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Porcine reproductive and respiratory syndrome (PRRS) is one of the most 
economically important infectious diseases for the pig industry worldwide. The 
disease was firstly reported in 1987 and became endemic in many countries. 
Since then, outbreaks caused by strains of high virulence have been reported 
several times in Asia, America and Europe. Interstitial pneumonia, microscopically 
characterised by thickened alveolar septa, is the hallmark lesion of PRRS. 
However, suppurative bronchopneumonia and proliferative and necrotising 
pneumonia are also observed, particularly when a virulent strain is involved. 
This raises the question of whether the infection by certain strains results in an 
overstimulation of the proinflammatory response and whether there is some 
degree of correlation between the strain involved and a particular pattern of 
lung injury. Thus, it is of interest to know how the inflammatory response is 
modulated in these cases due to the interplay between virus and host factors. 
This review provides an overview of the macroscopic, microscopic, and 
molecular pathology of PRRSV-1 strains in the lung, emphasising the differences 
between strains of different virulence.
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1 Introduction

More than 30 years after its first description (1, 2), porcine reproductive and respiratory 
syndrome (PRRS) continues to be one of the greatest threats to the swine industry worldwide 
(3–6). It has been recently estimated that the economic losses attributable to PRRS in Europe 
are € 74,181 per farm per year, corresponding to an average of € 255 per sow per year (5). For 
the American swine industry, the disease costs about $ 664 million annually according to the 
study performed by Holtkamp et al. (6). Despite many attempts of the scientific community 
to develop an effective vaccine in the past decades, current available vaccines are not fully 
protective and only induce partial protection against heterologous strains (7).

The aetiological agent of this disease are PRRS viruses (PRRSV-1 and PRRSV-2), positive-
single stranded RNA viruses classified within the genus Betaarterivirus (8, 9). The first 
European and American strains isolated at the beginning of the 90s, Lelystad (LV) strain and 
VR-2332 strain, respectively (2, 10), which displayed only about 60% of nucleotide similarity, 
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led to the consideration of two different genotypes of the virus, named 
as European or genotype-1 (also known as PRRSV-1) and American 
or genotype-2 (also known as PRRSV-2) (11). Recently, the 
International Committee on Taxonomy of Viruses reclassified them 
as two different viral species, Betaarterivirus suid-1 (PRRSV-1) and 
Betaarterivirus suid-2 (PRRSV-2) (9). Four PRRSV-1 subtypes have 
been identified so far: the pan-European subtype-1, Eastern European 
subtypes-2 and 3, and subtype-4 with strains from Latvia and Belarus 
(12–15). PRRSV-2 is mostly prevalent in America and Asia with at 
least nine well-defined lineages (16). Following the isolation of Lena 
and SU1-bel strains, enhanced virulence of PRRSV-1 strains was 
rapidly associated to those included within subtype-3 (17, 18). 
However, other strains belonging to subtype-1, such as PR40, 
AUT15-33 and Rosalía, or subtype-2, such as BOR59 strain, showed 
also high virulence (19–23).

Clinical manifestations depend mostly on the virulence of the 
PRRSV-1 strain, although other factors, such as management practices, 
the immunological herd status, genetics of the pigs or co-infections are 
of importance. The main characteristics and differences in clinical 
signs, lesions, tropism, and immunological parameters between classic 
(moderately virulent) and highly virulent PRRSV strains have been 
recently reviewed (24). Moderately virulent PRRSV-1 strains are often 
involved in outbreaks of reproductive failure in sows and respiratory 
disease in growing pigs (2, 10). The manifestations of reproductive 
failure may vary from sporadic abortions to abortion storms, mainly 
in the third trimester of gestation, together with premature parturition, 
delivery of stillborn piglets, mummified piglets or weak-born piglets 
(2, 10, 18). In piglets of all ages, the virus targets the alveolar 
macrophages, producing some degree of interstitial pneumonia and 
impacting secondarily on the body weight gain (19, 25, 26). 
Experimental infections have shown that moderately virulent PRRSV-
1-infected animals usually show lethargy, mild fever and mild to 
moderate respiratory signs, such as slight dyspnoea, but they usually 
fully recover after a few days (17–19, 21, 26, 27).

When a virulent PRRSV-1 strain is causing the infection, the 
clinical pattern changes substantially. High mortality (>20%), 
prolonged high fever (≥41°C) and severe respiratory disease are 
common findings of all infections with virulent PRRSV-1 strains (17, 
19–21, 24, 25, 27–30). Cyanosis on the ears and tail, conjunctival 
hyperaemia, and diarrhoea are also clinical manifestations observed 
in pigs infected with virulent PRRSV-1 strains (19–21, 30). Moreover, 
clinical manifestations of virulent PRRSV-1 strains appear early after 
infection, even after 1 day, with a rapid disease onset (18, 19, 21, 27).

The emergence of these virulent PRRSV-1 strains during the last 
two decades in Europe, such as Lena and SU1-bel strains in Belarus 
(18), PR40 strain in Italy (19) or Rosalía in Spain (22, 23), has gained 
special concerns within the pig industry and the research community, 
due to the high morbidity and mortality rates as well as the severity of 
the lesions, mainly in the lung (18, 19). Additionally, particular 
attention has been given to the potential mutation rate and 
recombination among endemic and emerging strains which may lead 
to a scenario with the appearance of potentially devastating outbreaks, 
such as the one caused by Rosalía strain in Spain in 2020, which 
resulted from the recombination of different PRRSV-1 isolates 
(22, 23).

PRRSV possesses a restricted cell tropism for CD163+ cells (31, 
32). CD163 is mainly expressed on cells of the monocyte/macrophage 
lineage, especially the pulmonary alveolar macrophage (PAM), 

making the lung its main target organ (33). This review discusses in 
depth the pathology of PRRS in the lung, emphasising the different 
patterns of lung injury observed among PRRSV-1 strains and the 
possible interaction between the virus and host factors.

2 PRRSV-1 lung lesions

2.1 Macroscopic lung lesions after PRRSV-1 
infection

2.1.1 Interstitial pneumonia as PRRSV-induced 
gross lung lesion

Moderately virulent PRRSV-1-infected grower pigs usually show 
mild lesions in the lung which frequently go unnoticed, but in the 
worst-case scenario, pigs develop mild to moderate interstitial 
pneumonia (2, 10, 29).

The key macroscopic finding in moderately virulent PRRSV-1-
infected animals is interstitial pneumonia that macroscopically is 
characterised by a mottled tan to red and rubbery pulmonary 
parenchyma which fails to collapse after opening the thoracic cavity, 
mainly visible at the caudal lobe, (Figure 1A, arrowheads), which can 
be particularly severe in cases of virulent strains, such as Rosalía strain 
(Figure 1B, arrowheads) (2, 10, 17, 19, 25–28, 34, 35). The macroscopic 
scoring system developed by Halbur et al. (36) has been frequently 
used to evaluate the severity and distribution of pulmonary lesions in 
PRRS, which considers each lung lobe at the dorsal and ventral view 
within the entire lung parenchyma (17, 25–28, 34, 37). According to 
the study performed by Morgan et al. (17) in pigs infected with the 
prototypical PRRSV-1 strain LV, interstitial pneumonia is visible from 
day 7 post-infection (pi) onwards; however, no gross lesions are 
usually detected at 1 month pi in these infected animals (17, 28, 34, 
38). Gradual increase of lung consistency on cranial and middle lobes 
with the progression of the disease over time has been reported, 
indicating foci of consolidation due to secondary bacterial infections 
(27, 37). Macroscopically, consolidated areas were swollen, firm and 
reddish, and clearly demarcated from the rest of the lung. At 
sectioning, mucopurulent exudate could be  observed on airways 
sometimes, all of it indicative of suppurative bronchopneumonia (39).

2.1.2 Suppurative bronchopneumonia as 
accompanying lesion to interstitial pneumonia in 
virulent PRRSV-1-infected animals

In general, field PRRSV infections are frequently accompanied by 
secondary bacterial complications, conveying to suppurative 
bronchopneumonia. However, when a virulent PRRSV-1 strain infects 
the pig under experimental conditions, gross lung lesions are more 
marked, showing severe diffuse interstitial pneumonia which, different 
to moderately virulent PRRSV-1 strains, is more commonly 
accompanied by foci of consolidation from very early stages of 
infection, resulting from suppurative bronchopneumonia in 
cranioventral areas (Figure 1C, arrows and inset) (18–20, 25, 27, 28, 
30, 34, 37). According to different experimental studies, in infections 
caused by virulent strains, suppurative bronchopneumonia is already 
present at very early time points (3 days pi, dpi) and usually culminates 
between the first and the second-week pi (wpi), exhibiting higher 
gross pathology scores than the lungs from moderately virulent 
PRRSV-1-infected animals according to the scoring system developed 
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by Halbur et al. (17, 27, 34, 38). For example, in the study performed 
by Morgan et al. (17), lungs from animals infected with the virulent 
SU1-bel strain showed more than 20 score points of difference than 
those infected with LV strain at 7 dpi, due to secondary 
bronchopneumonia (17). Interestingly, gross lesions were not visible 
in the lungs of SU1-bel-infected piglets at 1-month pi (17) and were 
not observed either in the lung of Lena-infected piglets (38). On the 
contrary, Frydas et al. (37) showed a similar gross lesion percentage 
between the low-virulent PRRSV-1 07V063 strain and the 13V091 
strain, considered as a virulent PRRSV-1 strain (subtype-1) (37). The 
discrepancies among these and other studies could be associated to 
the differences between each experimental set-up, including the dose 
and route of infection, the inoculum passage and volume, the age of 
the pigs and their genetic background. Lung weight relative to body 
weight is a potential indicator of lung inflammation and was used by 
Weesendorp et al. (40) to evidence differences between lungs from 
Lena- and LV-infected animals. Lungs from Lena-infected pigs 
showed higher relative lung weight in comparison with those from 
LV-infected pigs and uninfected control animals at 1 wpi (40). This 
relative lung weight decreased drastically at 46 dpi in the Lena-
infected group (40), which could indicate a partial resolution of the 
induced pulmonary lesion.

Although bronchopneumonia is associated with the presence of 
pathogenic bacteria, their isolation has not been always demonstrated 
when present in PRRSV-infected animals. Severe lung consolidation 
was reported in animals infected with 07 V063 and 13 V091 strains, 
however, no specific bacterial pathogens were isolated (37). On the 
other hand, the participation of Staphylococcus hyicus was 
demonstrated by conventional bacterial culture in an outbreak that 
took place in Austria in 2015, caused by the virulent strain AUT15-33, 
in animals that showed suppurative bronchopneumonia as well as 
porcine circovirus type 2 (PCV2) coinfection (20). Other macroscopic 
lung lesions have been described in the lung of virulent PRRSV-1-
infected animals. For instance, Karniychuk et  al. (18) reported 
fibrinous pleuropneumonia in 7 out of 10 pigs infected with the 

virulent PRRSV-1 Lena strain. Arcanobacterium pyogenes (currently 
Trueperella pyogenes) and Streptococcus suis were isolated in 2 of these 
animals, whereas no viruses, including PCV2 or swine influenza virus 
(SIV) were detected (18). Pleurisy was also observed in 2 out of 8 
Lena-infected piglets in the study published by Renson et al. (29). 
Gross lesions secondary to interstitial pneumonia and 
bronchopneumonia such as multifocal to coalescing areas of 
atelectasis, congestion, and interstitial and alveolar oedema have also 
been described in other virulent PRRSV-1 infections (19). The 
disturbance of the physical barriers and immune response by several 
viruses, such as PRRSV, PCV2 or SIV, and Mycoplasma 
hyopneumoniae, among others, which are primary agents of the 
porcine respiratory disease complex (PRDC), is plausible to play a role 
in the coinfection with secondary endemic bacteria (Pasteurella 
multocida, Bordetella bronchiseptica, Gläesserella parasuis, etc.) (41, 
42) or the proliferation of lung commensal microorganisms. Thus, 
further studies should address a proper characterisation of the 
pathogenic bacteria involved in the pathogenesis of the 
bronchopneumonia that is frequently observed concomitantly in 
virulent PRRSV-1 infections under experimental and field conditions.

2.2 Microscopic lesions induced by 
PRRSV-1 strains

2.2.1 Histopathological features of 
PRRSV-induced interstitial pneumonia

Microscopically, interstitial pneumonia has been reported as the 
distinctive lesion during PRRS, characterised by multifocal 
hypertrophy and hyperplasia of type II pneumocytes and alveolar 
septa thickening with infiltration of mononuclear cells, mainly 
lymphocytes and macrophages (36, 39, 43). Macrophage alveolar 
exudation is usually present and hyperplastic pneumocytes may form 
a continuous layer of cuboidal epithelium lining the alveolus (39, 44). 
Typically, the bronchiolar epithelium from PRRSV-infected animals 

FIGURE 1

Gross pictures of lungs from pigs experimentally infected with PRRSV-1 strains of different virulence and euthanised at 8–10 dpi. (A) Lung of a pig 
infected with 3249 strain showing tan mottling areas (arrowheads), and not collapsing after removal from thoracic cavity. (B) Lung from a pig infected 
with the highly virulent Rosalía strain displaying a marked reddish mottle pattern and diffuse firmness, especially in the dorsal aspect of the lung 
(arrowheads). Inset shows higher magnification and section of one of the affected lobes. Arrowheads show interstitial oedema. (C) Lung from a Lena-
infected pig exhibiting tan areas and rubbery texture but also patchy ventral areas of consolidation of the cranial and middle lung lobes (arrows). Inset 
shows higher magnification and section of the consolidation area of one of the affected lobes.
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is not affected, a finding that could point into the direction of other 
viral infections, such as SIV (39). Interstitial pneumonia induced by 
PCV2 shows a granulomatous pattern with syncytial cells, 
lymphocytes and polymorphonuclear cells infiltrating the alveolar 
septa (39, 44). Nonetheless, these findings are not always evident and 
a clear distinction between PCV2 and PRRSV infection may be hard 
to find. In PRRSV-1 uncomplicated cases, a mild to moderate 
multifocal to extensive interstitial pneumonia is usually observed 
(Figure 2A), which increases in severity alongside the virulence of the 
strain, and occasionally finding syncytia in those cases too (Figure 2B, 
inset) (17, 19, 21, 27, 38). Halbur et al. (36) described a scoring system 
to evaluate interstitial pneumonia which is widely used in porcine 
pathology studies and for both PRRSV species (27, 28, 34). Briefly, no 
microscopic lesion is scored as 0, mild interstitial pneumonia is scored 
as 1 (Figure 3A), moderate multifocal interstitial pneumonia is scored 

as 2 (Figure 3B), moderate diffuse interstitial pneumonia is scored as 
3 (Figure  3C), and severe interstitial pneumonia is scored as 4 
(Figure 3D) (36). A separate evaluation of each lung lobe, cranial, 
middle, and caudal is highly recommended to evaluate the distribution 
of the lesions as well as to avoid misinterpretation of lung lobes 
affected by bronchopneumonia. According to this scoring system, 
lungs from animals infected with virulent PRRSV-1 strains such as 
SU1-bel or Lena strains, displayed the most severe lesions in 
comparison with the low-virulent strains used in different 
experimental trials after 1 wpi (27, 28, 34).

2.2.2 Histopathological features of suppurative 
bronchopneumonia in virulent PRRSV-1 strains

Although, interstitial pneumonia is the hallmark of PRRSV 
infection, the presence and proliferation of specific commensal 

FIGURE 2

Microscopic pictures of the lung of representative pigs experimentally infected with PRRSV-1 strains of different virulence and euthanised at 8–10 dpi. 
(A) Mild thickening of the alveolar septa because of minimal infiltration of macrophages and lymphocytes in the lung tissue of a piglet infected with 
3249 strain. (B) Moderate to severe thickening of the alveolar septa due to marked infiltration of mononuclear cells with the presence of a syncytia 
(inset) in the lung of a Lena-infected pig. (C) Lung tissue of a Lena-infected pig showing, together with thickening of the alveolar septa, degenerated 
neutrophils within the lumen of bronchioles (arrowhead) and alveoli as well as cellular debris and aggregates of free chromatin (see for details “G”). 
(D) Moderate thickening of alveolar septa with characteristic perivascular lymphocytic and histiocytic infiltrate together with areas of moderate 
atelectasis in the lung of SU1-bel-infected pig. (E) Similar lesions as reported in “D” with marked infiltration of macrophages in the alveolar septa and 
atelectasis in the lung of a pig infected with Rosalía strain. See “F” for detail of the periarteriolar infiltrate.
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pathogens from the lung microbiome together with secondary 
bacterial infections cause suppurative bronchopneumonia, frequently 
found in virulent PRRSV-infected animals (Figure 2C) (20, 25, 27). 
Suppurative bronchopneumonia is characterised by abundant 
granulocytes, macrophages, and cellular debris within the lumen of 
bronchi, bronchioles, and alveoli (39). This made it necessary to 
create a scoring system to evaluate this lesion, if present (27). The 
score system estimates the severity and distribution of the suppurative 
bronchopneumonia as follows: 0, no microscopic lesions; 1, mild 
bronchopneumonia (Figure  4A); 2, moderate multifocal 
bronchopneumonia (Figure  4B); 3, moderate diffuse 
bronchopneumonia (Figure 4C); and 4, severe bronchopneumonia 
(Figure  4D). With this scoring system, lung sections from pigs 
infected with the virulent PRRSV-1 Lena strain showed a score of 1 
or 2 at 6 dpi, whereas animals infected with the moderately virulent 
3249 strain, reached these scores 1 week later (13 dpi) (27). This 
suppurative bronchopneumonia is usually accompanied by secondary 
atelectasis, oedema of the interlobular septa and dilation of lymphatic 
vessels (20, 27). The presence of fibrinous material in the pleura has 
been also described as a finding related to infection of the animals 
with the virulent PRRSV-1 Lena strain (Figure 5A) (18, 27).

Multifocal pyknosis and presence of cellular debris in the septal 
interstitium and within alveoli have been described in piglets infected 
with some virulent PRRSV-1 strains (25, 27, 28) in association with 
regulated cell death (28). The presence of clumps of free chromatin 
(Figures 2C,G) demonstrated using Feulgen staining (Feulgen+) was 
frequently observed in Lena- and Rosalía-infected animals with the 

highest bronchopneumonia scores (27) (Figure 6A). Moreover, this 
amorphous material was identified as TUNEL−, a technique to detect 
DNA fragmentation (Figure 6B) and cleaved-caspase-3− (executioner 
caspase, main marker of apoptosis) (Figure 6C), suggesting that these 
clumps may be associated with neutrophil extracellular traps (NETs) 
triggered within foci of suppurative bronchopneumonia (45). NETs 
formation in the context of virulent PRRSV strains might play a role 
either preventing microorganisms spread or favouring bacterial 
growth (45).

2.2.3 Kinetics of microscopic changes in the lung 
of PRRSV-1 infected animals

Whereas in animals experimentally infected with moderately 
virulent PRRSV strains lesions are noticeable around the first wpi (27, 
28, 34), in those infected with virulent PRRSV-1 strains microscopical 
lesions develop from 3 dpi onwards, reaching the maximum scores 
between the first and second wpi (27, 28, 34, 38). At 1-month after 
infection, interstitial pneumonia is only occasionally present and is of 
mild intensity (28, 34, 38). Balka et al. (25) observed a significant 
decrease in the presence of intra-alveolar cellular debris and in the 
number of intra-alveolar neutrophils throughout the course of the 
infection (from 10 to 21 dpi) with the virulent German 205817 strain 
together with an extensive type II pneumocyte proliferation, which 
was associated with the resolution of the lesion (25). In this sense, type 
II pneumocytes have been poorly characterised along PRRSV 
infection and might represent a target cell to understand the 
progression of the pathogenesis of this disease.

FIGURE 3

Microscopic pictures of representative score of interstitial pneumonia in PRRSV-1 infected pigs. (A) Score 1, mild interstitial pneumonia. Mild thickening 
of the alveolar septa because of minimal infiltration of macrophages and lymphocytes in the lung tissue of a piglet infected with 3249 strain. (B) Score 
2, moderate interstitial pneumonia. Thickening of the alveolar walls due to moderate infiltration of macrophages and lymphocytes in the lung tissue of 
a piglet infected with the virulent Lena strain. (C) Score 3, moderate diffuse interstitial pneumonia. Infiltration of macrophages and scattered 
lymphocytes in the lung tissue of a piglet infected with the virulent Lena strain. (D) Score 4, severe diffuse interstitial pneumonia in the lung tissue of a 
piglet infected with the virulent Lena strain.
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2.2.4 Other microscopic lung lesional patterns 
associated with PRRSV-1 infection

Depending on the intensity of the pathological process, additional 
prominent lesions may be  observed, such as proliferative and 
necrotising pneumonia (PNP), extensive areas of haemorrhage, and 
varying degrees of vasculitis, characterised by a prominent 
perivascular mononuclear infiltrate (19, 34, 46, 47). PNP is a severe 
form of interstitial pneumonia, characterised by two main histological 
features: (i) lymphohistiocytic interstitial inflammation with 
hypertrophy and proliferation of type II pneumocytes and (ii) 
presence of clumps of necrotic inflammatory cells within the alveolar 
spaces (44, 46, 48, 49). In a recent experimental study, several piglets 
infected with Rosalía strain developed PNP lesions as soon as 10 dpi 
(Figures  5B,C) (50). However, besides PRRSV, other aetiological 
agents such as PCV2 or SIV are usually involved in this lesional 
pattern (44, 46, 48, 49).

Additionally, other lesional patterns have been described in 
experimental studies performed with virulent PRRSV-1 strains. For 
example, Stadejek et al. (21) described a “honeycomb” pattern mostly 
in animals infected with the virulent PRRSV-1 strain BOR59, isolated 
in Belarus in 2009. This lesion, observed in animals euthanised at 17- 
and 22-dpi consisted of areas of fibroblast proliferation and fibrosis of 
the lung parenchyma, which gave the lung an appearance of loss of its 
structure (21). Additionally, in these infected animals, a high number 
of eosinophils, which were sometimes degranulated, was mainly 
observed in areas of severe lung fibrosis and around blood vessels (21). 

Associated with these lesions, hyperplasia of lymphoid follicles was 
also described, being especially noticeable in those animals infected 
with the virulent PRRSV-1 BOR59 strain in comparison with the 
moderately virulent strains evaluated: 18794 and ILI6 (21). Similarly, 
Weesendorp et  al. (38), described a higher peribronchiolar cell 
infiltrate score, mainly formed by macrophage and monocytes at 7 dpi 
in lungs from animals infected with virulent PRRSV-1 Lena strain 
compared to the two other moderately virulent strains used in their 
study. However, this lesion was not so patent in the study performed 
with the same strain by Rodríguez-Gómez et al. (27), which could 
be due to the differences on the experimental design between both 
studies, such as the infectious dose or the age of the animals. A 
perivascular pattern of inflammatory cells, mainly lymphohistiocytic, 
was observed in lungs of animals infected with other virulent 
PRRSV-1 strains such as Lena, SU1-bel and Rosalía (Figures 2D–F) 
from 3 dpi onwards, being specially marked and obvious in lungs from 
Rosalía-infected pigs. However, this finding has been also observed 
from 8 dpi onwards in moderately virulent strains, like 3249 strain (25, 
34, 45, 50). Interestingly, and different to what has been previously 
described for virulent strains, tertiary lymphoid organs were 
frequently observed in the lungs of Rosalía-infected piglets at 35 dpi 
(Figure 5D) (50). These structures have been related to robust immune 
responses to local inflammation at sites of tissue injury (51), indicating 
an ongoing pulmonary process, far from what has been described for 
other virulent PRRSV-1 strains in which after 1 month pi, the 
resolution of the pneumonia was taking place (25, 40).

FIGURE 4

Microscopic pictures of representative score of suppurative bronchopneumonia in PRRSV-1 infected pigs. (A) Score 1, mild bronchopneumonia in the 
lung from 3249 infected animal. Granulocytes and macrophages are present in the alveolar septa. (B) Score 2, moderate multifocal 
bronchopneumonia in the lung from an animal infected with the virulent Lena strain. A high number of granulocytes (arrowheads) and macrophages, 
together with cell debris infiltrate the alveolar walls. (C) Score 3, moderate diffuse bronchopneumonia in the lung from an animal infected with Lena 
strain. Granulocytes (arrowheads), macrophages, and cellular debris within the lumen of bronchi, bronchioles (arrow), and alveoli. Inset show 
infiltration of macrophages and scattered lymphocytes and granulocytes. (D) Score 4, severe bronchopneumonia in the lung from an animal infected 
with Lena strain. Arrowheads and inset show infiltration of granulocytes within bronchioli and alveoli, respectively.
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3 Pathogenic mechanisms of 
pulmonary lesion in PRRS

3.1 Role of macrophages

The lung mononuclear phagocytic system comprises PAMs, 
interstitial lung macrophages, and, in several species including pigs, 

pulmonary intravascular macrophages (PIMs) (52). Whereas the 
primary function of PAMs is to establish a first line of phagocytic 
defence against microbial infections, septal macrophages 
(interstitial macrophages and PIMs) are more specialised in the 
release of proinflammatory cytokines that contribute to regulate 
pulmonary homeostasis (26, 53–55). PAMs are the primary target 
cells of PRRSV, although PIMs and interstitial macrophages are also 

FIGURE 5

Microscopic pictures of the lung of representative pigs experimentally infected with the virulent Lena strain euthanised at 8 dpi (A) and with the highly 
virulent Rosalía strain and euthanised at 10 (B,C) and 35 dpi (D). (A) Thickening of the pleura due to the presence of fibrin (fibrinous pleuritis). 
(B) Alveolar septa are thickened by macrophages and lymphocytes which also predominantly infiltrate the interlobular septa (arrowheads). (C) The lung 
is moderately atelectatic, with type II pneumocytes hyperplasia and alveoli filling in by necrotic cellular debris (arrowheads), including basophilic 
clumps of chromatin, compatible with proliferative and necrotising areas of pneumonia. (D) Subpleural well-demarcated accumulation of lymphocytes 
consistent with a tertiary lymphoid organ.

FIGURE 6

Microscopic pictures of clumps of free chromatin demonstrated using Feulgen staining (A), TUNEL (B) and cleaved-caspase-3 
(C) immunohistochemical staining in the lung tissue from virulent Lena infected animals with severe bronchopneumonia. (A) Feulgen+ staining which 
demonstrates the presence of clumps of free chromatin. (B) TUNEL and (C) cleaved-caspase-3 stainings showing the negativity of the clumps of free 
chromatin.
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susceptible to the infection (26, 33, 56). In this sense, 
immunolabelling of PRRSV-N-protein is mainly observed in PAMs 
and to a lesser extent in PIMs and interstitial macrophages 
(Figure  7A), with clusters of PRRSV-N-protein+ macrophages 
surrounded by apoptotic bodies within areas of bronchopneumonia 
in piglets infected with virulent strains (Figure 7B). PAMs express 
high levels of the CD163 scavenger receptor (56, 57), which plays a 
crucial role in PRRSV internalisation and disassembly by interacting 
with GP2 and GP4 viral proteins (32, 58, 59). Replication of PRRSV 
in PAMs, PIMs and interstitial macrophages leads to an impairment 
in their fundamental functions including: (a) phagocytosis, 
which is influenced by the interaction between the virus and 
CD169 receptor, (b) antigen presentation, and (c) production of 
proinflammatory cytokines (54, 60–64).

Furthermore, during infection, there is also early cell death of 
infected PAMs, as well as necrosis and apoptosis of other macrophages 
and lymphocytes in the lung and lymphoid organs (45, 65–68). These 
changes contribute to induce an imbalance in the pulmonary immune 
homeostasis of PRRSV-1-infected piglets, making them more 
susceptible to a wide range of respiratory pathogens, both viral and 
bacterial (69), leading to increased severity of clinical signs and 
pulmonary lesions in co-infected piglets (61).

In this sense, a significant depletion in the frequency of pulmonary 
CD163+ cells has been reported in PAMs and lung tissue sections of 
piglets infected with virulent strains such as Lena or SU1-bel around 
7–10 dpi (27, 29, 45, 70, 71). CD163+ macrophages play a crucial role 
in tackling bacterial infections due to the sensing function of this 
molecule (72). Therefore, a reduction in the population of pulmonary 
CD163+ cells could potentially compromise lung phagocytic function, 
complicating cell debris clearance (29). This scenario could potentially 
create a favourable environment for co-infection with secondary 
commensal microorganisms, contributing to the development of 
suppurative bronchopneumonia. This phenomenon, resulting from 
the direct cytopathic effect of the virus on its target cells and the 
induction of regulated cell death in both infected and non-infected 
cells, has been extensively observed in the lungs and lymphoid organs 
of piglets infected with virulent PRRSV-1 strains (17, 45, 67).

On the other hand, a replenishment of CD163+ cells in the lung of 
SU1-bel infected pigs at 1 month after infection or at 2 wpi from 

Lena-infected piglets have been observed. This recovery of CD163+ 
PAMs has been reported parallel to an increase of arginase1+ (Arg1) 
macrophages (45), a common feature of M2-macrophages (73), 
suggesting a role in tissue repair, accelerating the resolution of 
inflammation (57, 74), which will be  in accordance to what was 
observed during macroscopic lung examination in other studies 
(25, 40).

Considering in vitro studies using monocyte-derived macrophages 
(MDMs) and supported by the high functional plasticity of pulmonary 
macrophages and their ability to adapt to different microenvironments 
(75, 76), it is plausible to hypothesise that during PRRSV-1 infection, 
pulmonary macrophages undergo distinct activation phases. In the 
initial phase, macrophages undergo classic activation, also known as M1 
polarisation, which is characterised by robust antimicrobial activity 
(77–79). After PRRSV-1 replication and PAMs cell death, there is an 
influx of monocytes and macrophages that replenish lung resident 
macrophages. These recruited cells would undergo a transition to an 
alternative activation phase, referred to as M2 polarisation as a 
consequence of the proinflammatory microenvironment induced by 
virulent PRRSV-1 strains in the lung. Although M2 macrophages are 
more susceptible to PRRSV infection (74, 80), these macrophages also 
exhibit anti-inflammatory properties and play a role in tissue repair and 
inflammation resolution (77–79).

3.2 Mechanisms involved in the regulation 
of lung inflammation

3.2.1 Type I interferon, an interplay among IFN 
antiviral response and PRRSV replication

Type I interferons (IFNs), which include IFN-α, IFN-β, IFN-ε, 
IFN-ω, IFN-k, IFN-δ and IFN-τ, are essential for orchestrating 
effective antiviral innate and adaptive immune responses, restricting 
viral replication and viral spread (81, 82). Although PRRSV is highly 
susceptible to IFN-α both in vitro (62, 83, 84) and in vivo (85), it 
induces a weak or negligible production of type I IFN in PAMs and 
monocyte-derived dendritic cells (MoDCs) in vitro. However, 
systemic IFN-α has been detected following infection with various 
PRRSV isolates (26, 30, 85–89).

FIGURE 7

Microscopic pictures of PRRSV-N-protein immunohistochemical staining in lung tissue from virulent Lena infected animals euthanised at 8 dpi. 
(A) PRRSV-N-protein+ alveolar macrophages in a field of representative interstitial pneumonia. Inset shows higher magnification of PRRSV-N-protein+ 
alveolar macrophages. (B) Clusters of PRRSV-N-protein+ macrophages surrounded by apoptotic bodies.
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This finding suggests that specific cell types are engaged in sensing 
the infection, and the variation in IFN-α production could be attributed 
to strain-specific differences in IFN-α induction (30, 74). Notably, the 
virulent Lena strain, and probably other strains not studied in depth, 
increase in IFN-α mRNA in blood parallel to the viral load (30). A 
screening of IFN-stimulated genes (ISGs), a powerful instrument that 
interferes with viral replication, displayed an upregulation of these genes 
in bronchoalveolar lavage (BAL) cells from both virulent Lena- and 
moderately virulent 3249-infected piglets at 3 and 6 dpi (35). Interferon 
regulatory factors have been also found to be overexpressed in PAMs 
infected in vitro with Lena and LV strains (90). These findings add 
complexity to the immunopathogenesis of PRRSV infections, as IFN-α 
should serve as a trigger signal to the immune system and initiate the 
induction of adaptive immune responses, a process known to 
be inefficient during PRRSV infection in pigs (74, 91).

3.2.2 Mechanisms of the proinflammatory response 
at lung level and its mirroring at systemic level

The acute inflammatory response plays a crucial role in the 
host’s innate immune response. In piglets experimentally infected 

with moderately virulent PRRSV-1 strains, there is a local increase 
in the expression of IL-1α/β, IL-6, and TNF-α, which correlates 
with the development of interstitial pneumonia (Figure 8). Unlike 
other swine viruses, such as African swine fever virus (ASFV), SIV 
or PRCV, which induce a robust systemic inflammatory response, 
the serum levels of proinflammatory cytokines in PRRSV infection 
are limited (26, 53, 92, 93). Furthermore, the levels of these 
cytokines may vary depending on the PRRSV strain (94, 95). A 
recent in vitro model has reported that PRRSV-2 established 
similar infection landscapes in PIMs and PAMs but induced more 
acute and severe inflammatory responses and associated 
endothelial barrier damage in PIMs than PAMs. Additionally, the 
TNF-α and IL-1β induced by PRRSV infection disrupted the 
integrity of the endothelial barrier by dysregulating the tight 
junction proteins ocludin, claudin-1 and claudin-8, which might 
improve the permeability of pulmonary capillaries to further 
enhance the exchange of inflammatory substances and cells, 
ultimately promoting the development of interstitial pneumonia 
(96). These findings might be extrapolated to PRRSV-1 and suggest 
that while the lung tissue exhibits an inflammatory response 

FIGURE 8

Graphic representation of pulmonary lesions induced by PRRSV-1 strains of different virulence (created with BioRender.com). PRRSV-1 classical strains 
(moderately virulent) typically induce a low to moderate interstitial pneumonia. In contrast, virulent PRRSV-1 strains exhibit heightened viral replication, 
leading to a significant reduction in pulmonary alveolar macrophages (PAMs) accompanied by early cell death of infected PAMs. Additionally, these 
strains trigger necrosis and apoptosis in other macrophages and lymphocytes, resulting not only in severe interstitial pneumonia but also, in some 
instances, in bronchitis, bronchiolitis, and bronchopneumonia. These alterations contribute to an imbalance in pulmonary immune homeostasis, 
making the host more susceptible to a wide spectrum of respiratory pathogens. The immunopathogenesis of these lesions is partly attributed to a 
stronger inflammatory response mediated by IL-1α/β when compared to low to moderately virulent strains.
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primarily mediated by PIMs and interstitial macrophages, there is 
a lack of a systemic response. This phenomenon has been 
associated with a PRRSV strategy to evade the host’s immune 
response and promote viral persistence (61, 97).

Nevertheless, virulent PRRSV-1 strains are able to induce a strong 
activation of the immune system eliciting a robust systemic 
inflammatory response (Figure 8). This response is characterised by 
elevated levels of proinflammatory cytokines such as IL-1α/β, IL-6, 
TNF-α, or IFN-γ in the bloodstream, leading to high body temperature 
(ranging from 40.5°C to 42°C) and more severe and acute respiratory 
clinical signs and lesions. Virulent PRRSV-1 strains have demonstrated 
enhanced viral replication, resulting in a significant reduction of PAMs 
and an intensified inflammatory response, leading not only to severe 
interstitial pneumonia but also in some cases to bronchitis, 
bronchiolitis, and bronchopneumonia. The pathogenesis of these 
lesions is partly attributed to the inflammatory response mediated by 
IL-1α/β. It has been reported that virulent strains, such as Lena or 
SU1-bel, induced a higher expression of these proinflammatory 
cytokines compared to moderately virulent strains like LV or Belgium 
A (34, 38). Moreover, it is important to highlight the synergistic effect 
of co-infections between PRRSV-1 and bacteria, which triggers a 
cascade of proinflammatory cytokines that significantly intensify lung 
damage (98). Notably, not only virulent PRRSV-1 can upregulate the 
production of IL-1α/β but also some bacteria, such as Glaesserella 
parasuis or Mycoplasma hyopneumoniae (99, 100). This interaction 
between pathogens leads to more severe respiratory complications and 
exacerbate the overall disease outcome, particularly under field 
(natural) conditions where multiple pathogens may be  present  
simultaneously.

Several mechanisms have been proposed to contribute to the 
increased severity of clinical signs and pulmonary lesions in 
PRRSV-1/bacteria co-infected animals. Firstly, the upregulation of 
CD14, the main receptor of the LBP (lipopolysaccharide-binding 
protein) complex. For instance, PRRSV-1 virulent strains, such as 
Lena, and Rosalía, along with other moderately virulent PRRSV-1 
strains, induce the infiltration of CD14+ monocytes in the lungs, as 
well as PIMs and interstitial macrophages, which infiltrate 
extensive areas of the interstitium (71, 98, 99). While the influx of 
CD14+ immature macrophages and monocytes may represent an 
attempt to replenish the loss of CD163+ macrophages and restore 
the normal lung function, the increase in CD14+ cells also implies 
a higher availability of the LPS (lipopolysaccharide)-LBP complex 
receptor. This increased availability would predispose the lung to 
a higher production of proinflammatory cytokines upon exposure 
to bacterial LPS (98, 100–102).

The influence of the respiratory microbiota on the immune 
response to PRRSV-1 would be another mechanism involved in the 
increased severity of clinical signs and pulmonary lesions. Among the 
secondary bacteria isolated from PRRSV-1-infected pigs are 
low-virulent strains of Actinobacillus pleuropneumoniae, 
Actinobacillus suis, Glaesserella parasuis, Pasteurella multocida, and 
Streptococcus suis. These isolates are commonly associated with 
suppurative bronchopneumonia. The damage caused by PRRSV in 
the lung may create an imbalance in the respiratory microbiota, 
facilitating the growth and proliferation of these secondary bacterial 
infections, and leading to the development of more complex 
pneumonia processes, particularly in the case of virulent strains (69, 
103, 104).

3.2.3 Modulation and balance of the 
inflammatory response at lung level

Anti-inflammatory cytokines play an important role in immune 
homeostasis. Indeed, after a cascade of proinflammatory reactions and 
apoptosis in the lung, the host should be able to trigger the release of 
anti-inflammatory and/or regulatory mediators to limit the extent of the 
lung injury. During the acute phase of PRRSV-1 infection, an increase 
in CD200R1+ intravascular and interstitial macrophages and FoxP3+ 
cells have been associated with the severity of lung lesion, particularly 
within or surrounding foci of bronchopneumonia in piglets infected 
with the virulent Lena or 3249 PRRSV-1 strains (71). CD200R1 is 
known for its role in reducing the expression of proinflammatory 
cytokines in various inflammatory diseases (105). On the other side, 
FoxP3 is a marker of regulatory T cells (Tregs), which may act as 
inhibitor of the cell-mediated immune response in pigs upon PRRSV 
infection (106–109). Therefore, the upregulation of CD200R1+ and 
FoxP3+ cells represent potential mechanisms involved in the constraint 
and recovery of lung injury during acute PRRSV-1 infection together 
with the migration and replenishment of M2 macrophages to the lung.

Furthermore, recently, it has been published that PRRSV-1 may 
induce an imbalance between costimulatory and coinhibitory immune 
checkpoints at lung level during the acute phase of infection (110). 
Thus, it was reported that a modest increase in costimulatory 
molecules was accompanied by an earlier and more robust 
upregulation of coinhibitory molecules, particularly in the lungs of 
those infected with the virulent Lena strain (110). The concurrent 
expression of these coinhibitory immune checkpoints, as evidenced 
by the strong correlations observed among them, implies a synergistic 
action of these molecules, likely aimed at modulating the heightened 
inflammatory response and mitigating associated lung tissue damage.

The production of IL-10 would be another described mechanism 
involved in the resolution of inflammation during PRRSV infection. 
IL-10, a potent anti-inflammatory cytokine, can be induced by certain 
strains of PRRSV, including the more virulent ones. IL-10 not only 
controls tissue damage caused by the inflammatory response but also Th1 
immune response. IL-10 induction can counteract the effects of IFN-γ 
and potentially stimulate the proliferation of Tregs. Some studies indicate 
that PRRSV infection leads to an increase in IL-10 levels, while others 
have not reported changes in the expression of this cytokine (107, 111–
113). The lack of consensus among studies can be attributed to the fact 
that not all PRRSV strains induce IL-10 release (94, 95, 109, 112, 113).

4 Conclusion

This review delves into the macroscopic, microscopic, and 
molecular pathology induced by PRRSV-1 strains of different 
virulence in the lung, relating the different lesion and the molecular 
patterns. Although the hallmark lesion of interstitial pneumonia is 
always present in PRRSV infections, its temporal development, 
severity, and the possible occurrence of PNP and concurrent 
bronchopneumonia, are influenced by the virulence of the strain and 
the host-virus interactions. In addition, the way in which the survival 
and functionality of macrophage population is affected by the 
infection, and the mechanisms of activation and control of the 
inflammation occur, play a critical role in the manifestation of the 
disease. Differences in experimental settings and the emergence of 
new virulent strains make it difficult to draw a definitive picture of the 
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immunopathogenesis of this disease, calling for the development of 
comparative experiments with the inclusion of reference strains.
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Glossary

PRRS Porcine reproductive and respiratory syndrome

PRRSV Porcine reproductive and respiratory syndrome virus

LV Lelystad strain

PAM Pulmonary alveolar macrophage

pi Post-infection

dpi Days post-infection

wpi Weeks post-infection

PIM Pulmonary intravascular macrophage

PCV2 Porcine circovirus type 2

SIV Swine influenza virus

PRDC Porcine respiratory disease complex

NETs Neutrophil extracellular traps

PNP Proliferative and necrotising pneumonia

PIM Pulmonary intravascular macrophages

PRCV Porcine respiratory coronavirus

MDMs Monocyte-derived macrophages

IFNs Type I interferons

MoDCs Monocyte-derived dendritic cells

pDCs Plasmacytoid dendritic cells

ISGs IFN-stimulated genes

BAL bronchoalveolar lavage

ASFV African swine fever virus

LBP Lipopolysaccharide-binding protein

LPS Lipopolysaccharide

Tregs Regulatory T cells
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