bTB stage with 
statistically significant expression. Through the Gene ontology 
database (GO), we explored the Biological process (BP) of bTB at 
each stage.

2.3 Analysis of WGCNA gene co-expression 
network

We set up the SFN network of WGCNA to search for gene sets 
highly associated with different stages of bTB progression. By 
clustering genes with similar expression patterns into gene sets with 
different functions. The intrinsic correlation of different gene sets and 
their correlation with traits were analyzed by using the hub gene, and 
then the correlation was sorted by weighted method. This method is 
a common screening method for functional gene sets in bioinformatics 
analysis and is widely used to identify biomarkers and drug 
therapeutic targets. This method can also use all gene information to 
search for gene sets related to traits, and avoid the problem of multiple 
hypothesis testing and correction due to multiple comparisons of 
differential genes.

The general process of analysis is as follows: Firstly, the SFN 
network was established and the gene set with the highest correlation 
with early disease cattle was identified by association analysis. BP and 
related biological signal pathways were enriched from the genes 
concentrated in the GO and KEGG databases [Kyoto Encyclopedia of 
Genes and Genomes (KEGG)], so that the changes in biological 
processes and related signal pathways that were most relevant to the 
disease process were identified, and to compare the differences 
between early and late disease cattle. Then, the Gene expression data 

TABLE 1  Sample collection time and classification information.

Sampling 
time

Number of 
blood samples 
in experimental 

group

Number of 
blood 

samples in 
control group

Total

8 weeks after the 

experiment

6 6 12

20 weeks after the 

experiment

6 6 12
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of the genes in the gene set were used to establish a Gene interaction 
network (GIN), and the Hub genes in the network were found by gene 
network analysis. Finally, the key genes found were compared with the 
results of differential gene analysis to find out the significantly 
differentially expressed genes. The final biomarker gene set was 
synthesized based on all the genes with both differential expression 
and important roles, and their value as biomarkers was 
further explored.

All bioinformatics analyses were performed on R software (R 
Foundation for Statistical Computing, Vienna, Austria) version 
4.0.2. The mainly used third-party R software packages are 
ClusterProfiler (27), WGCNA (28), and limma (29). Gene 
enrichment analysis is carried out on the website David (30), and the 
visualization of the gene interaction network is shown by the open-
source software Cytoscape (31). In all statistical tests, the difference 
was considered significant by bilateral test p < 0.05, and in analyses 
involving multiple comparisons, Fisher exact test FDR < 0.05 was 
used to test the p-value.

2.4 Genetic marker validation based on 
random forest method

Random forest (RF) is a commonly used machine learning 
method. Its essence is a classifier containing multiple decision trees, 
which can predict the input samples through parameter training. In 
this study, the mRNA expression level of the selected key genes was 
used as the independent variable, the status of normal and disease was 
set as the dependent variable 1, and the blood samples of early bTB 
stage and other blood samples were set as the binary dependent 
variable 2.

Firstly, the genes that are more important for classification are 
screened by the method of stochastic forest forward screening. Then, 
these more important genes were used to establish the Logistic 
regression (LR) diagnostic model, and internal cross-validation was 
used to verify whether the pivot genes could be used as disease-related 
genetic markers. The Receiver operating characteristic curve (ROC) 
was used to evaluate the disease diagnosis model established by 
genetic markers, and the Area under the curve (AUC) was calculated. 
This section mainly operates on Python version 3.8.0, using third-
party software sklearn (32).

3 Results

3.1 Transcriptional phenotypic 
heterogeneity analysis

To investigate the effects of TB at the transcriptional level, 
we  utilized principal component (PCA) analysis to visualize the 
heterogeneity of gene expression among the phenotypes. As shown in 
Figure  1A, few discrepancy was observed between infected and 
non-infected groups. Furthermore, in the early groups, bTB had a 
limited impact on gene regulation. However, the discrepancy between 
infected and non-infected groups enhanced in the late phenotypes 
(Figure 1B). These results suggest that the development of TB could 
be occult and the impact of TB on gene expression was gradually 
enhanced with the progression of TB.

After batch correction, a total of 1,600 differential genes were 
obtained from the blood samples of early bTB stage and other blood 
samples, among which 811 differential genes were up-regulated and 
789 were down-regulated (Figure 1C). The top 10 up-regulated (and 
down-regulated) DEGs were detailed in Supplementary Table S1. GO 
enrichment analysis of the main biological process BP was performed 
for the up-regulated and down-regulated genes, respectively. After 
batch correction, a total of 3,308 differential genes were obtained from 
the early and blood samples of late bTB stage, among which 1,476 
differential genes were up-regulated and 1832 were down-regulated 
(Figure 1D). The top 10 up-regulated (and down-regulated) DEGs 
were detailed in Supplementary Table S2. GO enrichment analysis of 
the main biological processes of BP was performed for the 
up-regulated and down-regulated genes, respectively. The top  10 
enriched gene sets of up-regulated genes are shown on the left and the 
top 10 enriched gene sets of down-regulated genes are shown on the 
right. In the comparison of early and the blood samples of late bTB 
stage, late bTB stage had more enrichment of biological processes 
related to protein and synthesis, which reflected the extensive 
pathological manifestations of tuberculosis granuloma formation in 
late bTB stage.

3.2 Analysis of WGCNA weighted gene 
coexpression network

3.2.1 Clustering of coexpressed genes
All genes with similar expression patterns were clustered into 

large gene modules in the form of decision trees, and the results of the 
dendrogram were cut using the dynamic clipping method. Finally, a 
total of 66 large gene modules consisting of genes with similar 
expression were obtained. Supplementary Figure S1A presents the 
results of all modules and their decision tree clustering. To further test 
the clustering results, 400 genes (Supplementary Table S3) were 
randomly selected from the network to sketch the clustering heat map. 
Supplementary Figure S1B showed that the clustering results of the 
heat map, and genes classified as the same module were 
clustered together.

3.2.2 Explore gene expression modules 
associated with early bovine tuberculosis

To explore the differences and similarities of gene expression 
patterns in blood samples, all experimental cattle samples were 
divided into four phenotypes: early-infected cattles (8 weeks), healthy 
cattles (8 weeks), late-infected cattles (20 weeks), and healthy cattles 
(20 weeks). Correlation analysis was made between similar gene 
expression modules identified previously and phenotypes to search for 
the gene expression modules with the highest correlation with the 
blood samples of early infected cattle. The clustering results are shown 
in Supplementary Figure S1C. The brown and yellow-green gene 
modules were related to the phenotype of early infected cattle.

To statistically test the clustering results and compare the 
correlation of different gene expression modules with all phenotypes, 
Spearman correlation analysis was performed for all gene expression 
modules with all phenotypes. The results of all correlation analyses are 
shown in Figure 2. Both the brown module and the yellow-green 
module had a high correlation with the phenotype of early infected 
bovine blood samples, and the correlation was 0.64 and 0.55, 
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respectively, and both were statistically significant. The genes in the 
two gene modules were extracted, resulting in 1923 genes in the 
brown gene expression module and 236 genes in the yellow-green 
gene expression module.

3.2.3 To explore the correlation between genes 
of specific gene expression modules and the 
early phenotype of bovine tuberculosis

To search for the genes most associated with the phenotype, it 
is necessary to compare the correlation between the genes in the 
above two modules and the phenotype. Firstly, the correlation 
matrix between the two gene expression modules and the genes in 
the modules should be  calculated respectively, and then the 
module genes should be calculated. Finally, the two correlation 
matrices are superimposed to evaluate the correlation between 
genes and phenotypes in the module. Figure  3 shows the 
correlation and significance of genes and phenotype in the brown 
and yellow-green modules, respectively. The correlation between 
the two modules and the early infection phenotype was 0.48 and 
0.58. The expression of genes in the yellow-green module had a 
higher correlation with the early infection phenotype. The 
important genes with a high correlation with phenotype in the 
yellow-green module have a higher value as early 
biomarkers of bTB.

3.2.4 Gene interactions in specific gene 
expression modules and their biological 
functions

The interaction information between genes in the yellow-green 
gene expression module was exported and the gene interaction 
network was established. Supplementary Figure S2 illustrates the 
interaction network of genes in the yellow-green gene expression 
module, most of these genes are closely interconnected and may 
be involved in the regulation of specific biological processes together 
(Supplementary Table S5).

All the genes in the yellow-green gene expression module were 
enriched by GO and KEGG analysis. The results of GO and KEGG 
enrichment analysis are shown in Figure 4. The genes in this gene 
expression module were mainly enriched in biological functions and 
signaling pathways such as cell adhesion, immune activation receptors, 
and antigen presentation receptors, especially related to B cell-related 
antigen presentation system. These results indicated that there was 
significant immune activation and recruitment of immune cells in the 
early stage of bTB.

3.2.5 The key gene of gene interaction network
Hub genes are also known as key genes, which are similar to 

housekeeping genes. They play an irreplaceable role in regulating 
specific biological processes and can have a major impact on specific 

FIGURE 1

Analysis of transcriptional phenotypic heterogeneity in bovine tuberculosis blood samples. (A) PCA analysis of gene expression in infected and 
uninfected groups. (B) PCA analysis of gene expression in infected and uninfected group at different periods. (C) Volcano plot shows the differential 
expression genes between the blood samples of early infection and other blood samples. (D) Volcano plot shows the differential expression genes 
between the blood samples of early infection and those of late infection blood samples.
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biological processes through the expression of many genes in their 
expression regulatory network.

The screening criteria for hub genes were as follows: (1) the 
correlation between the gene and the module >0.2; (2) The gene was 
directly or indirectly related to 80% of the genes in the module; (3) 
The statistical test of the correlation between the gene and the module 

was <0.05. We  found 18 hub genes in the yellow-green module: 
ARRB2, B3GALT5, B4GALT6, BCL11A, CLGN, COBLL1, 
ENSBTAG00000016794, ENSBTAG00000026792, EPHX4, FCRL1, 
ITPR1, MREG, MTSS1, SEC31A, SLC9A7, ST6GAL1, SYK, 
WNT7A. Comparing these genes with the differential genes found in 
3.1, it was found that these 18 genes were the differential genes 

FIGURE 2

The correlation between the gene modules and all phenotypes. The correlation indexes are labeled in each cell of the heatmap and the p-values are 
labeled in the brackets below.
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between the blood samples of early bTB stage and all other blood 
samples, and had the potential to be  biomarkers (Figure  5A). 
Figure 5B shows the GO enrichment analysis of these 18 genes, which 
are found to be mainly related to receptor regulation.

3.3 Genetic marker validation based on 
random forest method

3.3.1 Random forest screening of important 
genes

To further screen the most valuable key genes for the diagnosis of 
early-stage bTB, the transcriptome expression matrix of these 18 genes 
was extracted from the original gene expression matrix and then put 
into the random forest model. One hundred classifiers were randomly 
built and the contribution of each gene to the classification was 
calculated. Figure 6A illustrates the ranking of the contribution of 
these 18 genes to the diagnostic classification.

As shown, Figure 6B shows that it is evident that almost all of 
these 18 genes have moderate to strong correlations with taxonomic 

phenotypes. Among them, 14 genes had a strong correlation with each 
other with Pearson coefficient > 0.8. The other four genes were 
ENSBTAG0000001679, B3GALT5, FCRL1, and MTSS1. Since the 
total number of experimental samples N was 24, the number of 
predictors ≈N/10 was required to avoid overfitting or underfitting the 
established model. Therefore, the contribution of the remaining four 
genes to the diagnostic model was compared one by one by using 
random forest forward screening. The predictors of FCRL1 and 
MTSS1 were screened to establish Logistic regression diagnostic 
model. The correlation of the two genes with the four phenotypes is 
shown in Supplementary Figure S3.

3.3.2 Establishment and verification of early 
diagnosis model of bovine tuberculosis

FCRL1, MTSS1, and the combined model were used to establish 
diagnostic models (Model 1, Model 2, and Model 3), and the 
performance of the models was tested by the in-sample five-fold cross-
validation method. The average AUC obtained from the five tests was 
used as the final evaluation standard to compare the performance of 
the three models. Figure 7 presents the test results of the three models.

FIGURE 3

The correlation between genes in modules of interest and the early infection phenotype. (A) Correlation between brown gene expression module and 
early infection phenotype. (B) Correlation between yellow-green gene expression modules and early infection phenotype.
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The results showed that the diagnostic Model constructed with 
FCRL1 as a predictor had the best performance with an average AUC 
of 95%, while the diagnostic model constructed with two genes had 
the worst performance with an average AUC of 85%. The Pearson 
correlation coefficient between the two genes is 0.79, which is very 
close to the screening threshold of 0.8. Therefore, the model formed 
by the two genes may have multicollinearity and lead to poor fit. 
However, the average AUC of Model 2 constructed with MTSS1 as a 
predictor was 85%, and its diagnostic efficacy was lower than that of 
Model 1. Therefore, FCRL1 as a mRNA marker of bTB in blood 
samples of early bTB is ideal.

4 Discussion

Bovine TB is a significant health problem for both animals and 
humans, with surveys showing that 85% of cattle and 82% of humans 
live in areas where the disease is endemic (33). According to another 

study, it is conservatively estimated that about 2% of human 
pulmonary TB infections and 8% of extrapulmonary TB cases are 
caused by bTB transmission (34). TB is a zoonotic disease that 
deserves extensive attention.

Youngstock is vulnerable to bTB (35). Calves are also the classic 
host model used for bTB vaccine development (36, 37). Previous 
studies have revealed that bTB was associated with classic immune 
regulatory networks, such as the STRING pathway and CTSG network 
(38, 39). In addition to the immune regulatory network, some immune 
proteins were also identified as the characteristic transcriptome 
alterations of bTB, such as the CCL8 (40), CCR5 (41), CXCL10 (42), 
IP-10 (43), and CXCL9 (44). Although several biomarkers have been 
developed previously for bTB diagnosis, these transcriptome 
alterations show limited value in identifying the early infection 
(45–47).

In this study, we performed a multi-dimensional analysis of the 
transcriptome data of bovine whole blood by mRNA-Seq technology, 
aiming to clarify the changes in gene expression profiles between the 

FIGURE 4

GO and KEGG enrichment analysis of the genes in yellow-green module. (A) GO enrichment analysis of genes in yellow-green module. (B) KEGG 
enrichment analysis of genes in yellow-green module.
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early stage (8 weeks) and the late stage (20 weeks) of bTB by 
bioinformatics technology. To find mRNA markers in the blood 
samples of early bTB stage with practical value by analyzing the 
changes in gene expression profiles, to diagnose early bTB more 
accurately and reduce the economic losses and health damage caused 
by the disease.

By analyzing the transcriptome data of whole blood samples from 
different periods and different phenotypes (normal and infected 
samples), this study elucidated the characteristic biological processes 
of blood samples with different infection phenotypes in different 
periods. Through differential gene analysis, we found that immune-
related biological processes seemed to be more active in the blood 
samples of early bTB stage than other samples and immune-related 
molecules in the blood samples had the potential to be  used as 

diagnostic markers for early bTB infection. By comparing the 
transcriptomes of the early and late stages of the disease, we found that 
there were more biological processes related to protein synthesis in the 
late stage than in the early stage, which confirmed the 
pathophysiological changes of the formation of a large number of 
encapsulated granulomas and a large number of protein deposits in 
the lesions in the late stage of tuberculosis from the aspect of 
gene regulation.

After establishing the WGCNA-weighted gene co-expression 
network, we successfully identified 66 gene expression modules with 
different biological process regulation functions by expression pattern 
similarity. By analyzing their correlation with different phenotypes, 
we found the gene expression modules significantly associated with 
this phenotype in the early stage of bTB. The module is composed of 

FIGURE 5

The characteristics of 18 hub genes in the yellow-green module. (A) Heatmap plot shows the relative expression of the 18 hub genes across the 
different phenotypes. (B) The GO enrichment analysis of the 18 hub genes.
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236 genes whose expression is highly correlated, confirming that they 
may be  jointly involved in the regulation of specific biological 
processes. Through GO and KEGG enrichment analysis, we found 
that the genes in this module were mainly involved in the regulation 
of B cell-related antigen presentation system, which confirmed that 
there was an obvious biological process of immune activation and 
immune cell recruitment in the blood samples of early bTB stage, and 
it was also found that this process was mainly completed by the 
regulation of immune receptors. Gene interaction networks show that, 
There are 18 genes in this module associated with early bTB, most of 
which function as hub genes related to the regulation of immune 
receptors (ARRB2, B3GALT5, B4GALT6, BCL11A, CLGN, COBLL1, 
ENSBTAG00000016794, ENSBTAG00000026792, EPHX4, FCRL1, 

ITPR1, MREG, MTSS1, SEC31A, SLC9A7, ST6GAL1, SYK, WNT7A). 
Through correlation analysis, we found that the expression changes of 
these genes were moderately correlated with this phenotype at the 
early stage of bTB, suggesting that these genes are gene targets with 
diagnostic value and potential value for disease treatment. Through 
the random forest screening factor and LR regression model, 
we established three models for the diagnosis of early bTB. These 
models all showed excellent diagnostic performance, indicating that 
blood transcriptome examination has a certain diagnostic value. By 
comparing the performance of the models, we  found that the 
diagnostic model composed of FCRL1 was the best.

FCRL1, full of Fc receptor-like 1, is located on chromosome 3 of 
cattle and is widely present in the mammalian genome. It is specifically 

FIGURE 6

Gini important ranking and the correlation matrix of the 18 hub genes. (A) Gini important ranking of the genes for the random forest diagnostic model. 
(B) The correlation matrix of the 18 hub genes and the prediction.
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expressed on the surface of the cell membrane of B lymphocytes and is 
involved in the regulation of immune activation and immune function 
of B cells (48, 49). Different species express different Fc receptors on B 
cell membranes. Human B cells express FCRL1 to FCRL5 on the 
plasma membrane, while mouse B cells only express FCRL1 and 
FCRL5 (50). Quantitative reverse transcription polymerase chain 
(RT-PCR) showed that the expression of FCRL1 began in pre-B cells, 
and then was significantly increased in ordinary B cells and memory B 
cells (51). In vitro studies have shown that antibody-mediated cross-
linking of the extracellular domain of FCRL1 leads to intracellular 
tyrosine residues phosphorylation, enhances the binding ability of B 
cells to antigens, and induces Ca2+ mobilization and proliferation of B 
cells, confirming that FCRL1 is an important regulator of B cell 
activation (52, 53). Another study showed that FCRL1 also plays a 
positive regulatory role in T-cell-dependent and independent antibody 
responses (48). These findings confirm that FCRL1 is an important 
factor in mammalian immune regulation. In this study, the mean ROC 
of the diagnostic model established by FCRL1 reached 95%, indicating 
that FCRL1 can be used as an mRNA biomarker in the blood samples 
of early bTB stage.

Compared to the previously published study (25), this study 
explored the association between gene expression module and bTB 
depending on a WGCNA-based analysis instead of the simple DEG 
analysis and GO analysis. Through correlation analysis, we identified 
the most relevant gene regulatory network of early bTB infection. 
Rather than providing an equivocal gene list, we obtained a promising 
biomarker to screen the early bTB infection through a validated 
machine learning algorithm.

However, this study was a single-center study with a short study 
time and small sample size. In this study, we did not consider the 
expression profiles of other infectious diseases. The gene marker 
FCRL1 screened in this study is a widely distributed immunoregulatory 
gene, and its specific association with bTB still needs to be confirmed 
by large-scale epidemiological studies and basic experiments. 
Therefore, the diagnostic model established in this study has 
application value only when other infectious diseases are excluded, 
which limits its popularization value to a certain extent. As a key 
zoonosis, it is still a challenge to diagnose bTB accurately in the early 
stage. At the same time, it is conducive to the development of the 
livestock economy and the protection of human life and health safety 

FIGURE 7

ROC plots of the diagnostic models. (A) ROC plot of the model 1. (B) ROC plot of the model 2. (C) ROC plot of the model 3.
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to update the definition based on evidence-based medicine, prevent 
and manage disease and risk control, and conduct related large-scale 
clinical trials.

5 Conclusion

In this study, we screened candidate mRNA marker genes with 
specificity in blood samples of early bTB stage by transcriptome 
analysis. The results showed the transcription activity of genes 
involved in immune-related biological processes was more active in 
the early stage of bTB than in the late stage. There were obvious 
immune activation and recruitment of immune cells in the early stage 
of bTB. Changes in immune receptor regulation have been linked to 
the pathophysiological processes in the early stages of bTB. FCRL1 has 
the potential to be an mRNA biomarker in the blood samples of early 
bTB stage. The results of this study provide support for the early 
diagnosis of bTB.
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