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Introduction: Early disease detection in veterinary care relies on identifying 
subclinical abnormalities in asymptomatic animals during wellness visits. This 
study introduces a model designed to distinguish between wellness and other 
types of veterinary visits.

Objectives: The purpose of this study is to validate the use of a visit classification 
model compared to manual classification of veterinary visits by three board-
certified veterinarians.

Materials and methods: The algorithm was initially trained using a Gradient 
Boosting Machine model with a dataset of 11,105 clinical visits from 2012 
to 2017 involving 655 animals (85.3% dogs and 14.7% cats) across 544  U.S. 
veterinary practices. Three validators were tasked with classifying 400 visits, 
including both wellness and other types of visits, selected randomly from the 
same database used for initial model training, aiming to maintain consistency 
and relevance between the training and application phases; visit classifications 
were subsequently categorized into “wellness” or “other” based on majority 
consensus among validators to assess the model’s performance in identifying 
wellness visits.

Results: The model demonstrated a specificity of 0.94 (95% CI: 0.91 to 0.96), 
implying its accuracy in distinguishing non-wellness visits. The model had a 
sensitivity of 0.86 (95% CI: 0.80 to 0.92), indicating its ability to correctly identify 
wellness visits as compared to the annotations provided by veterinary experts. 
The balanced accuracy, calculated as 0.90 (95% CI: 0.87 to 0.93), further 
confirms the model’s overall effectiveness.

Clinical significance: The model exhibits high specificity and sensitivity, ensuring 
accurate identification of a high proportion of wellness visits. Overall, this model 
holds promise for advancing research on preventive care’s role in subclinical 
disease identification, but prospective studies are needed for validation.
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Introduction

In recent years, artificial intelligence (AI) and machine 
learning (ML) models have begun to transform veterinary 
medicine, enhancing diagnostic capabilities and treatment 
methodologies (1). These technologies are increasingly used to 
analyze complex data and improve the accuracy of diagnoses 
across a variety of conditions. For example, machine learning 
applications in veterinary medicine have shown significant 
potential in areas ranging from remote sensing in wildlife 
monitoring to advanced imaging techniques for companion 
animals (2, 3). Such advancements underscore the growing 
importance of AI in the field, setting the stage for more 
specialized applications.

Medical records can provide a wealth of information to support 
studies of disease prevalence. Within the human medical field, 
standardized medical coding for insurance and the International 
Coding of Disease (ICD-11) can facilitate classification of visit types 
or diagnoses across clinics and hospitals (4). Veterinary medicine 
lacks a similar classification system that allows for standardized 
recognition of clinical behavior at visits, and this has been a barrier 
to studies investigating clinical behavior, results, or outcomes in the 
field (5). Machine learning techniques are increasingly employed to 
structure and derive insights from the vast amount of structured, 
semi-structured, and unstructured data in veterinary medicine, 
facilitating automated extraction of valuable information from 
clinical narratives and improving both animal and human health 
outcomes (1, 6–8).

Wellness or preventive care visits play an important role in 
the veterinary-client-patient relationship and provide an 
opportunity to educate clients and identify subclinical disease (9, 
10). While companion animal preventative health guidelines to 
exist, there can be substantial variation between clinics in what is 
included within a wellness visit and there is no general agreement 
on what defines a wellness visit or what should be included in 
wellness care (9–13). Depending on the clinic, a wellness visit 
could be defined only as the examination of apparently healthy 
animals with no health concerns, to visits that include preventive 
care and routine laboratory testing of blood, feces and urine in 
addition to the physical exam. There is limited information on 
the results of routine bloodwork—meaning tests ordered without 
intending diagnosis or monitoring—at various life stages. Most 
studies that have explored laboratory results in healthy dogs and 
cats typically have a narrow scope (14–17). They might 
concentrate on one specific breed, consider only a restricted 
range of analytes, focus primarily on older pets, or implement a 
strict definition of what defines “healthy” pets. Currently, large 
scale real-world evidence (RWE) studies on the value of wellness 
visits are limited. A major barrier in the collection of large-scale 
RWE studies is the inability to determine if a clinical examination 
constitutes a wellness visit due to the non-uniform collection of 
clinical information.

This study aims to validate a machine learning model designed to 
classify wellness visits for dogs and cats that have been presented to 
veterinary practices across the United States. The performance of the 
model will be benchmarked as compared to the consensus results of 
three licensed veterinarians who classified a clinical examination as a 
wellness visit or other visit.

Model training

The purpose of the visit classification model was to use electronic 
practice information management records to determine why a pet 
owner visited their veterinarian (i.e., Why did the pet owner bring 
their animal to the practice?). A patient visit was defined as when a 
patient (or patient’s owner) comes to the clinic and obtains one or 
more products or services on behalf of an animal. The visit begins 
when the animal walks through the clinic door and ends when the 
animal leaves the clinic. A patient visit may also be when an animal 
owner comes to the clinic and obtains some product on behalf of the 
animal. Each visit was reviewed and classified based on what the intent 
of the visit was by the pet owner.

Several factors were used to ascertain the intention of a visit 
including the time since last visit, appointment notes, invoice items, 
and any available medical notes. The primary sources of information 
were the medical notes or the stated reasons for the visit. In cases 
where medical notes were unavailable, transaction details were 
evaluated. Entries explicitly mentioning ‘yearly wellness exam’ or 
‘6-month exam’ were classified as wellness visits. Additionally, if a list 
of services included routine procedures such as vaccinations, ear 
swabs, fecal tests, or routine blood work fitting the typical timing of a 
yearly or six-month checkup, the visit was categorized as wellness. 
However, wellness visits that coincided with grooming or boarding 
services were not classified as wellness, since the primary intent was 
deemed to be grooming or boarding, with medical services provided 
as a convenience. Visits with unclear intent based on the provided 
information, or those recorded as mere administrative line items not 
representing actual activity for the pet, were excluded from 
our analysis.

During the initial human annotation process, visits were first 
classified into clinical or non-clinical visit categories. Visits were then 
classified further as wellness, non-wellness, and non-clinical visits 
(consisting of boarding, grooming, and retail). Annotators were 
masked to visit classifications applied by other annotators. Visits were 
organized by patient at a single clinic. A custom annotation tool was 
developed to anonymously monitor annotator consensus. It tracked 
individual annotator metrics, training set agreement, and group 
agreement on new labels (blind to individual annotators).

A selection of 11,105 clinical visits from 2012 to 2017 was used to 
train our model. These visits involved 655 animals (85.3% dogs and 
14.7% cats) from 544 veterinary establishments in the United States. 
These visits were randomly selected from the database using the 
default random number generator (RNG) in base R, the Mersenne-
Twister algorithm, to ensure that each visit had an equal chance of 
being chosen (18). The median duration of a visit was one day (IQR: 
1.0–1.0 days) and the median number of transaction line items per 
visit was two transactions (IQR: 1–5 transactions). We classified the 
visits into four categories: wellness (24.5%), non-wellness (23.1%), 
non-clinical (42.5%), and unknown (10.0%). A single visit could have 
multiple labels with the exception of a non-clinical visit which was 
defined to be mutually exclusive to all the other categories.

During the model development, to annotate the visits for intent, 
two methods were used. First, a pair of veterinarians to label each of 
the 5,984 visits in the preliminary phase (Supplementary Figure S1A). 
They agreed on 5,058 visits and labeled the remaining 926 as 
unknown. These unknown visits were excluded from the initial model 
training. Second, one of the six board-certified veterinarians labeled 
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an additional 5,121 visits. These visits were added to the training 
dataset along with the agreed-upon 5,058 visits from the 
preliminary phase.

A comprehensive set of features was used to classify the visits into 
one of the four categories: wellness, non-wellness, non-clinical and 
unknown using a Gradient Boosting Machine (GBM) model using the 
H20 3.20.0.2 and R version 3.5.1 (19, 20). GBM is a decision tree-based 
algorithm that creates a single model by adding together output from 
many small, weak decision trees. Each tree is constructed in sequence 
to fix the errors made by all the previous trees. For a binary classifier 
(one with 2 classes), the output of the model is the probability that the 
data provided is in the class (or not in the class). GBM chosen over 
other methods due to its superior predictive performance and 
robustness in handling complex non-linear relationships within the 
data. Furthermore, its ability to provide insights into feature importance 
and manage diverse data types makes it particularly suitable for our 
veterinary visit classification task (21). A simple grid search approach 
was employed to optimize the performance of the Gradient Boosting 
Machine (GBM). To ensure the validity of the results, the data used for 
hyperparameter selection did not overlap with any validation or test 
datasets, thereby avoiding data leakage and ensuring that performance 
metrics accurately reflect the model’s generalization capabilities. The 
features used to classify a visit encompassed various demographic and 
clinical aspects of the visits, including species, age, the number of items 
on the invoice, total visit cost, days since the last visit, days since the 
second to last visit, days since the third to last visit, transaction labels, 
vaccine terms, prescriptions, medical notes (examination type, 
procedure, etc.), appointment notes words, and appointment reason 
for visit words. The feature set included all the features available to the 
veterinarians at the time of annotation. By leveraging this diverse array 
of features, the model aimed to capture nuanced patterns and 
relationships in the data, ultimately enhancing its ability to distinguish 
between wellness visits and other visits in veterinary clinics. The 
classification model for the classification of wellness visits, was trained 
employing a 5-fold cross-validation approach, with the F1 score used 
to select the final trained model. The final GBM model was composed 
of 111 trees with a maximum depth of 7. The most influential features 
include vaccine terms, prescriptions, vector born disease test, and visit 
total cost. Other notable features are laboratory tests medical service, 
various time-based metrics such as days since the last visit and visit 
interval, animal age, and several other visit-related metrics. This 
process resulted in performance metrics including an F1 score of 0.93, 
a recall of 0.93, a precision of 0.93, and a specificity of 0.97 for the 
detection of wellness visits as measured on a held-out test dataset of 
1,003 visits that was randomly selected from the training set. The 
held-out set was separate from the training set.

Training validation annotators

The three veterinarian validators were put through an education 
period using 125 visits (25 visits from wellness, non-wellness and 75 
from the non-clinical visit category) to become familiar with the 
annotation tool (Supplementary Figure S1B). These visits were 
selected from the initial 5,058 visits where the label was agreed upon 
by two veterinarians and were used to train the model (see Model 
Training Section above). The veterinarians were granted access to the 
labels that had been collaboratively determined by the two initial 

veterinarians who categorized the visit. As part of the education 
process, round table virtual discussions were allowed to gain 
alignment on classification of visits. These discussions were facilitated 
by an expert veterinarian involved in the initial training of the model 
(MC) and the data scientists involved in the development of the model 
(JR, DM).

After the education period, each of the validators were assessed 
for agreement to a random selection of 100 visits that matched the 
distribution of visit types seen in production. The veterinarians were 
masked to the label of the visits for this assessment. These visits were 
selected from the initial 5,058 visits where the label was agreed upon 
by two veterinarians and were used to train the model (see Model 
Training Section above). A benchmark of 85% agreement (defined 
pre-hoc) to the initial agreed upon label by the two veterinarians used 
to develop the training dataset was required for the validators to 
continue to the validation study.

Development of validation dataset

After the educational period, the three validators were assigned 
the task of classifying the same 400 visits, distinguishing between 
wellness visits and other types of visits. To ensure that these 400 visits 
reflected the distribution of the population of visits expected in a live 
environment, they were randomly selected from the same database 
that was used for the initial training of the model, but were not part of 
the data used to train the model. This was done to ensure consistency 
and relevance between the training and application phases. To assess 
the performance of the model for the identification of wellness visits, 
the results were split into two categories: (1) “wellness” containing the 
wellness visit type; (2) “other” containing all visits not defined as a 
wellness visit (for example non-wellness and non-clinical visits). The 
reference label for each visit was then generated by using the majority 
consensus for “wellness” or “other” by each of the validators.

Statistical analysis

A sample size of 400 visits was considered adequate for the 
identification of wellness visits based off bootstrap simulation using one 
of the holdout datasets from the k-fold cross validation from the training 
dataset. A total of 800 visits (double the required amount based on 
sample size calculation) were collected. In the case that the validators 
finished their caseload with additional time, they were allowed to 
continue annotating visits until budget ran out. Consequently, the final 
validation dataset comprised 622 visits. Initial assessment of validator 
performance against each other was compared using percent exact 
match across all three raters and Fleiss Kappa for agreement. The 
performance of the model in accurately classifying wellness and other 
visits was evaluated using several metrics, including Sensitivity (Recall), 
Specificity, Positive Predictive Value (PPV, Precision), Negative Predictive 
Value (NPV), F1 Score, Balanced Accuracy, Matthews Correlation 
Coefficient, and Jaccard Index. To address the absence of a gold standard, 
sensitivity, specificity, and prevalence were estimated using the 
Expectation–Maximization (EM) algorithm with conditional 
independence, providing additional measures of the model’s 
performance (22, 23). To determine the confidence intervals and 
estimates for these metrics, a bootstrapping approach was applied. 
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Specifically, 2,000 bootstrap samples were generated by randomly 
sampling visits with the replacement from the original dataset. Bootstrap 
validation and calibration plots were performed using the Hmisc and 
rms packages (24, 25). Statistical analysis was done using R version 4.0.2 
and various helper functions from the tidyverse (19, 26). Data 
visualization was generated using ggplot2 (27).

Results

A total of 622 total visits were classified by all three trained validating 
veterinarians. Most were dog visits (78.2%, n = 487) with 135 cat visits 
(21.7%). The median age of dogs was 6.0 years (IQR: 2.0–9.3 years) and 
of cats was 6.0 years (1.7–12.0) with a single cat with no recorded age. A 
full list of demographic information can be found in Table 1.

Interobserver agreement

Of the 622 visits, all three trained validators agreed on the 
classification of 96.9% (602) of the visits with 457 (73.5%) visits being 
classified as other and 146 (23.5%) being classified as wellness (Fleiss 
Kappa = 0.91, Supplementary Table S1; Appendix S1). The proportion 
of visits that have a reference label of wellness is 23.3% (n = 145), with 
24.8% (n = 121) wellness visits classified for dogs and 17.8% (n = 24) 
classified as wellness for cats.

Model performance

The model demonstrated a specificity of 0.94 (95% CI: 0.91 to 
0.96), implying its accuracy in distinguishing non-wellness visits 
(Tables 2, 3). The model had a sensitivity of 0.86 (95% CI: 0.80 to 0.92), 
indicating its ability to correctly identify wellness visits as compared 
to the annotations provided by veterinary experts (Tables 2, 3). This 
suggests that the model accurately identified 86% of wellness visits. 
These results indicate that the model accurately recognized 94% of 
non-wellness and had a low false positive rate. The balanced accuracy, 
calculated as 0.90 (95% CI: 0.87 to 0.93), further confirms the model’s 
overall effectiveness (Table 3). In addition, the model was observed to 
be well calibrated across the predictive range (Supplementary Figure S2). 
Employing the conditional independence model with the EM 
algorithm to account for an imperfect gold standard, we obtained a 
specificity of 0.97 (95% CI: 0.95–0.99) and a sensitivity of 0.85 (95% 
CI: 0.79–0.90). Additional measures of model performance are found 
in Table 3 and in Appendix 2.

Discussion

Early disease detection in veterinary care depends on the 
identification of subclinical abnormalities in asymptomatic animals 
which could be evaluated during a wellness visit (14). Providing a 
method to determine the type of veterinary visit is essential to 
determining the benefit of wellness visits. The model developed for 
this study demonstrated strong specificity and sensitivity, suggesting 
a robust ability to distinguish between wellness and other visits. The 
high specificity and sensitivity confirm that the model was able to 
accurately identify a high proportion of wellness visits. A high 

specificity in our classification model minimizes the risks associated 
with incorrectly categorizing other visits as wellness visits. Such a 
misclassification would have more serious consequences compared to 
inadvertently classifying a wellness visit as a non-wellness one, as it 

TABLE 1 Pet demographic information from 622 veterinary visits.

Dog visits Cat visits

n % n %

Sex

Female 33 6.8 6 4.4

Female spayed 200 41.1 55 40.7

Male 44 9 6 4.4

Male neutered 209 42.9 67 49.6

Unknown 1 0.2 1 0.7

Life stage

Juvenile 90 18.5 23 17

Young adult 92 18.9 13 9.6

Mature adult 120 24.6 50 37

Senior 85 17.5 34 25.2

Geriatric 100 20.5 14 10.4

Unknown – – 1 0.7

Cat Life Stage: Kitten (<= 1 year), Young Adult (>1 to < = 2 years), Mature adult (> 2 years < = 
10 years), senior (> 10 years to < = 15 years), geriatric (> 15 years). Canine Life Stage: Puppy 
(<= 1 year), Young Adult (>1 to < = 4 years), Mature adult (> 4 years < = 7 years), senior (> 
7 years to < = 10 years), geriatric (> 10 years).

TABLE 2 Contingency table of model performance to correctly identify 
wellness visits as compared to reference method (majority of three 
veterinarians).

Reference method 
(3 annotators)

Wellness Other Total

Model
Wellness 20.1% (125) 5.0% (31) 25.1% (156)

Other 3.2% (20) 71.7% (446) 74.9% (466)

Total 23.3% (145) 76.7% (477) 100.0% (622)

Sensitivity Specificity

86.2% 93.5%

TABLE 3 Bootstrapped model performance of model and 95% confidence 
interval estimates.

Performance 
metrics

Estimate Lower CI Upper CI

Sensitivity (recall) 0.86 0.80 0.92

Specificity 0.94 0.91 0.96

PPV (precision) 0.80 0.74 0.86

NPV 0.96 0.94 0.97

F1 score 0.83 0.78 0.87

Balanced accuracy 0.90 0.87 0.93

MCC 0.78 0.72 0.83

Jaccard index 0.71 0.64 0.78

F1 represents the harmonic mean of recall and precision. PPV, positive predictive value 
(precision); NPV, negative predictive value; MCC, Mathew’s correlation coefficient.
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could potentially lead to overlooking individuals who are in actual 
need of medical attention or intervention.

This study has limitations that warrant consideration. Primarily, the 
identification and classification of visit types were conducted using data 
from specific practice information management systems, which may 
limit the model’s generalizability across different clinical settings and 
necessitates additional validation. Furthermore, evaluating visit types is 
not commonly integrated into the standard veterinary clinical workflow. 
Therefore, direct comparisons of the model’s capability to accurately 
identify wellness visits with those documented by a single veterinarian 
may prove difficult to interpret. To address this, we propose the collection 
of visit type data at the time of the clinical encounter. Implementing this 
change would not only provide clearer insights but also potentially 
eliminate the necessity for using a predictive model, as accurate and 
structured data capture would be readily available. In addition, the model 
performance was dependent on the annotations provided by veterinary 
experts. Our interobserver agreement results, with a Fleiss Kappa of 0.91, 
underline the consistency among expert annotators, providing a reliable 
basis for the model’s training. The reliance of the model’s training on the 
agreement among veterinarians in classifying visits underscores the 
pivotal role of expert judgment in this process, especially as during the 
training process the annotating veterinarians could not identify the visit 
type for 926 visits. It also brings to light the limitations of the model in 
situations where there is a lack of consensus among experts. To ensure 
practical relevance, future efforts should aim to integrate this aspect into 
routine workflow and use more varied data for model training. 
Additionally, our sample was skewed towards dogs (78.2% of visits), 
which may have influenced the model’s performance across species. 
Future research should investigate further refining the model’s ability to 
differentiate between wellness and non-wellness visits, especially in cases 
where expert consensus might be  challenging. In particular, the 
discrepancy in wellness visit classification between cats and dogs calls for 
a more nuanced approach to species-specific care patterns in future 
model development.

Wellness and preventive care visits are crucial in the veterinary-
client-patient relationship, offering a chance to inform clients and 
detect underlying diseases early. The classification of wellness visits in 
large-scale RWE data could expand research on the role preventive care 
plays in the identification of subclinical disease. While the utilization 
of a visit classification model on retrospective RWE data may expedite 
the assessment of the clinical value of preventive care visits, further 
prospective studies are essential to validate these findings.
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