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Introduction: Digital clinical decision support (CDS) tools are of growing 
importance in supporting healthcare professionals in understanding complex 
clinical problems and arriving at decisions that improve patient outcomes. CDS tools 
are also increasingly used to improve antimicrobial stewardship (AMS) practices in 
healthcare settings. However, far fewer CDS tools are available in lowerand middle-
income countries (LMICs) and in animal health settings, where their use in improving 
diagnostic and treatment decision-making is likely to have the greatest impact. The 
aim of this study was to evaluate digital CDS tools designed as a direct aid to support 
diagnosis and/or treatment decisionmaking, by reviewing their scope, functions, 
methodologies, and quality. Recommendations for the development of veterinary 
CDS tools in LMICs are then provided.

Methods: The review considered studies and reports published between 
January 2017 and October 2023 in the English language in peer-reviewed and 
gray literature.

Results: A total of 41 studies and reports detailing CDS tools were included in 
the final review, with 35 CDS tools designed for human healthcare settings and 
six tools for animal healthcare settings. Of the tools reviewed, the majority were 
deployed in high-income countries (80.5%). Support for AMS programs was a 
feature in 12 (29.3%) of the tools, with 10 tools in human healthcare settings. The 
capabilities of the CDS tools varied when reviewed against the GUIDES checklist.

Discussion: We recommend a methodological approach for the development of 
veterinary CDS tools in LMICs predicated on securing sufficient and sustainable 
funding. Employing a multidisciplinary development team is an important first 
step. Developing standalone CDS tools using Bayesian algorithms based on local 
expert knowledge will provide users with rapid and reliable access to quality 
guidance on diagnoses and treatments. Such tools are likely to contribute to 
improved disease management on farms and reduce inappropriate antimicrobial 
use, thus supporting AMS practices in areas of high need.
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1 Introduction

To address the global threat of antimicrobial resistance, 
antimicrobial stewardship (AMS) programs have been implemented 
in both the human and animal health sectors (1, 2). AMS refers to a 
coherent set of actions that promote the responsible use of 
antimicrobials, including optimal selection, dose, route of 
administration, duration, and control of antibiotic treatment (3–5). 
These programs play a pivotal role in slowing the development of 
antimicrobial resistance by promoting responsible and judicious use 
of antimicrobial agents and preserving their future effectiveness. 
However, the success of AMS programs often hinges on the support, 
education, and behavior of those who make prescribing decisions and 
administer antimicrobial agents (6, 7). Inappropriate or overuse of 
antimicrobials persists because a significant portion of antimicrobial 
prescriptions and treatments are overseen by individuals who may 
possess a limited understanding of the risks associated with 
antimicrobial resistance (8, 9). While rapid and accurate diagnostic 
tools are necessary for effective AMS, treatment decisions are often 
made in the absence of information on the infectious agent and 
antimicrobial sensitivity profile. This is especially so in resource-
limited settings, where treatment decisions frequently result in 
inappropriate antimicrobial use (10–12). In response to these 
challenges, digital clinical decision support (CDS) tools have been 
designed to assist clinicians in making evidence-based diagnostic and 
therapeutic decisions to enhance AMS at the point-of-care.

Digital CDS tools are of increasing importance in human 
medicine. They are used in diverse medical sectors and clinical 
environments, ranging from hospitals to primary healthcare settings, 
and increasingly for interdisciplinary care of patients with complex 
needs. CDS tools integrate patient-specific data with clinical 
knowledge into a computerized “consultation” process to support 
clinical decision-making (13). These tools offer a wide variety of 
functions, including interpreting diagnostic test results, aiding in 
surgical decision-making, and generating prescriptions. CDS tools can 
also provide additional features such as integration with electronic 
health records, warning alerts and pop-up reminders on patient 
encounters, computerized treatment guidelines, automated data entry, 
and dynamic interactive programs customized for individual patients 
(14). CDS tools are also increasingly used to assist clinical decision-
making in antimicrobial management by facilitating the selection of 
appropriate antimicrobials and determining the correct dosage, route 
of administration, and duration of treatment (15, 16). Over time, CDS 
tools have demonstrated many benefits, including improving 
diagnostic accuracy, treatment selection, antimicrobial prescription, 
reducing antimicrobial usage and hospital admissions, shortening 
hospital stays, and decreasing mortality rates and healthcare costs 
(17, 18).

The rapid growth of information technology developments has 
seen “simple” CDS tools evolve to include advanced mathematical 
modeling such as multivariate regression, neural networks, decision 
trees, and probabilistic models, such as Bayesian networks (19, 20). 
These mathematical models can be applied as CDS tool inference 
engine algorithms to enable the estimation of the likelihood of a 
patient suffering from a particular disease (informing diagnostic 
decisions) (21, 22), identification of the optimal treatment strategy for 
the patient’s condition (informing treatment decisions) (23, 24), and/
or estimation of the probability that the selected treatment will result 

in a certain outcome (informing prognosis estimations) (25, 26). This 
rapid technological advancement has seen CDS tools transformed 
from traditional paper-based formats to digital forms, encompassing 
computer software, websites, or mobile phone applications. They can 
function as standalone tools or be integrated into complex IT systems, 
such as hospital electronic health records (27). For example, it has 
been reported that approximately 40% of US hospitals have adopted 
CDS integration with electronic health records, alongside other high-
income countries such as Canada, the United Kingdom, Denmark, 
and Australia (28). As health data become increasingly large and 
complex, new CDS tools require increasingly powerful and 
sophisticated methodologies, such as artificial intelligence and 
machine learning. These advanced technologies have the potential to 
transform diagnosis and therapy at the point of care.

In contrast to human health, CDS tools are less widespread in 
veterinary settings, although several CDS tools have been reported in 
the literature for companion animals (29), cattle (30), pigs (31), 
poultry (32), horses (33), and aquaculture (34, 35). Veterinary CDS 
tools appear to be primarily developed for sophisticated livestock 
farming enterprises or for veterinary hospitals equipped with 
advanced technologies, two scenarios mostly found in high-income 
countries. However, arguably the greatest potential for veterinary CDS 
tools lies in those countries where veterinary infrastructure (human 
resources and diagnostic laboratories) is limited. Rapid diagnosis of 
the disease is essential to controlling an outbreak, and while it is ideal 
that veterinarians are available, this is not always possible, especially 
in remote locations or where there is an absence of veterinary 
infrastructure. In these cases, having diagnostic support in the form 
of a CDS tool that can emulate the way a veterinarian thinks could 
be an aid in managing disease. For example, a study carried out in 
Ethiopia demonstrated that the use of a smartphone-based application 
can be a valuable means to provide disease diagnosis and appropriate 
treatment recommendations by less experienced animal health 
professionals, which may lead to increased animal productivity (36). 
Another CDS tool, Fish-VET has been in operation since 1996 and 
has shown to be a useful diagnostic aid for veterinarians, students, and 
others seeking to manage disease in tropical and pond fish (34). 
Properly designed CDS tools have been shown to be able to be used 
by other animal health professionals, such as paravet or directly by 
producers. Thus, CDS tools would appear to be valuable for managing 
disease in livestock populations in remote areas of low- and middle-
income countries (LMICs) with limited access to animal healthcare 
institutions or veterinary professionals (37, 38).

Several publications have reviewed CDS tools, focusing on their 
features, outputs, benefits, and limitations (39–41), and others have 
reported on the underlying technologies and methodologies adopted 
by CDS tools (28, 42–44). Meanwhile, none have explored digital CDS 
tools that support AMS, and none have explored CDS tool use in the 
context of animal health in low- and middle-income countries. 
Moreover, there is limited information regarding CDS tool 
development in the early design phase, in the construction of 
mathematical models, or in the evaluation of factors that contribute 
to the successful implementation of CDS tools. Therefore, our scoping 
review aims to address these knowledge gaps. Specifically, we aim to 
(i) identify the scope, functions, and impact of digital CDS tools on 
diagnosis, treatment, and AMS, (ii) describe the methodologies and 
technical designs used in the development of these CDS tools, (iii) 
assess their quality and effectiveness using the GUIDES checklist (45), 
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and (iv) provide recommendations for the development of veterinary 
CDS tools aimed at enhancing AMS in LMICs.

2 Methods

This study was designed as a scoping review to investigate the 
literature and identify knowledge gaps using a systematic search 
process. This scoping review was conducted and reported according 
to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines for Scoping Reviews 
(PRISMA-ScR) (46).

2.1 Eligibility criteria

With the definition of CDS tool varies depending on its function 
and feature, digital CDS tools reviewed in this study were defined as 
tools designed as a direct aid to support diagnosis and or treatment 
decision-making by providing real-time output based on computerized 
clinical knowledge (28). The published scientific literature and gray 
literature considered for inclusion in this review were those that 
described any form of a digital CDS tool that was (i) currently 
implemented and used, or being piloted, or in trial, (ii) intended to 
support diagnosis and/or treatment, (iii) targeted toward human or 
animal health, and (iv) published in scientific or gray literature 
between 1 January 2017 and 24 October 2023. Studies were excluded 
if the CDS tool was not digital (i.e., not computer software, website, 
and/or mobile application based), if the tool did not fit within the 
definition of a digital CDS tool previously described, if the study did 
not provide sufficient information on the features and functions of the 
tool (including where full text was not accessible), and/or if the article 
was not published in English.

2.2 Search strategy

PubMed Central was the primary information source for this 
review and was searched on three occasions in June 2022, January 
2023, and October 2023. Google was used as a secondary database to 
scan for additional studies and gray literature using similar search 
terms as the primary database. To enhance the electronic database 
search, Google was also searched for gray literature on CDS tools. 
Additionally, a “backward snowballing” approach developed by 
Wohlin (47) was utilized by scanning the reference lists of articles 
included for extraction and analysis along with gray literature to 
identify digital CDS tools missed from the primary and secondary 
search strategies. The search strategy used multiple combinations of 
keywords relating to the development and implementation of digital 
CDS tools and CDS systems in human or veterinary health. The final 
search terms used for PubMed Central were (“digital tool”[Title/
Abstract] OR “digital support tool”[Title/Abstract] OR “decision support 
tool”[Title/Abstract] OR “decision support system”[Title/Abstract]) AND 
(“health”[Title/Abstract] OR “veterinary”[Title/Abstract]) AND 
2017/01/01: 3000/12/31[Date—Publication]. Keyword searches used 
in Google included “decision support tool” and “decision support 
system”; additional words were added at the beginning of the 
keywords, including “digital,” “diagnosis,” “animal,” and “veterinary.” 

Screening was conducted on the first 100 results of each 
keyword combination.

2.3 Study selection

Study selection was performed in February 2023 and October 
2023. Titles and abstracts retrieved from each search were exported 
into Microsoft Excel. Titles and abstracts of identified publications 
were screened against the eligibility criteria by one of the two reviewers 
(HY and SB), along with a subset of excluded studies. All potentially 
relevant publications were independently checked by the second 
reviewer (HY or SB). Full texts were accessed to assess eligibility and 
determine inclusion by both reviewers (HY and SB). For gray 
literature, a full-text assessment was conducted to determine the 
eligibility of the article to be included in the analysis. Disagreements 
were resolved mutually (See Figure 1).

2.4 Data extraction and analysis

Study characteristics, including CDS type, study design, features 
or functions of the tool, technical workflow design, and relevant 
outcomes, were extracted manually into an MS Excel spreadsheet, 
according to the review’s data collection categories (Table 1). The 
quality of the CDS tools reviewed in this study was assessed using an 
adapted version of the GUIDES checklist (45, 49). The checklist 
consists of four domains that include: (i) CDS context, which refers to 
the set of conditions for the CDS tool to be potentially successful (ii) 
CDS content, which refers to the factors that determine the success of 
output produced by the tool, (iii) CDS system, which refers to the 
features available on the CDS tool, and (iv) CDS implementation, 
which refers to the factors influencing how CDS is incorporated into 
practice setting. Each domain consisted of four success factors, and 
information on each factor being addressed by each CDS tool 
is extracted.

3 Results

The primary search resulted in 1,741 articles for the review 
screening process. On the first screening (title and abstract), 1,263 
articles were excluded because they did not meet the definition of 
a CDS tool specified for this review or were duplicates. On the 
second screening (full text), 451 articles were excluded, leaving 27 
articles within the scope for this review. The Google search added 
52 items to the screening process, comprising 25 peer-reviewed 
publications and 26 gray literature publications in the form of 
websites containing information about the tool’s scope, functions, 
and features. Many peer-reviewed publications found during the 
Google search were not identified in the primary search performed 
on PubMed Central. We  believe this was related to the large 
number of errors reported on information retrieval in PubMed (50, 
51), due to a lack of standardization and formatting of the articles, 
including title and abstract, inconsistent terminology to describe 
CDS tools (52), and incorrect indexing (53). The gray literature 
included in the screening process consisted of commercially 
available CDS tools (n = 23), government-funded CDS tools (n = 2), 
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not-for-profit development projects (n = 2), a university institution 
tool (n = 2), and a CDS tool developed from a collaboration 
between a university and private company (n = 1). Out of 30 gray 
literature, 8 were included in the analysis, consisting of 7 
commercially available CDS tools and 1 CDS tool developed by the 
university. The snowballing approach added a further five peer-
reviewed scientific publications. Publications included from 
snowballing were not captured on the primary and secondary 
searches because the title or abstract did not contain the search 
query keywords (for example, an article used the name of the tool). 
Of the 57 items from secondary searches, 41 were ineligible for 
inclusion, leaving 16 items for inclusion. Thus, for the review, a 
total of 44 CDS tools were included for data extraction and 
analysis, comprising 36 peer-reviewed publications, 7 commercial 
CDS tools, and 1 free-access CDS tool developed by the university. 
The final 44 CDS tools are summarized in Supplementary Table S1.

The majority of CDS tools evaluated were designed for human 
health (n = 35), in addition to a number of CDS tools for animal health 
(n = 9) (Table 2). Of the CDS tools for humans, 13 targeted general 
patients in hospitals (15, 17, 18, 54–57), healthcare facilities (21, 36, 
58–60), or primary healthcare (61), while 5 tools targeted pediatric 
patients (23, 26, 62–64) (Table 2). The remaining CDS tools assisted 
with decision-making for pregnancy (65), diabetes (66), critically ill 
patients (67), older adult patients with polypharmacy (68), patients 
with syncope (69), drug allergies (25), diarrhea (70), neurological 
disorders (71), urinary tract infections (72), dermatology symptoms 
(22), obstructive sleep apnea (73), hypertension (74), systemic lupus 
erythematosus (75), as well as patients requiring joint replacements 
(76) and oncology surgery (77). The CDS tools for animals were for 
cattle (36, 80, 81), swine (31, 85), companion animals (29, 82, 83), and 

a CDS tool for dogs, cats, cattle, horses, sheep, goats, swine, birds, and 
poultry (84). Eleven digital CDS tools were commercially available, all 
implemented in high-income countries (15, 18, 22, 29, 31, 58, 59, 62, 
82, 83, 85). Of the commercially available CDS tools, six were for 
humans (15, 18, 22, 58, 59, 62) and five for animals (22, 29, 31, 82, 83). 
A subscription fee was required for three human CDS tools (15, 22, 
58) and four veterinary tools (29, 31, 82, 83). Comprehensive 
information on each digital CDS tool is available in 
Supplementary Table S1.

Most CDS tools reviewed were developed or implemented in 
high-income countries (n = 36, 82%) (Figure 2). The United States of 
America had the most CDS tools (n = 12, 27%), followed by Germany 
(n = 5, 11%). Among CDS tools developed or implemented in 
countries with lower economic status, 7% were from middle-income 
countries, 9% were from lower-middle-income countries, and 2% 
were from low-income countries (Figure 2). The majority of the CDS 
tools reviewed (n = 28) were standalone CDS tools, while 13 CDS tools 
were integrated into electronic health records in hospital settings. Two 
CDS tools had both standalone and integrated features (18, 83).

3.1 Digital CDS tool scope and function

The CDS tools reviewed vary in functions, including patient 
safety, clinical management, cost containment, administrative 
functions/automation, diagnostics support (including diagnostic 
imaging, laboratory diagnostics, and pathology), patient decision 
support, better documentation, and workflow improvement (Table 3). 
Most of the human and veterinary CDS tools (n = 40) have the capacity 
to improve patient safety by reducing diagnostic and or treatment 

TABLE 1 Data collection category for data extraction and charting.

Data category Data extracted

CDS tool description  • Description of the digital CDS tool including the name of the tool, year of development, name, and economic status of the country 

or countries in which the tool was implemented categorized as: (i) low-income countries (LICs), (ii) lower-middle-income 

countries (LMICs), (iii) middle-income countries (MICs), and (iv) high-income countries (HICs) (48)

 • Tool purpose(s), target health settings, user groups, and implementation targetsa

CDS tool methodology  • Study timeline

 • Tool form and architecture (database, inference engine, and interface)

 • Mathematical methodology used to develop the CDS tool inference engine

 • Development stages, processes, and the development team

 • Data collection and input

 • Results and recommendations generated by the tool

CDS tool functions and features  • CDS tool scope and output

 • Functions relevant to patient safety, clinical management, and cost containment

 • Administrative function and automation

 • Diagnostics support (imaging, laboratory, and pathology)

 • Patient decision support

 • Improvements in documentation of decision-making

 • Workflow improvement

CDS tool benefits, limitations, 

opportunities, and support to 

Antimicrobial Stewardship

 • CDS tool output to support antimicrobial stewardship

 • Benefits generated by CDS tool usage

 • Issues or limitations associated with the tool and its use

 • Opportunities or future directions for how CDS tools can be developed

aImplementation target is the beneficiaries of the CDS tool in human health (e.g., hospital patients, primary-care patients, and pediatric patients) and animal health (e.g., pet animals, pigs, and 
cattle).
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errors. Twenty-seven CDS tools generate diagnostic output, with 
treatment output being generated by 25 tools. Seventeen CDS tools 
can augment and visualize laboratory tests when providing diagnosis 
or treatment recommendations. Eighteen CDS tools demonstrated 
cost-effectiveness by reducing unnecessary treatment (15, 17, 18, 23, 
25, 66, 70, 71, 76), duration of stay in hospital (69), laboratory tests 
(59, 83), and health provider workload (31, 36, 54, 55, 58, 82).

3.2 CDS tool development and 
methodologies

The teams for the development of the digital CDS tools varied in 
terms of the skills and numbers of contributors. Thirty CDS tools were 
developed by a multidisciplinary team consisting of people from 
medical, pharmacy, and/or veterinary backgrounds collaborating with 
people from computer engineering, economics, and private 
companies. Four CDS tools were developed by a team of people of 
varying medical backgrounds, e.g., intensive care medicine, emergency 
medicine, pediatric medicine, infectious disease, cardiovascular 
medicine, college of medicine, and department of pathology (57, 64, 
67, 69). One digital CDS tool was developed by a team of medical 

engineers (21). In terms of funding sources for the tool development, 
12 tools reviewed in this study were funded by a research grant (24, 
36, 55–57, 61, 62, 67, 73, 76–78), 10 by commercial companies (15, 22, 
29, 31, 58, 66, 71, 82, 83), 8 by a development project grant (17, 23, 64, 
69, 70, 74, 75, 80), and 4 were funded by more than 1 funding source, 
such as awards and foundation grants (25), foundation and research 
grants (65, 79) and collaboration of medical research from two 
countries (59).

The stage of CDS tool development varied in the reviewed papers. 
Of the 44 studies reviewed, 32 present outcomes from preliminary 
work into their CDS tool design, such as a literature review, guidelines 
review, or expert elicitation process (Table 4). Twenty-five studies 
detail the development of the CDS tool database layer in the form of 
a computer hardware system or cloud computing, which is used to 
house data inputs (Table  4). Thirty-one studies describe the 
development of an inference engine, which is used to determine if 
CDS conditions have been met and execute queries. Of all the studies 
reviewed, 25 describe knowledge-based CDS, in which the inference 
engines run the built-in logic using if-then rules generated from 
guidelines or expert elicitation and 15 describe non-knowledge-based 
CDS, in which the engine applies machine learning of mathematical 
models such as genetic algorithm and artificial neural networks (86). 

FIGURE 1

Flow chart mapping out the number of articles identified, screened, and excluded together with reasons for exclusion.
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TABLE 2 Summary of digital CDS tool baseline information.

Summary items No. tools (%) References

Target of CDS tool use

Human 35 (15, 17, 18, 21–26, 54–79)

Animal 9 (29, 31, 36, 80–84)

Target setting of CDS tool use

Hospital 20 (15, 17, 18, 23–25, 54–57, 62, 63, 67, 69, 70, 73, 74, 76–78)

Healthcare facilitiesa 9 (21, 22, 58–60, 64, 71, 72, 79)

Farm 5 (31, 36, 80, 81, 85)

Primary healthcare 3 (61, 65, 66)

Animal health clinic and hospital 4 (29, 82–84)

Primary school 1 (26)

Not specified 2 (68, 75)

User of CDS tool

Clinicianb 14 (18, 21, 22, 24, 26, 62–65, 68–70, 76, 79)

Physicianc 10 (17, 55, 56, 60, 61, 67, 72–74, 77)

Healthcare professionald 7 (15, 23, 25, 57–59, 75)

Clinicians and patient 3 (66, 71, 78)

Veterinarian 8 (29, 36, 80–85)

Farm worker and veterinarian 1 (31)

Pharmacist 1 (54)

Form of CDS tool

Computer software 16 (17, 18, 23, 24, 26, 54, 56, 57, 61–63, 67, 68, 72, 73, 79)

Mobile health application 9 (15, 25, 31, 36, 59, 64, 65, 69, 70)

Web-based 12 (21, 22, 29, 60, 66, 74, 75, 77, 78, 80, 84, 85)

Mobile health applications and web-based 6 (55, 58, 71, 76, 81, 82)

Computer software and mobile health application 1 (2.3%) (83)

CDS tool version

Standalone 28 (10, 17, 19, 20, 24, 26, 31, 49, 50, 53, 54, 58, 59, 63–65, 67–75, 77, 81, 85)

Integrated in hospital electronic health record 13 (17, 23, 26, 54, 57, 58, 61–63, 66–68, 72)

Standalone and integrated 2 (18, 83)

Not specified 1 (21)

Phase of CDS tool

Development 24 (17, 21, 23–25, 54, 56, 57, 59, 60, 62, 65, 66, 68, 69, 73–81)

Implementation 14 (15, 18, 22, 29, 31, 36, 58, 61, 70, 71, 82–85)

Development and implementation 6 (26, 55, 63, 64, 67, 72)

Level of Application

International 11 (15, 22, 29, 58, 59, 64, 65, 82–85)

National 10 (17, 18, 31, 36, 54, 57, 61, 62, 71, 76)

District 1 (70)

Facility 9 (21, 25, 55, 56, 63, 67, 72, 73, 77)

Not specified 13 (23, 24, 26, 60, 66, 68, 69, 74, 75, 78–81)

Antimicrobial stewardship support

Yes 12 12 (15, 17, 18, 29, 31, 54, 58, 62, 64, 70, 72, 79)

No 28 (21, 22, 24, 26, 55–57, 59, 60, 63, 65–69, 71, 73–78, 80–85)

Indirectly 4 (23, 25, 36, 61)
aThe target setting of CDS tools including multi-institutions at different levels, e.g., hospitals, primary healthcare, and clinic.
bClinicians refer to medical professionals (doctors, nurses, or other medical professionals) who work with patients to diagnose and treat health conditions.
cPhysicians refer to doctors who diagnose and treat a patient’s illness and may specialize in a particular area of medicine (e.g., surgery, internist, and pediatric).
dHealthcare professional including physicians, clinicians, nurses, and pharmacists.
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Thirty-one CDS tools provide information on the user interface of the 
tool for data input from the patient toward the visualization of the 
results in the form of graphs and charts for the user. Of the 36 
published studies evaluated, 20 detailed the study design during the 
development and/or implementation of the CDS tools. Seven studies 

used a retrospective study design (15, 25, 56, 59, 62, 71, 76), four 
studies conducted a pilot study (26, 36, 63, 72), two conducted a 
usability evaluation (74, 75), and two conducted a prospective 
observational cohort study (57, 64). The remaining published studies 
examined in this scoping review detailed cross-sectional (61), 

FIGURE 2

Distribution of clinical decision support tools included in the scoping review by country or origin and country economic status.

TABLE 3 Functions and features of reviewed digital clinical decision support (CDS) tools.

Functions 
and features

Description No. tools 
(%)

References

Patient Safety
Capacity to reduce the probability of diagnosis and treatment/prescription 

errors
40

(10, 12, 16–20, 24, 26, 31, 46, 47, 49, 51–73, 75, 77, 

80, 81)

Clinical 

management

Promote compliance with clinical guidelines on management, treatment, 

provide follow-up, and reminders
23

(10, 12, 17, 19, 20, 47, 49, 52, 54, 56, 57, 59, 62–64, 

66–69, 71–73, 75, 81)

Cost containment

Reduce laboratory tests performed, avoid order duplication, and suggest more 

efficient patient management practices and medication or treatment options, 

to reduce provider workload and time allocation

18
(10, 12, 18, 20, 26, 31, 46, 47, 49, 52, 53, 60, 63–65, 

70, 75, 80)

Administrative 

function/

automation

Capacity for automated documentation and auto-fill, diagnostic code 

selection
19

(10, 12, 18, 24, 26, 46, 49, 51, 54–57, 59, 61, 62, 65, 

66, 68, 80)

Diagnostics 

support

Provide diagnosis suggestions based on patient data and output based on the 

CDS calculation or test result
27

(16, 17, 20, 21, 24, 31, 49–51, 53, 54, 57–59, 64, 66, 

67, 71–73, 75, 77, 80, 81, 85)

Laboratory 

diagnostic support

Support the extraction, interpretation, and visualization of laboratory test 

results
17

(10, 17, 18, 21, 24, 46, 51, 53, 54, 57, 60, 61, 64–66, 

80, 85)

Treatment support Provide treatment recommendations for a patient 25
(10, 12, 24, 26, 46, 47, 49, 52–56, 59–62, 64–66, 

68–71, 75, 81)

Patient decision 

support

Functions for the CDS tool to be directly used by patients through personal 

health records (PHRs) and other systems
7 (18, 22, 59, 62, 71, 78, 79)

Better 

Documentation

CDS can aggregate data from multiple sources, for example, patient data from 

electronic health records and laboratory result data
14 (12, 18, 24, 26, 46, 49, 51, 54, 56, 57, 59, 61, 62, 66)

Workflow 

improvement

Improve the existing clinical workflow through better data submission, 

sharing, and retrieval to create more effective and faster clinical workflow
21

(12, 18, 19, 24, 26, 46, 49–54, 56, 57, 59, 61–63, 66, 

71, 80)
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interrupted time series study (18), intervention study (70), 
longitudinal (55), and randomized control trial study designs (67).

Various mathematical methodologies were utilized for the CDS tools 
reviewed. Most reported methods included Bayesian theorems (n = 7), 
with two each for decision tree and rules-based (IF/THEN) methods 
(Table 5). For example, VetAfrica-Ethiopia, a CDS tool to assist in the 
diagnosis of cattle diseases in Africa, utilizes Bayesian algorithms to 
estimate the probabilities of diseases based on various presented clinical 
signs in Ethiopian cattle (36). Meanwhile, Autokinetics uses a self-built 
clinical dosing algorithm to recommend antibiotic selection and dosage. 
If the tool advice is being followed or if plasma data are available, the tool 
will use Bayesian estimation to approximate the true pharmacokinetic 
profile and forecasted pharmacokinetic profile (67). A combination of 
regression models was utilized by LHSpred (78) to calculate the computed 
tomography severity score (CTSS) for COVID-19 diagnosis. The “Tool to 
Reduce Inappropriate Medications” (TRIM), designed to prevent 
polypharmacy in older adults, utilizes a rules-based algorithm to assess 
the medication’s appropriateness (68). Details of various mathematical 
methodologies used by the CDS tools identified in this review are 
presented in Table 5.

3.3 CDS tools quality assessment

Of 16 success factors included in the GUIDES checklist, 14 were 
used to evaluate the CDS tools included in this study. Two factors, 
namely, the amount of decision support manageable for the target user 
and governance of the CDS implementation, were excluded as limited 
evidence was available to assess the CDS tools against these criteria. 
Many of the included studies and reports describe features that were 
evaluated in at least one domain, most commonly the CDS context. For 
some studies, inferences were made to evaluate the quality of the tool 
where it was not explicitly stated. While most studies describe the 
context for the CDS tool, fewer provide sufficient information to assess 
its content, system design, and implementation. Despite the limited 
information, CDS tool content quality appeared to improve diagnosis 
decision-making compared to other diagnosis methods, retrospective 
data of laboratory confirmation, or without the use of the CDS tool. 
CDS tools also appeared to improve treatment quality compared to 
other options, including (i) treatment generated without the use of CDS 
tools (15, 18, 61, 71), (ii) treatment provided by clinicians (62, 70), and 
(iii) treatment provided by previous tools (66, 67). Details on the CDS 
tool quality assessment are provided in Table 6.

3.4 Antimicrobial stewardship

Some CDS tools reviewed in this study are capable of supporting 
AMS principles (n = 12), including two CDS tools designed for 
animals (Table 2). AMS CDS tools for humans were implemented in 
hospitals (15, 17, 18, 54, 62, 70), healthcare facilities (36, 58, 64, 72), 
and primary healthcare (61). The AMS CDS tools primarily targeted 
clinicians, physicians, and pharmacists. These tools are designed to 
reduce medication dosing errors (54) or generate recommendations 
on antimicrobial dosing and duration based on prescribing guidelines, 
antibiograms, and pathogen information (15). Four CDS tools 
demonstrated improvement in AMS practices by reducing 
unnecessary or inappropriate antimicrobial use (15, 18, 70, 72). For 
example, one study reported that a CDS tool deployed in two 
academic hospitals in Canada saved $111,296  in antimicrobial 
expenditure over the 6 months period of implementation (15). 
Significant changes in antimicrobial use practices were reported in 
some studies where the CDS tool was designed to relatively increase 
or decrease the use of specific antimicrobials through its 
recommendations (18) and provided recommendations for 
antimicrobial use that were consistent with prescribing guidelines and 
recommendations (72).

4 Discussion

Our review of current CDS tools found that while such tools 
exist in a range of human healthcare settings, there is a dearth of 
such tools in veterinary settings. Further, while several CDS tools 
supported AMS practices in human healthcare settings, few 
supported AMS practices in animal health, an area of particular 
concern in the control of antimicrobial resistance (10, 11). The 
disparity in CDS tool availability based on a country’s economic 
status is stark, with most tools designed for hospital settings in 
higher-income countries. Very few CDS tools are available in 
LMICs, and this is where such tools may have the greatest impact. 
CDS tools designed for animals are of particular interest to 
countries with limited veterinary services and where decisions on 
the diagnosis and treatment of unwell animals are often made by 
untrained personnel (87). Our findings suggest that the field is 
ripe for the development of CDS tools across all livestock sectors, 
particularly those that support AMS practices that optimize 
antimicrobial use.

TABLE 4 Evaluation of CDS tool development stage.

Level of reporting No. tools References

Preliminary work reported such as literature research, guideline review, and expert 

opinion elicitation as the starting point of development
32

(12, 16, 18–21, 31, 46, 49, 50, 54, 55, 57–59, 61–64, 66–73, 75, 

77, 80, 81, 85)

Development of a data management layer for database, storage, and data backing in 

the computer system or cloud observed
25 (12, 16, 19–21, 46, 49, 51, 56–63, 65, 67, 68, 70–73, 81, 85)

The construction inference engine uses knowledge base datasets of applied rules or 

construction of algorithms using the mathematical model
31 (10, 12, 16–21, 24, 31, 46, 49–51, 53–73, 81, 85)

Design of the digital CDS tool interface for users to interact when used in clinical 

practice
32 (12, 16, 18–21, 46, 49–51, 53, 54, 56–62, 65–73, 75, 81, 85)

Validation study to test the CDS tool performance 22 (16, 18–21, 31, 46, 49, 51, 53, 54, 58, 60, 61, 67, 69–73, 80, 85)
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4.1 CDS tools context

The use of CDS tools in human healthcare settings has undergone 
rapid evolution and expansion since their first use in the 1980s (28). 
Technological advances, a desire to mitigate errors in healthcare, and 
access to funding have driven much of this evolution. High-income 
countries have been able to make the most of the technology and 
funding opportunities compared to LMICs (88). The slow progress in 
the development and adoption of digital CDS tools in LMICs is 
multifactorial. Factors such as limited funding for health programs, 
prioritization of resource allocation (89), high costs associated with 
tool development, subscription fees, and training users (90) are 
considered blockers to the development of CDS tools in these 
countries. Additionally, data ownership and protection in high-
income countries are significantly better and protected by law (91). In 
contrast, in LMICs, personal data breach are a major challenge in 
digital innovation due to infrastructure limitations and insufficient 
legal protections (92, 93). This situation deters significant private-
sector investment in CDS tool development due to the risk of legal 
repercussions from patient or client data breaches (94). Thus, the 
development and implementation of CDS tools in LMICs tend to 
be  heavily dependent on support through international grants or 

agencies (95). Identifying long-term sustainable funding models in 
countries that could benefit most from using CDS tools should be a 
key consideration in the early phases of development.

In comparison to the human health sector, the development of 
CDS tools for animal health has been slow (96), despite the genuine 
need for such CDS tools in veterinary medicine in LMICs (97). The 
development of CDS tools in livestock species is situation-specific and 
no one CDS tool can be applied across species; further, in livestock 
industries, treating and nursing a sick animal is not always a priority 
for economic reasons, thus creating barriers to development. This is 
particularly the case given that investment in this sector is generally 
focused on equipment, tools, and software products to monitor 
production parameters (e.g., milk yields and feed conversion ratios), 
management parameters (e.g., herd structure and feed), and 
environmental parameters (e.g., temperature and humidity) (98, 99). 
When CDS tools have been developed for animals, they have focused 
primarily on livestock species, with the end users being veterinarians 
(29, 31, 36) or farm workers (31). An example of a highly effective 
livestock CDS tool we evaluated is VetAfrica-Ethiopia, which is used 
in Africa to improve herd productivity by supporting better diagnostic 
decisions where the availability of veterinarians and laboratory 
capacity is scarce (36).

TABLE 5 Mathematical methodologies utilized in the reviewed CDS tools (n  =  24).

Inference engine methodology Count (n) Reference

Bayesian 7 (21, 36, 62, 64, 71, 77, 81)

Decision tree 2 (55, 65)

Rules-based (IF/THEN) 2 (68, 75)

Lasso logistic regression 1 (59)

Logistic regression 1 (69)

Neural network 1 (56)

Minimum mean square error estimation 1 (76)

Logical step 1 (54)

Hierarchical conceptual schema 1 (79)

Business process and model notation (BPMN) 1 (24)

Clinical dosing algorithm and Bayesian 1 (67)

 i Non-linear least square

 ii Curve-stripping

 iii Levenberg Marquardt’s

 iv Nested logic functions

 v Superposition principle

 vi Decision tree

1 (23)

Open-Source Business Rule Management System (BRMS) Drools

 i Drools Expert (rule engine)

 ii Drools Fusion

1 (63)

 i Support Vector Regression (SVR)

 ii Multi-Layer Perceptron Regression (MLPR)

1 (78)

 i Bagged trees algorithm

 ii Mamdani-type fuzzy inference system

1 (73)

Machine learning (IBS Watson augmented artificial intelligence system) 1 (82)
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TABLE 6 CDS tool quality assessment adapted from the GUIDES checklist (45).

Quality domain Quality factor CDS assessment References

CDS context CDS can achieve the defined quality objectives 44 CDS tools provided evidence that explained the issue in the healthcare setting it aimed 

to support

(10, 12, 16–21, 24, 26, 31, 46, 47, 49, 50, 52–61, 

63–66, 70, 71, 75, 80, 81, 85)

The quality of the patient data is adequate 41 CDS tools explained that structured patient data were required for the CDS tool analytic 

processes

(12, 16–21, 24, 26, 31, 46, 49, 50, 52–54, 56–61, 

63–66, 70, 71, 74, 75, 77, 80, 81, 85)

Stakeholders and users accept CDS 15 CDS tools demonstrated clear benefits to the users by improving diagnosis and 

treatment quality

(10, 17, 47, 49, 50, 55, 56, 60, 61, 64–66, 81)

CDS can be added to the existing workload, workflows, and systems 14 CDS tools can integrate with hospital electronic health records and to support the 

clinical workflow

(12, 18, 21, 46, 47, 52, 55–57, 60, 61, 66)

CDS content The content provides trustworthy evidence-based information 29 CDS tools were developed based on published guidelines and or from renowned expert 

elicitation

(10, 16, 17, 19–21, 24, 46, 49, 50, 54, 55, 57, 59, 

61, 64, 66, 70, 71, 75, 77, 80, 81)

The decision support is relevant and accurate 15 CDS tools provide information on the accuracy of the tool (16, 18, 20, 31, 49, 50, 53, 56–58, 60, 61, 63, 81, 

85)

The decision support provides an appropriate call to action 32 CDS tools generated clear recommended actions to the user for diagnosis, patient triage, 

or treatment decision

(10, 12, 16–20, 24, 26, 49, 52–56, 59–71, 73–75, 

80)

CDS system The system is easy to use 11 CDS tools provide acceptance testing results conducted with the user, one of the 

objectives of the test was to indicate the tool’s ease of use

(23, 24, 54, 58, 61, 68, 70, 71, 76, 80, 82)

The decision support is well-delivered 37 CDS tools described the user interface display to ensure that the information provided to 

users is noticed and easy to process

(12, 16–21, 24, 26, 46, 49–54, 56–62, 65–75, 80, 

81, 85)

The system delivers the decision support to the right target person All CDS tools reviewed in this study described different types of users according to the tool 

objective and stage of clinical workflow

(10, 12, 16–21, 24, 26, 31, 46, 47, 49–75, 77, 80, 

81, 85)

The decision support is available at the right time 20 CDS tool in the implementation phase generates immediate outcomes for the user (10, 17, 21, 24, 26, 31, 47, 49, 52, 55, 57, 58, 61, 

64–66, 74, 75, 77, 80)

CDS implementation Information to users about the CDS system and its functions is 

appropriate

30 CDS tools provide a communication package that explains features, functions, or how to 

use the tool

(10, 12, 17, 18, 20, 24, 26, 46, 49, 51–57, 59, 60, 

62, 64–66, 69–71, 74, 75, 80, 81, 85)

Other barriers and facilitators to compliance with the decision 

support advice are assessed/addressed

22 CDS tools underwent a validation test and the results generated by the tools were 

adherent to the guidelines or comparable to the expert

(16, 18–21, 31, 46, 49, 51, 53, 54, 58, 60, 61, 67, 

69–73, 75, 85)

Implementation is stepwise and the improvements in the CDS system 

are continuous

30 CDS tools in the development stage explained the stepwise approach the tool 

development to the point of user readiness and the strategy for pilot or implementation

(12, 16, 18–21, 46, 49–51, 53, 54, 56–63, 66–73, 

81, 85)
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To design effective tools, extensive interactions are required 
between biological disciplines (e.g., animal production, health, 
epidemiology, and microbiology) and computer science, economics, 
and sociology (37). Fifteen digital CDS tools were developed by 
multidisciplinary teams (e.g., medical and computer engineering). In 
line with recommendations for a multidisciplinary approach, as an 
example, the study conducted to develop the AMS Computerized 
Decision Support Tool in a Swiss hospital strongly recommended the 
involvement of a team with expertise both in clinical medicine and IT 
early in the project (17). Clinicians have an extensive knowledge of 
clinical workflow that can be translated into the architecture of CDS 
tools and inform the provision of output that is valuable from the user 
perspective (100). Nonetheless, with multidisciplinary teams comes 
the risk of miscommunication and misunderstanding (17). To 
overcome that, a recently published Delphi study highlighted the 
additional benefit of having hybrid positions: someone who has 
knowledge in both medical and IT, understands both languages, and 
is capable of holding the responsibility of translating the language into 
the multidisciplinary team (101).

The benefits of CDS tools in clinical practice should be balanced 
by an understanding of the well-described limitations of these 
tools. In any situation where disease diagnosis is required, a CDS 
tool can only suggest plausible diagnoses with an accuracy that 
reflects the accuracy of the information it receives (35). Like a 
human expert relying on their clinical judgment, there is always a 
degree of uncertainty with any outputs from a CDS tool; in some 
cases, CDS tool even has different sensitivity and specificity for 
each disease, which must be  understood by the user when 
interpreting those outputs (21, 35, 102). Other challenges limiting 
the utility of CDS tools in healthcare settings include having tools 
that require information outside of their workflow, causing alert 
fatigue due to excessive amount of alerts that are often 
inconsequential, requiring upskilling and technological aptitude, 
being limited by poor data quality or “black box” scenarios which 
lower confidence in outputs, entail high costs, and so on (28). 
However, the potential positive impacts of CDS tools should 
outweigh these limitations, many of which could be overcome by 
proper planning, engagement with stakeholders, and good design. 
Certainly, in animal health, CDS tools can help unskilled animal 
careers make informed decisions and take precautionary actions 
when managing disease outbreaks in the absence of diagnostic tools 
or veterinary support. In resource-limited settings, even when the 
CDS tool is unable to make diagnosis, it is still capable of 
determining if there is a significant risk that the disease is 
important, thus directing the user and available resources toward 
only the most important cases.

4.2 Development of digital CDS tool

Referring to the GUIDES checklist on the factors that determine 
the successful implementation of a CDS tool (45), most factors need 
to be addressed from the development stage. These start with the basic 
architectural design of a CDS tool, which is comprised of three layers: 
(i) a database to capture data, (ii) an inference engine that performs 
data processing, and (iii) a user interface (103). Nineteen CDS tools 
reviewed in this study reported database development, indicating a 
crucial step in the early phase of tool development. The database is 

often a relational database; this should be designed with an appropriate 
level of performance, security, availability, manageability, and 
accessibility. Often, the relational database is programmed with a 
standardized language, for example, Structural Query Language 
(SQL), to retrieve, store, and manipulate the database and its contents 
(104). Database maintenance is an important element of tool 
operationalization (105). In human healthcare CDS tools, 11 studies 
reported CDS tools that shared a database with electronic health 
record systems (17, 23, 26, 54, 58, 61–63, 66, 67, 72). Using an existing, 
well-maintained, and functional database such as an electronic health 
record system allowed some of these tools (23, 26, 54, 61, 67) to 
provide real-time patient alerts and recommendations at the moment 
the prescribing choice is made, without the need for any intervention 
(17, 106).

The Bayesian algorithm was one of the most common inference 
engines (n = 7) used in the CDS tools evaluated, comprised of four 
naïve Bayesian classifiers and three Bayesian networks. Naïve Bayesian 
classifiers are relatively simple probabilistic classification algorithms 
that are computationally efficient (96). Naïve Bayesian classifiers 
assume that all input attributes are independent of each other and are 
shown to be optimal in minimizing misclassification in outcomes. 
Thus, reducing the need for an expert in pathogenesis to establish 
causal dependencies, as required in traditional Bayesian algorithms 
(19, 107). Studies have shown the naive Bayesian classifier model 
performs well when compared to more complex classification models, 
even if assumptions of independence of input attributes are violated 
(108–110). For example, the CPT tool was designed with a naïve 
Bayesian algorithm to support physicians with the treatment of 
oncologic disease using laryngeal cancer (LC), and the prototype 
provided correct model predictions in all cases throughout the 
validation (77). In veterinary settings, there is a desire to have CDS 
tools capable of aiding in the diagnosis of many diseases. Bayesian 
classifier models are particularly appealing for this purpose, given 
their flexibility compared to rules-based models (102), given the 
complexities involved in diagnosing diseases in animals. These 
complexities include the similarity of clinical signs among many 
diseases, variations in how animals within a population express 
clinical signs, changes in clinical signs as a disease progresses, and the 
potential for animals to suffer from more than one 
disease simultaneously.

However, Bayesian algorithms are not without some 
disadvantages. For example, McKendrick et  al. highlight that the 
logical processing of Bayesian algorithms is not clear to users, as data 
inputted into the system are processed using a mathematical structure 
unlike rules-based algorithms (102). Additionally, Bayesian algorithms 
process all available information each time a user adds new data to the 
system, and so the new data are analyzed in the context of the previous 
information. In the case of Bayesian networks, while it can model 
complex problems where there is a significant degree of uncertainty 
and causal dependencies are involved, they require intensive 
computational development, limiting their practicality in a big data 
setting (19, 55). Despite these limitations, a significant benefit of 
Bayesian models as CDS tools in animal health is their potential for 
application in other livestock sectors. Once the investment in 
designing the algorithm and software has been made, they can 
be utilized in other sectors, provided conditional probabilities for that 
sector are available (102). As an example of the use of a Bayesian 
algorithm, the VetAfrica-Ethiopia CDS tool assists clinical diagnosis 
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of cattle disease in a resource-limited setting and has demonstrated 
benefits in assisting less experienced animal health professionals 
despite having low accuracy for some diseases (36).

There are two categories of supervised machine learning models 
that currently exist: the white-box and black-box models. Bayesian 
networks, decision trees, and rule-based (IF/THEN) models are 
categorized as white-box model and characterized by having lower 
predictive performance compared to black-box model. However, 
white-box models possess excellent interpretability since the 
calculation at each point can be explained (55). In contrast to Bayesian, 
the decision tree is recognized for its user-friendly structure at the 
point of practice that allows the underlying logic to be seen by the 
user. Decision trees are closely related to rule-based models, as the 
hierarchical data structure of nodes from the root to a leaf in the 
decision tree corresponds to a rule. The advantage of decision trees 
over a rule-based model is that it is easier to grasp the model globally 
because of the tree structure compared to a sequential structure (55, 
96). However, the training decision tree classifier is quite complex and 
potentially spiraling out of control due to the number of nodes in 
some cases, while a small training set also does not work very well. In 
addition, only one attribute is tested at a time, consuming a lot of time 
and being computationally expensive for certain domains (111, 112). 
On the other hand, black-box models, such as artificial neural 
networks, possess excellent predictive performance despite having 
minimal to zero interpretability (55). A study to develop an artificial 
neural network-based CDS tool for COVID-19 can offer high 
specificity and good sensitivity. The tool, however, developed through 
a small population in a single center and had the probability of 
overfitting problems. Thus, obtaining a multicenter dataset will allow 
external validation to improve the tool (56).

Validation of the CDS tool is a critical step in the design process. 
In the tools evaluated in this review, approximately half reported that 
a validation process was undertaken, with two studies describing the 
validation study in detail (25, 64). Validation in this review refers to a 
study in which the developer compares the accuracy of the CDS tool 
with a “gold standard” measure such as a laboratory test result (97). As 
most of the tools in this review were categorized as novel tool in their 
respective field, the availability of a so-called gold standard test was 
limited. Thus, most of the studies reported that they undertook 
internal validation using retrospective data from hospital records or 
publicly available data, and some also undertook external validation 
with experts. None of the studies reporting on CDS tools for animals 
reported on a validation study. This may be because any validation 
exercise using laboratory tests as the gold standard is costly and few 
clinical records are available for livestock. However, CDS tools will 
show their benefit if the diagnosis output of a particular disease is 
comparable to the laboratory test gold standard (28). For example, 
when the sensitivity and specificity between the CDS tool and 
laboratory standards are not significantly different (56, 78). 
Approaches to validation of CDS tools in animals are an important 
area requiring further consideration.

Several limitations were found in the reviewed CDS tools, mainly 
associated with the missing validation to provide evidence of tool 
accuracy (23, 54, 60, 65, 74). Fifteen CDS tools provide information 
on the tool’s accuracy, which corresponds to the sensitivity and 
specificity of the tool. However, positive predictive value (PPV) and 
negative predictive value (NPV) are more relevant when people or 
animals are being screened (113). Unfortunately, there was limited 

evidence to extract positive PPV–NPV from the study. As most of the 
tools are still in the development stage, limited data used for the trial 
and pilot, and the lack of sensitivity, specificity, PPV, NPV, and 
validation test might affect the accuracy of tool output when facing 
complex clinical situations during implementation (23, 25, 59). In 
addition, several tools also mentioned difficulties in capturing data on 
the output of the CDS tool compared to the subsequent action taken 
by the user, as well as the outcome of the action, to quantify the impact 
of the tool (54, 60, 65). There is also the need for user acceptability 
testing to ensure the user understands the context-specific information 
of the tool (24, 54). For CDS tools intended to aid diagnosis, the 
plausibility/accuracy of suggested diagnoses will only be as good as 
the base knowledge embedded into the inference engine (56, 77) and 
information inputted by the user (66, 79). CDS tools are not capable 
of giving a definitive diagnosis because there will always be a level of 
uncertainty with the outputs. However, these limitations should not 
detract from their potentially considerable positive impact on disease 
management. For situations where a veterinarian is not available, CDS 
tools can help people take informed action much sooner than they 
may have in the absence of informed guidance from the tool.

4.3 Impact on diagnosis and treatment

In our review, we found evidence that CDS tools can improve the 
quality of diagnosis of COVID-19 (56, 59), general diseases (79), and 
respiratory diseases (21). There is great potential for well-designed 
CDS tools to reduce diagnostic errors, particularly in primary 
healthcare and resource-limited settings. The CDS tools evaluated 
demonstrated they could automatically extract laboratory test results 
(59, 63, 66, 67, 71, 72), including diagnostic imaging (15, 23, 60) and 
pathology (22, 29) into the CDS tool to improve diagnostic accuracy. 
In addition to enhanced diagnosis decision-making, four CDS tools 
demonstrated that users made better treatment decisions, including 
regarding antimicrobial use, compared to the previous clinical practice 
tools (15, 18, 62, 67). An additional notable feature of a CDS tool was 
the generation of a list of treatment options with the prognosis of each 
option for the user to review before making treatment decisions (71). 
CDS tools were also shown to be successful in reducing prescribing 
errors, dosing errors, and contraindications when designed to have 
safeguards for dosing, duplication of therapies, and drug–drug 
interactions (61, 71). This is possible because the tools are equipped 
with features such as automated warnings and drug-event monitoring 
(114, 115). Among the limited number of CDS tools available for 
animal health, two CDS tools have a diagnosis function (36, 85), one 
has a treatment function (31), and one tool has both (29). However, 
no studies of tools in animal health settings have demonstrated 
improvement in diagnosis and treatment output.

It has been demonstrated that conventional clinical guidelines for 
diagnosis and treatment pathways are challenging to put into practice, 
with low clinical adherence (116, 117). One study suggested that up to 
65% of hospital inpatients can be exposed to one or more potentially 
harmful combinations of medications (118). Meanwhile, CDS tools 
are able to process complex information and provide patient-specific 
treatment recommendations, given the probability of the diagnosis, 
which can inform more appropriate and effective prescription of 
medications (including the use of antimicrobials) (17, 54, 62, 70, 77). 
In addition, CDS tools can have features to alert clinicians when a 
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patient has not adhered to a management plan or needs to be followed 
up, including reminders for testing when particular procedures for the 
patients need to be  applied (119, 120). CDS tools that improve 
diagnostic accuracy and treatment of disease may be  particularly 
valuable in  locations where there is a lack of or limited access to 
clinical experts (121).

4.4 Impact on antimicrobial stewardship

Of the CDS tools designed to improve AMS practices, most were 
targeted at human healthcare professionals. The key objective of these 
tools was to verify prudent drug prescriptions, reduce inappropriate 
use of antimicrobials, and achieve healthcare-related cost savings (16). 
For example, Guidance MS, a commercially available tool, reported an 
improvement in appropriate antimicrobial use, a decrease in costs 
associated with prescribing antimicrobials, and a decrease in 
healthcare-associated Clostridium difficile infection rates, without 
increasing the length of hospital stay or mortality rates (18). A pilot 
study of a CDS tool developed for Canadian hospitals reported 
potential antimicrobial cost savings of $111,296 annually, or $403.98 
per acute care bed per year, from improving prescribing behaviors, 
including appropriate dose and duration, and managing patient 
medication allergies (15). The CDS tools evaluated also reported 
improved prescribing practices in resource-limited settings (36, 70), 
demonstrating that these tools can be an effective intervention for 
AMS. However, other studies reported that the verification of 
prescriptions was found to be  time-consuming and occasionally 
unpredictable due to human factors (106, 122). Additionally, in 
human healthcare settings, it is important to tailor AMS interventions 
to patients who are most at risk for prescription errors to receive 
priority care (17).

Just two CDS tools identified in this scoping review were designed 
to improve AMS practices in animals. Given global concerns about 
antimicrobial use in livestock species, particularly in LMICs (29, 31), 
this represents a significant opportunity for innovators to develop 
CDS tools that improve diagnostic and treatment decision-making 
and, in doing so, improve AMS practices.

4.5 A vision for veterinary CDS tools in low- 
and middle-income countries

Previous studies have evaluated common technologies and 
methodologies used to develop and implement CDS tools, but they 
have predominantly focused on human healthcare settings in high-
income countries. Consequently, they often overlook significant global 
health challenges, such as infectious diseases and antimicrobial 
resistance, which are prevalent in LMICs. This review aimed to fill this 
gap by providing additional insights into digital CDS tools and the 
essential quality factors for their successful development, 
implementation, and application in human and animal health 
contexts, particularly in LMICs. Additionally, the review delves into 
the underlying mathematical methodologies and architectures of 
various formats and versions of CDS tools, offering further insights 
into designing future veterinary CDS tools tailored for resource-
limited settings.

Development of digital innovations such as information systems 
and CDS in LMIC is often hindered by limited funding and resources, 
causing the tool to be unable to perform at the optimal level (64). The 
reliance on international development projects for development often 
faces a conflict of interest between stakeholders and a limited 
duration of project funding, making the tools not adequately 
developed (17). Furthermore, the user and stakeholders often 
perceive the innovation as a “free” aid, resulting in a lack of eagerness 
to maintain sustainability (123). Here, sustainability, means the 
ability to continue supporting a CDS tool after initial funding and 
technical assistance have ended (124). Planning for the development 
of the CDS tool is a crucial first step, including analyzing return on 
investment and ensuring long-term sustainability so that the CDS 
tool remains relevant to the sector it is targeted for, but unfortunately, 
reports of such analyses in the literature are rare (28). Without proper 
planning, it seems inevitable that a CDS tool will not survive beyond 
the initial design phase. Factors influencing sustainability include the 
functionality of the tool, the use of the right technology for the tool, 
training, and support for end users, leadership and governance, and 
securing finances beyond the design phase (28, 124). Sustainable 
business models need to be included in the planning phase of tool 
development, for example, by adding a subscription fee from the user. 
CDS tools for animals with a subscription fee have been shown to 
be  more sustainably used when designed to provide real-time 
recommendations to the user. In addition, CDS tool users would 
be more willing to pay for the service if the tool can show cost-saving 
benefits (28). The development phase requires extensive infrastructure 
and human resources with expert knowledge of the sector and 
knowledge of coding, programming, computer science, and 
engineering (90). A multidisciplinary team comprising experienced 
veterinarians, IT developers, and end-users (e.g., para veterinarians, 
technicians, and farmers) is necessary to overcome important early 
challenges in CDS tool development in terms of collaboration and 
communication of concepts relevant to the development of a tool. It 
is important that concepts of tool functionality and algorithms are 
transparent and shared early to assess fitness-for-purpose and 
feasibility (17). Flexibility in the methodology and approach is 
essential to allow for the tool to adapt to changing diagnostic and or 
treatment protocols. In addition, effective validation exercises should 
occur at each development step to ensure the CDS tool fits with the 
user’s needs (17).

Another important aspect of CDS tool development is ensuring 
the successful use of CDS implementation. Making use of standardized 
guides and protocols, such as the GUIDE checklist, during the 
development and implementation of the CDS tool will likely improve 
the probability of designing a CDS tool that is fit-for-purpose. In 
animal health, CDS tools need to be designed with the end user in 
mind, especially given the unique and challenging situations where 
the tool will be needed. For example, a standalone CDS tool as a 
smartphone app that can be used offline will likely be necessary for 
users in remote locations or where mobile coverage is limited. 
Providing easy-to-understand information on how to use the tool and 
troubleshoot problems without the need for onsite training will likely 
have a positive impact on adoption, and reduce the funding required 
for implementation (36, 64).

In the absence of patient data to develop a referral database 
commonly found in animal healthcare in LMICs, veterinary 
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handbooks and guidelines can be utilized to develop the reference 
data. However, limitations might occur due to country-specific 
conditions not covered by the guideline. To overcome this, referral 
databases can be built based on expert knowledge elicitation to ensure 
the CDS content provides trustworthy, relevant, and accurate 
evidence-based information. Transparency of this information and 
the sources is important to build confidence in the tool. With such 
limitations, the development of non-knowledge-based inference 
engines using Bayesian algorithms is recommended. Such algorithms 
are capable of modeling complex information with causal 
dependencies such as clinical signs of disease and animal management 
factors (36, 62, 64, 71). Non-knowledge-based systems have been 
found to offer significantly reduced healthcare costs and stress on 
medical practitioners in human healthcare settings (86). In LMICs, 
access to veterinarians and diagnostic tests is often limited, leading 
technicians and farmers to make diagnoses based on their judgment 
alone. This can result in misdiagnosis and treatment errors. Therefore, 
developing a CDS tool that can guide disease diagnosis with more 
accuracy than their (untrained) judgment alone and is developed 
through expert elicitation, will likely be perceived positively by the 
user. In addition, CDS tools that feature treatment recommendations 
based on the likely diagnosis should be integrated to encourage users 
to avoid inappropriate and excessive use of antimicrobials in situations 
where they may not be needed, thus supporting the AMS program.

Ultimately, the successful implementation of veterinary CDS tools 
for LMICs is dependent on a number of factors, many of which may 
not be  easily addressed. However, the success of CDS tool 
implementation will be defined by several factors during development 
that include (i) proper planning in the initial development of the CDS 
tool, including a sustainable business model beyond the initial 
funding, (ii) collaborating with multidisciplinary stakeholders from 
the start to ensure the development of an effective tool, (iii) designing 
a low-cost tool that can be used in field situations and with minimal 
technology requirements, and (iv) being transparent and flexible in its 
outputs, which will, we think, go a long way toward improving the 
management of diseases on-farm and ultimately the use of 
antimicrobials in livestock.

4.6 Study limitations

Methodological limitations in this review include potential 
publication bias during the screening process and the analysis of the 
CDS tool scope and functions due to the nature of studies identified 
in this study. This review only used PubMed Central for the peer-
reviewed publications source, and other search engines may have 
identified additional CDS tools for inclusion. The Google search 
keywords we  used in this study were limited, as many other 
combinations of keywords were not sufficiently discriminating. Our 
search terms were deliberately narrowed to focus on publications 
where a CDS tool was mentioned in the title or abstract. However, it 
became apparent during our search that not all publications that 
described the development of a CDS tool used the terms included in 
our search strategy. For example, one study used the term “Intelligent 
System for Solving Problems” when describing a CDS tool developed 
to diagnose cow disease and assist in treatment decisions (80). 
Without checking for this publication using other methods, it would 
have been missed from our review. Thus, the lack of standardization 

in describing CDS tools in publications is a limitation of this study and 
also explains why a number of tools included were identified from the 
secondary search of gray literature or from the reference lists of 
publications. Further, we did not undertake a search of the Apple or 
Android App Store applications. In addition, we only searched among 
literature in the English language, thus excluding CDS tools that may 
have been specific to non-English language countries. It was 
challenging to properly assess CDS tool design and features, as some 
studies did not provide sufficient detail or were not sufficiently 
advanced to evaluate them. Therefore, in some instances, we made 
inferences about tool features that may be misclassified. For example, 
some peer-reviewed articles utilized commercially available CDS tools 
(15, 18, 59, 62) where the features and functions of the CDS tools were 
not presented. In addition, some commercially available tools require 
a subscription fee before gaining access to them. Therefore, the data 
on these tools were extracted from available websites or video 
demonstrations. In this case, shortcomings in the description of the 
CDS tool made it difficult to tabulate the profile, scope, and functions 
of the CDS tool. It is understandable that some commercially available 
CDS tool developers draw a line to maintain competition and protect 
intellectual property when sharing information about their products. 
However, we recommend that information related to the design and 
overall effectiveness of CDS tools be  made available for open 
publication, that will allow other developers, especially in LMICs, 
to observe.

5 Conclusion

To support the development of veterinary CDS tools in LMICs, 
information regarding tool development, the construction of 
mathematical models, and quality factors determining the successful 
implementation of the CDS tool is limited. In addition, none of the 
previous studies addressed CDS tools in the context of animal health 
and LMICs, in which global health challenges such as infectious disease 
and antimicrobial resistance remain an issue. This review summarizes 
current digital CDS tools available in humans and animals to support 
clinicians by providing easy and rapid access to information required 
for diagnosis and treatment decisions at the point of care. Factors that 
determined the quality and effective use of the CD tool were being 
addressed, including the development phase, structure, methodology, 
and common factors that can help increase the probability of successful 
CDS tool implementation. Ensuring sufficient funding for the 
development and return on investment analysis to ensure long-term 
sustainability in the planning is a crucial first step. Deploying a 
multidisciplinary development team will also help design an effective 
tool. Developers can use the GUIDE checklist to ensure quality factors 
are addressed during the development stage, to help achieve quality in 
design, and to facilitate the successful implementation of the tool. 
Non-knowledge-based CDS tools using Bayesian algorithms and expert 
opinion-based referral data are recommended in the absence of data 
sources. In addition, CDS tools available as mobile phone apps were 
shown to overcome some of the limitations of veterinary professional 
support often found in LMICs. We believe that CDS tools with the 
capacity to model complex information such as clinical signs and 
management factors by assuming all input attributes are independent 
to generate diagnostic and treatment recommendations are sorely 
needed in resource-limited settings. The successful development and 
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implementation of veterinary CDS tools in LMICs will likely contribute 
to improving treatment decisions and minimizing the inappropriate use 
of antimicrobial agents, with the primary goal of supporting 
AMS programs.
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