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African swine fever (ASF) is a highly contagious and lethal viral disease that causes 
severe hemorrhagic fever in pigs. It keeps spreading around the world, posing 
a severe socioeconomic risk and endangering biodiversity and domestic food 
security. ASF first outbroke in China in 2018, and has spread to most provinces 
nationwide. Genotypes I  and II ASF virus (ASFV) as the etiological pathogens 
have been found in China. In this study, three pairs of specific primers and 
probes targeting the ASFV B646L gene, F1055L gene, and E183L gene were 
designed to detect universal, genotype I, and genotype II strains, respectively. 
A triplex crystal digital PCR (cdPCR) was established on the basis of optimizing 
various reaction conditions. The assay demonstrated remarkably sensitive with 
low limits of detection (LODs) of 5.120, 4.218, 4.588 copies/reaction for B646L, 
F1055L, and E183L gene, respectively; excellent repeatability with 1.24–2.01% 
intra-assay coefficients of variation (CVs) and 1.32–2.53% inter-assay CVs; good 
specificity for only detection of genotypes I and II ASFV, without cross-reactivity 
with PCV2, PRV, SIV, PRRSV, PEDV, FMDV, and CSFV. The triplex cdPCR was used 
to test 1,275 clinical samples from Guangxi province of China, and the positivity 
rates were 5.05, 3.22, and 1.02% for genotype I, genotype II, and co-infection of 
genotypes I and II, respectively. These 1,275 clinical samples were also detected 
using a reported reference triplex real-time quantitative PCR (qPCR), and the 
agreements of detection results between these two methods were more than 
98.98%. In conclusion, the developed triplex cdPCR could be used as a rapid, 
sensitive, and accurate method to detect and differentiate genotypes I and II 
strains of ASFV.

KEYWORDS

African swine fever virus (ASFV), multiplex crystal digital PCR (cdPCR), co-infection, 
genotype I, genotype II

1 Introduction

African swine fever (ASF) is a highly contagious and lethal infectious disease of pigs. ASF 
virus (ASFV), the etiological pathogen, belongs to the Asfivirus genus in the Asfiviridae family. 
ASFV is a double-stranded, linear DNA virus, with a genome of 170–193 kb in length, and 
contains 151–167 open reading frames (ORFs) encoding more than 168 structural and 
nonstructural proteins (1). ASF is an acute, highly infectious, and deadly illness to domestic 
pigs and wild boars, with a fatality rate of as high as 100% (2). The typical symptoms and 
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pathological changes of ASF are characterized by deadly hemorrhagic 
fever, respiratory distress, skin cyanosis, thrombocytopenia, and 
extensive bleeding from the kidneys, gastrointestinal mucosa, lymph 
nodes, and other organs (3, 4). ASF was first discovered in Kenya of 
Africa in 1921, and since then, ASF has disseminated across various 
countries of sub-Saharan Africa, and spread to other continents 
outside Africa (5, 6). The first outbreak of ASF in China was discovered 
in 2018 in Jilin province, Northeastern China, then quickly spread to 
almost all provinces in the country within a year, which causing a 
devastating blow to China’s pig industry (7–9). Since 2018, this highly 
contagious disease has spread rapidly to many countries in 
Southeastern Asia, and America (5, 10–12). To date, ASF has been 
discovered in many countries, mainly in Africa, Asia, Europe, and the 
American Caribbean (13, 14), and has seriously damaged the pig 
industry worldwide. The history of prevention and control to ASF in 
various countries shows that, as the absence of a specific vaccine and 
effective measures, the epidemic of ASF, once introduced, is very 
difficult to eradicate in a short time (15). As for China, ASF is currently 
the top priority disease for prevention and control.

ASFV can be categorized into 24 genotypes on the basis of ASFV 
B646L gene’s 3′ end sequence (16, 17). Outside of Africa, only 
genotypes I and II strains of ASFV have been discovered (6, 17, 18). 
In China, genotype II ASFV was first identified in 2018, and has been 
the predominant strains circulating in the field thereafter (19, 20). 
Genotype I  ASFV was first discovered in 2020, and has been 
confirmed in Henan, Shandong, and Guangxi provinces in China (19, 
21–23), but its prevalence and harm throughout the country require 
further investigation and evaluation. Recently, the naturally 
recombinant strain of genotype I and II was discovered in China, and 
showed highly virulent and lethal to domestic pigs (24). Nowadays, 
genotype I, genotype II, and genotype I and II recombinant strains of 
ASFV are prevalent simultaneously in China, and co-infections of 
genotype I  and II have been reported (19, 23). These situations 
increase the complexity of epidemic strains and increase the difficulty 
of prevention and control, which inflicts significant harm on the 
China’s pig industry (8, 9, 25). Therefore, rapid, and accurate detection 
and identification of the circulating ASFV genotype is of utmost 
importance for implementing effective prevention and control 
measures in the early infected stage.

The real-time quantitative PCR (qPCR) has been widely used to 
detect viral nucleic acids in many laboratories. This advanced 
molecular technique has garnered significant recognition and 
acceptance due to its advantages of low chance of contamination, 
excellent accuracy, superior sensitivity, exceptional specificity, 
convenience, and efficiency (26, 27). However, the disadvantages of 
the qPCR mainly include the fluctuation of Ct values depending on 
threshold setting, the high sensitivity to reaction inhibitors, and the 
complex procedure of generating calibration curves, which limits the 
application of qPCR. Therefore, the digital PCR (dPCR) is a new and 
better choice for detection of low copies of viral nucleic acids. The 
dPCR is an emerging technology in the field of microbiology, and has 
the main advantages of high specificity and sensitivity, excellent 
repeatability, the ability to achieve absolute quantification without the 
requirement of a reference gene, Ct value and standard curve, and 
strong tolerance to PCR inhibitors (28, 29). The dPCR can be divided 
into crystal digital PCR (cdPCR) and droplet digital PCR (ddPCR) 
(30, 31). Several reports have established the dPCR to detect ASFV 

(32–36), but no multiplex dPCR to simultaneously detect genotype 
I and genotype II ASFV has ever been reported. Here, a triplex cdPCR 
was developed to detect and differentiate genotype I and genotype II 
ASFV, and used to test 1,275 clinical samples to validate its applicability 
in the field.

2 Materials and methods

2.1 Collection of clinical samples

From March 2023 to August 2023, a total of 1,275 clinical samples 
(including lung, spleen, kidney, tonsil, and lymph nodes from each 
pig) were obtained from 1,275 dead pigs from different 4 pig farms, 6 
harmless treatment plants, and 17 slaughterhouses in Guangxi 
province of Southern China. The dead pigs showed different 
manifestations such as fever, diarrhea, cough, and/or redness, 
cyanosis, or bleeding on skin. The written consent of the animal 
owners was obtained, and the research group promised not to disclose 
the detailed information about the relevant pig farms and the 
incidence of diseases in the pig herds in this study. These tissues were 
transported under ≤4°C within 12 h to the laboratory, and stored at 
−80°C until used.

2.2 Obtainment of virus strains

The foot-and-mouth disease virus (FMDV, strain O/Mya98/
XJ/2010), swine influenza virus (SIV, strain TJ), porcine reproductive 
and respiratory syndrome virus (PRRSV, strain JXA1-R), classical 
swine fever virus (CSFV, strain C), porcine epidemic diarrheal virus 
(PEDV, strain CV777), pseudorabies virus (PRV, strain Bartha-K61), 
and porcine circovirus type 2 (PCV2, strain ZJ/C) were obtained from 
commercial company (Huapai Co., Ltd., Chengdu, China). The 
genotypes I and II ASFV clinical samples were obtained from Guangxi 
Center for Animal Disease Control and Prevention (CADC), China.

2.3 Design of primers and probes

Three sets of specific primers and probes were designed as 
described by Qian et al. in the previous report (23). The primers and 
probe targeting the B646L gene were used to detect the 24 different 
ASFV genotypes, those targeting the F1055L gene were used to 
specifically detect ASFV genotype I, and those targeting the E183L 
gene were used to specifically detect ASFV genotype II. The primers 
and probes are shown in Table 1.

2.4 Extraction of nucleic acids

The clinical tissues were homogenized, freeze-thawed, vortexed, 
and centrifuged as described by Qian et al. (23). Total nucleic acids 
were extracted from 200 μL supernatants using the GeneRotex 96 
Automated Nucleic Acid Extractor and the Viral DNA/RNA Isolation 
Kit 4.0 (TIANLONG, Xian, China) according to the manufacturer’s 
constructions, and stored at −80°C until used.
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2.5 Generation of the standard plasmid 
constructs

The standard plasmid constructs were generated according to 
Qian et al. (23) with minor modification. Total nucleic acids from 
ASFV-positive samples were used as templates to amplify the targeted 
fragments by PCR using the designed primers (Table  1). The 
amplification products were purified using MiniBEST DNA Fragment 
Purification Kit Ver.4.0 (TaKaRa, Dalian, China), cloned into the 
pMD18-T vector (TaKaRa, Dalian, China), then transformed into 
E. coli DH5α cells (TaKaRa, Dalian, China). The positive clones were 
cultured at 37°C for 22–24 h, and the recombinant standard plasmid 
constructs were extracted using MiniBEST Plasmid Extraction Kit 
Ver.5.0 (TaKaRa, Dalian, China). The plasmids were sent to IGE 
biotechnology LTD (Guangzhou, China) for sequencing using Sanger 
sequencing method, and the sequences of inserted fragments were 
confirmed by BLAST analysis at the National Center for Biotechnology 
Information (NCBI).1 Then, the correct plasmid constructs were 
named p-dASFV-B646L, p-dASFV-F1055L, and p-dASFV-E183L, 
respectively, and used to established the triplex cdPCR.

The standard plasmid constructs were measured using the 
NanoDrop spectrophotometer (Thermo Fisher, Waltham, MA, USA) 
260 nm and 280 nm, and determined their concentrations using the 
formula as follows: copy number (copies/μL) = (plasmid construct 
concentration × 10−9 × 6.02 × 1023)/ (660 Dalton/bases × DNA length).

2.6 Determination of reaction conditions

The Naica™ Sapphire Crystal System (Stilla Technologies™, 
Villejuif, France) was used to optimize various parameters of the 
cdPCR, i.e., the annealing temperature, reaction cycles, and the primer 
and probe concentrations. The triplex cdPCR reaction system was set 
at 25 μL. These conditions were optimized to maximize the accuracy 
and reliability of the reaction for precise and sensitive detection of the 
targeted analytes. The processes of the triplex cdPCR, including 
preparation of the Sapphire Chips, partition and PCR amplification, 
and acquisition of three-color fluorescence images and analysis of the 

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi

droplet crystals, were performed according to the operation manual 
provided by the manufacturer (Stilla Technologies™, Villejuif, 
France).

2.7 Generation of the standard curves

To generate the standard curves, three standard plasmid 
constructs were mixed together and 10-fold serially diluted, and the 
mixtures with final reaction concentrations ranging from 1.0 × 104 to 
1.0 × 100 copies/μL was used as templates.

2.8 Assessment of specificity

The total nucleic acids of the following viruses were used as 
templates to assess the specificity: genotypes I and II ASFV, PCV2, 
PRV, PRRSV, PEDV, FMDV, CSFV, and SIV. The nuclease-free distilled 
water, and negative tissue samples were used as negative controls.

2.9 Assessment of sensitivity

The mixtures of three plasmid constructs were 10-fold serially 
diluted. The mixtures with final reaction concentrations ranging from 
1.0 × 105 to 1.0 × 10−2 copies/μL were used as templates, and the limits 
of detection (LODs) were determined by Poisson distribution analysis.

In addition, the mixtures with final reaction concentrations ranging 
from 250 to 0.25 copies/reaction were used as templates, and the LODs 
were analyzed using PROBIT regression in SPSS 26.0 software,2 and the 
related figures were generated using Statacorp stata 17 software.3

2.10 Assessment of repeatability

To assess the repeatability, the mixtures of three plasmid 
constructs at final concentrations of 1.0 × 104, 1.0 × 103, and 1.0 × 102 

2 https://www.ibm.com/cn-zh/spss

3 https://www.stata.com/products/windows/

TABLE 1 The used primers and probes.

Name Sequence (5′  →  3′) Tm/°C Product/bp

B646L-F CAAAGTTCTGCAGCTCTTACA 56.0

120B646L-R TGGGTTGGTATTCCTCCCGT 61.6

B646L-P FAM-TCCGGGYGCGATGATGATTACCTT-BHQ1 63.1

F1055L-F GCAGGTAGTTTGATTCCCTT 56.0

122F1055L-R GGGCGATGTCTCTGTAAGT 57.6

F1055L-P VIC-TGAGACAGCAGATTAAGCAGAGCCCCTG-BHQ1 67.4

E183L-F CGCGAGTGCTCCTGCTC 60.1

133E183L-R GGAGTTTTCTAGGTCTTTATGCGT 57.6

E183L-P CY5-TTACACGACAGTCACTACTCAGAACACTGC-BHQ2 64.0
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copies/μL were used to perform the intra-assay and inter-assay tests, 
and the coefficients of variation (CVs) were calculated.

2.11 Evaluation of the clinical samples

The developed triplex cdPCR, and the triplex qPCR reported by 
Qian et al. (23) were used to test 1,275 clinical samples obtained in 
Guangxi province of China. The clinical sensitivity and specificity of 
the triplex cdPCR were evaluated, and the agreement rates of the 
detection results between both methods were determined using SPSS 
26.0 software (see footnote 2).

3 Results

3.1 Generation of the standard plasmids

The targeted fragments of the ASFV B646L, F1055L, and 
E183L genes were obtained by PCR amplification using the 
primers in Table 1, followed by purification and ligation into the 
pMD18-T vector, then transformed into E. coli DH5α competent 
cells. The positive clones were cultured, and the plasmid 
constructs were extracted. Finally, the concentrations of three 
standard plasmid constructs named p-dASFV-B646L, p-dASFV-
F1055L, and p-dASFV-E183L were determined to be 3.69 × 1010, 
1.81 × 1010, and 1.0 × 1010 copies/μL, respectively. All plasmid 
constructs were diluted to 1.0 × 1010 copies/μL, and stored at 
−80°C until used.

3.2 Determination of the reaction 
conditions

The triplex cdPCR was developed using the Naica™ Sapphire 
Crystal System (Stilla Technologies™, Villejuif, France). After 
experiments on optimizing combinations of primers and probes at 
different concentrations, annealing temperatures, and reaction 
cycles, the optimal reaction conditions were obtained, and a triplex 
cdPCR was established (Figure 1). The reaction system contained 
PerfeCTa Multiplex qPCR ToughMix (Quanta Biosciences, 
Gaithersburg, MD, USA), Fluorescein Sodium Salt (1 μM) (Apexbio 
Biotechnology, Beijing, China), three primers and probes, the 
mixtures of three plasmid constructs, and nuclease-free water 
(Table 2). The amplification procedure: 95°C for 30 s, 45 cycles of 
95°C for 5 s, and 56°C for 30 s. After amplification, the Sapphire 
chips (Stilla Technologies, France) were shifted into the Naica™ 
Prism3 (Stilla Technologies, France), and each sample’s absolute 
concentration were automatically reported with 3 high-
resolution images.

3.3 Generation of the standard curves

To obtain the standard curves of the triplex cdPCR, the standard 
plasmid constructs p-dASFV-B646L, p-dASFV-F1055L, and 
p-dASFV-E183L at final concentrations from 1.0 × 104 to 1.0 × 100 

copies/μL were used as templates. The results showed that the slopes 
and R2 were 0.982 and 0.9996, 0.9 and 0.9972, and 0.931 and 0.9973, 
for the B646L, F1055L, and E183L genes, respectively (Figure 2).

3.4 Specificity analysis

The total nucleic acids of genotype I ASFV, genotype II ASFV, 
PCV2, PRV, PRRSV, PEDV, FMDV, CSFV, and SIV were used to 
analyze the triplex cdPCR’s specificity. The results showed that the 
positive droplets could only obtained from genotypes I and II ASFV, 
but not from the other porcine viruses (Figure 3).

3.5 Sensitivity analysis

In order to assess the LOD of the triplex cdPCR, the mixtures of 
three plasmid constructs p-dASFV-B646L, p-dASFV-F1055L, and 
p-dASFV-E183L from 1.0 × 105 to 1.0 × 10−2 copies/μL (final 
concentration) were used as templates. The results showed that the 
number of positive droplets decreased in a gradient as the 
concentrations of the mixtures decreased. According to the Poisson 
distribution, the LODs of p-dASFV-B646L, p-dASFV-F1055L, and 
p-dASFV-E183L were 6.5, 4.5, and 5.75 copies/reaction, respectively 
(Figure 4).

The mixed three plasmid constructs, p-dASFV-B646L, p-dASFV-
F1055L, and p-dASFV-E183L ranging from 250 to 0.25 copies/
reaction (final concentration) were used to determine the number of 
positive droplets and the hit rates. The results are shown in Table 3. 
The LODs of the three plasmid constructs analyzing by PROBIT 
regression analysis showed that the LODs of p-dASFV-B646L, 
p-dASFV-F1055L, and p-dASFV-E183L were 5.120 (3.950–10.500 at 
95% confidence interval (CI)), 4.218 (3.456–7.523 at 95% CI), and 
4.588 (3.695–7.821 at 95% CI) copies/reaction, respectively (Figure 5).

3.6 Repeatability analysis

The mixtures of three plasmid constructs with the final 
concentration of 104, 103, and 102 copies/μL were used as templates. 
The results showed that the intra-assay CVs were 1.24–2.01%, and the 
inter-assay CVs were 1.30–2.53% (Table 4).

3.7 Testing of the clinical samples

The established triplex cdPCR were used to evaluate the 1,275 
clinical samples from Guangxi province. The results showed that a 
total of 118 (9.25%, 118/1,275) ASFV-positive samples were detected, 
including 64 (5.02%, 64/1,275) positive samples of genotype I, 41 
(3.22%, 41/1,275) positive samples of genotype II, and 13 (1.02%, 
13/1,275) positive samples of co-infection with genotypes I and II 
(Table  5). The 3D dot plots are shown to display the data of 
co-infections in clinical samples through using three-dimensional 
scatterplots to allow immediate visualization (Figure 6).

The 1,275 clinical samples were also tested using the triplex qPCR 
reported by Qian et al. (23). The results showed that a total of 105 
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(8.24%, 105/1,275) ASFV-positive samples were detected, including 
58 (4.55%, 58/1,275) positive samples of genotype I, 36 (2.82%, 
36/1,275) positive samples of genotype II, and 11 (0.86%, 11/1,275) 

positive samples of co-infection with genotypes I and II (Table 6). In 
addition, the clinical sensitivity and clinical specificity of the triplex 
cdPCR were 100, and 98.89%, respectively (Table 7). The agreements 
between the triplex cdPCR and the triplex qPCR were more than 
98.98% (Table 6).

4 Discussion

ASF has caused significant economic losses to domestic pigs and 
wild boars due to the disease’s acute course and high mortality rate (2). 
The World Organization for Animal Health (WOAH) identifies ASF 
as one of the listed diseases. ASF was endemic within the African 
continent prior to 1957, but spread outside this continent thereafter. 
The highly pathogenetic genotype II ASF was first outbroke in China 
in 2018 (7), and relatively lower virulent genotype I ASFV was first 
discovered in 2020 (21). Many Asian countries has been reported 
ASFV since 2018 (5, 10, 11). To date, ASF has been founded in a 
multitude of countries in Africa, Asia, Europe, and America (10–14). 
Even if ASF is epidemic worldwide, genotype I and II ASFV were the 
only two genotypes of the 24 genotypes of ASFV that have ever been 
identified outside of African continent until now (16–18). However, 
due to the even increasement of global trade and the volume of 
imported and exported animals and animal’s products, there is always 
a risk of ASFV spilling from the African continent to other continents 
(37–39). Development of a rapid, reliable, and accurate method for 
detection, surveillance, and diagnosis of ASFV is very urgent for the 

FIGURE 1

Optimization of the concentrations of primers and probes (A–C) and the annealing temperature (D). The three plasmid constructs p-dASFV-B646L, 
p-dASFV-F1055L, and p-dASFV-E183L were mixed at the final concentrations of 1.0  ×  102 copies/μL. The amplification results of 12 different 
combinations of probe and primer concentrations are shown in panel (A–C), and the amplification results at different annealing temperatures are 
shown in panel (D). NC, Negative control.

TABLE 2 Reaction system of the triplex cdPCR.

Reagent Volume (μL) Final concentration 
(nM)

PerfeCTa Multiplex 

qPCR ToughMix (2×)
12.5 1×

Fluorescein Sodium 

Salt (1 μM)
2.5 100

B646L -F (25 μM) 0.8 800

B646L -R (25 μM) 0.8 800

B646L -P (25 μM) 0.4 400

F1055L-F (25 μM) 0.7 700

F1055L-R (25 μM) 0.7 700

F1055L-P (25 μM) 0.3 300

E183L-F (25 μM) 0.7 700

E183L-R (25 μM) 0.7 700

E183L-P (25 μM) 0.3 300

Total nucleic acids 2.5 /

Nuclease-free distilled 

water
Up to 25 /
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countries where ASF is circulating. The qPCR has been extensively 
used to detect viral nucleic acids in many laboratories, since this 
technique is known for its high sensitivity, excellent specificity, and 
reliability. It allows for the accurate and efficient identification of viral 
infections, enabling timely and targeted interventions for disease’s 
prevention and control (29, 30). Several reports have developed qPCR 
to detect ASFV and distinguish genotypes I and II ASFV (23, 40–43). 
However, the qPCR has the disadvantages of the fluctuation of Ct 
values depending on threshold setting, the high sensitivity to reaction 
inhibitors, and the complex procedure of generating calibration 
curves. Therefore, the dPCR is a new and better choice for detection 
of viral nucleic acids. The dPCR has the advantages of absolute 
quantification of template independent on the Ct values and standard 
curves, the excellent sensitivity and precision for low loads of 
templates, and low sensitivity to PCR inhibitors. Several reports have 
established the dPCR for detection of ASFV (32–36), but no dPCR to 
simultaneously detect genotypes I and II ASFV has been established. 
In this study, a triplex cdPCR was developed to detect and differentiate 
genotype I  and genotypes II ASFV. Besides the abovementioned 
advantages of the cdPCR, the multiplex cdPCR can make full use of 
the apparatus to detect several viruses in one reaction at the same 
time, which decrease the fee of detection dramatically. According to 
our previous calculation, it costs about US $17.67/sample by the 
singleplex dPCR, US $7.86/sample by the multiplex dPCR, and US 
$3.83/sample by the multiplex qRT-PCR [33]. This help the triplex 
cdPCR established in this study to apply for high-throughput 
detection of clinical samples, especially for the low viral-load 
clinical samples.

In this study, three pairs of specific primers and corresponding 
probes were designed basing on the B646L gene, F1055L gene, and 
E183L gene, respectively. The primers and probe targeting the B646L 
gene was used as universal primers and probe to detect 24 genotypes 
of ASFV. The synthesized plasmid constructs of 24 genotypes ASFV 
have been used to validate and confirm the viability of the primers and 
probe (23). The primers and probe targeting the F1055L gene was used 
to specifically amplify genotype I ASFV, and the primers and probe 
targeting the E183L gene was used to specifically amplify genotype II 
ASFV. After optimizing the reaction parameters, such as primer and 
probe concentrations, annealing temperatures, and reaction cycles, a 
triplex cdPCR was successfully developed. The assay achieved 
remarkable specificity, ensuring that only the targeted viral nucleic 
acids of ASFV were amplified and detected. The sensitivity of the assay 
has been greatly enhanced, obtaining the LODs of 5.120, 4.218, and 
4.588 copies/reaction for the B646L, F1055L, and E183L genes, 
respectively, while the multiplex qPCR using the same primers and 
probe had the LODs of 399.647, 374.409, 355.083 copies/reaction for 
the B646L, F1055L, and E183L genes, respectively (23), indicating that 
the triplex cdPCR had 78.06, 88.76, 77.39 times higher than those of 
the triplex qPCR, respectively. The excellent sensitivity of the assay 
enables it to detect very low viral loads, which is crucial for the early 
stage of infection. Repeatability analysis of the assay was excellent, 
with the intra-assay and inter-assay CVs between 1.24 and 2.53%. The 
R2 values of the standard curves were ≥ 0.997, indicating a good linear 
relationship between the initial templates and the positive droplet 
values. The cdPCR method offers a notably lower LODs in comparison 
to the qPCR (23), making it more suitable for evaluating the clinical 

FIGURE 2

The positive droplets of the plasmid constructs p-dASFV-B646L (A), p-dASFV- F1055L (B), and p-dASFV- E183L (C) at different final concentrations 
from 1.0 × 104 to 1.0 × 100 copies/μL and the standard curves (D).
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FIGURE 3

The specificity analysis of the triplex cdPCR (A–C). The results for B646L gene (A), F1055L gene (B), and E183L gene (C) are showed, respectively. Genotype 
I ASFV, genotype II ASFV, PCV2, PRV, PRRSV, PEDV, FMDV, CSFV, and SIV were used to analyze the triplex cdPCR’s specificity. NC, Negative control.

FIGURE 4

The sensitivity analysis of the triplex cdPCR (A–C). The plasmid constructs p-dASFV-B646L (A), p-dASFV-F1055L (B), and p-dASFV-E183L (C) are used 
for sensitivity analysis, respectively. The mixtures of three plasmid constructs with final concentrations from 1.0  ×  105 to 1.0  ×  10−2 copies/μL were used 
as templates. NC, Negative control.
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FIGURE 5

The results of PROBIT regression analysis for the triplex cdPCR. The LODs of p-dASFV-B646L (A), p-dASFV-F1055L (B), and p-dASFV-E183L (C) were 
determined to be 5.120 (3.950–10.500 at 95% CI), 4.218 (3.456–7.523 at 95% CI), and 4.588 (3.695–7.821 at 95% CI) copies/reaction, respectively.

samples with low viral loads. The triplex cdPCR had clinical sensitivity 
and specificity of 100, and 98.89%, respectively, and had agreements 
of more than 98.98% with the reference triplex qPCR when they were 
used to evaluate the 1,275 clinical samples. These advancements have 
significantly enhanced the accuracy and reliability of the developed 
triplex cdPCR for detection of viral nucleic acids.

The developed triplex cdPCR was used to evaluate 1,275 clinical 
samples collected between March 2023 and August 2023 in Guangxi 

province. The positivity rates of genotype I, genotype II, and 
co-infection of genotypes I + II were 5.02, 3.22, and 1.02%, 
respectively, with a total positivity rate of 9.25% in clinical samples, 
indicating that ASFV is still epidemic in Guangxi province. However, 
compared to the previous data reported in Guangxi province (19, 22, 
23, 33, 36, 44–46), the positivity rate of ASFV in Guangxi province 
in this study was significant decreased. In Guangxi province of 
China, the reported positivity rates of ASFV in clinical samples 

TABLE 3 Number of positive samples and hit rates for serial dilution of plasmid constructs.

Plasmid construct Copies/Reaction Number of sample Positive sample Hit rate (%)

dASFV-B646L

250 48 48 100

25 48 48 100

2.5 48 14 29.2

0.25 48 0 0

dASFV-F1055L

250 48 48 100

25 48 48 100

2.5 48 20 41.7

0.25 48 0 0

dASFV-E183L

250 48 48 100

25 48 48 100

2.5 48 18 37.5

0.25 48 0 0

https://doi.org/10.3389/fvets.2024.1351596
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shi et al. 10.3389/fvets.2024.1351596

Frontiers in Veterinary Science 09 frontiersin.org

TABLE 4 Repeatability assessment of the triplex cdPCR.

Plasmid Concentration
(Copies/μL)

Ct value of intra-assay Ct value of inter-assay

−x (Copies/
Reaction)

SD CV (%) −x (Copies/
Reaction)

SD CV (%)

p-dASFV-B646L

1.0 × 104 34816.67 464.58 1.33 34841.67 488.83 1.40

1.0 × 103 3256.67 40.41 1.24 3283.33 62.92 1.91

1.0 × 102 320 5 1.56 335.67 7.51 2.36

p-dASFV-F1055L

1.0 × 104 39,000 595.29 1.53 39,275 513 1.30

1.0 × 103 3250.83 48.76 1.50 3239.17 42.90 1.32

1.0 × 102 304.17 3.82 1.26 315.83 6.30 2.02

p-dASFV-E183L

1.0 × 104 35,850 537.94 1.50 36391.67 619.64 1.70

1.0 × 103 3408.33 52.70 1.55 3462.33 52.79 1.52

1.0 × 102 327.50 6.61 2.01 337 8.54 2.53

TABLE 5 The results of clinical samples using the developed triplex cdPCR.

Source Total Positive Genotype I Genotype II Genotype I and 
II

Positive rate

Pig farm 98 2 0 0 2 2.04% (2/98)

Harmless disposal site 632 96 61 26 9 15.19% (96/632)

Slaughterhouse 545 20 3 15 2 3.67% (20/545)

Total 1,275 118 (9.25%) 64 (5.02%) 41 (3.22%) 13 (1.02%) 9.25% (118/1,275)

FIGURE 6

The 3D scatterplots of fluorescence intensity for the clinical samples. The data were obtained in the FAM (blue), Cy5 (red), and VIC (green) acquisition 
channels.
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collected during different periods were as follows: 57.14% (192/336) 
from January 2019 to December 2020 (19), 45.58% (232/509) from 
October 2018 to December 2020 (22), 43.75% (168/384) from 
October 2018 to December 2019 (44), 30.10% (87/289) from January 
2018 to March 2021 (33), 25.63% (293/1,143) from February 2018 
to March 2021 (45), 14.17% (214/1,510) from January 2022 to 
December 2022 (36), 12.60% (534/4,239) from January 2021 to 
December 2021 (46), 8.16% (287/3,519) from March 2019 to 
February 2023 (23), 9.25% (118/1,275) from March 2023 to August 
2023 (this study). Overall, the positivity rates of ASFV in Guangxi 
province have gradually decreasing since 2018, the year ASF first 
outbroke in China. In addition, it is noteworthy that the positivity 
rate of genotype I was higher than that of genotype II in this study, 
whereas genotype II was the predominant genotype in the previous 
reports (19, 22, 23, 33, 36, 44–46), indicating that genotype I might 
have become the main circulating genotype in Guangxi province in 
2023, which needs to be  further confirmed through larger and 
longer epidemiological investigations. Unfortunately, there are few 
reports on the monitoring results of ASFV in various provinces of 
China, so we cannot know the current epidemic situation in various 
regions. The decrease in the prevalence of ASFV in Guangxi province 
suggests that the prevention and control measures carried out in 
China were very effective. The main measures included strict 
biosecurity, accurate detection and rapid diagnosis, rule out the 
ASFV-positive pigs in the very early infected stage (47, 48). 
Therefore, a rapid, sensitive, and accurate method to detect ASFV is 
vital in order to accurately identify the early-stage infected pigs, and 
decisively clear them at designated points. This assay can be used to 
accurately and efficiently detect genotypes I and II strains of ASFV, 
allowing for rapid and targeted interventions to prevent further 
spread and mitigate the impact on pig populations.

5 Conclusion

A rapid, sensitive, and accurate triplex cdPCR was developed to 
detect and differentiate genotype I, and genotype II ASFV. The highly 
sensitive, specific, and reproducible assay is suitable for detection and 
investigation of ASFV in clinical samples. In addition, the genotype 
I  strains of ASFV is the important circulating strains besides the 
genotype II strains in Guangxi province in China at present.
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