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Bovine mastitis is one of the most common diseases of dairy cattle. Even though 
different infectious microorganisms and mechanical injury can cause mastitis, 
bacteria are the most common cause of mastitis in dairy cows. Staphylococci, 
streptococci, and coliforms are the most frequently diagnosed etiological 
agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly 
divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS 
is mainly comprised of coagulase-negative Staphylococcus species (CNS) 
and some coagulase-positive and coagulase-variable staphylococci. Current 
staphylococcal mastitis control measures are ineffective, and dependence 
on antimicrobial drugs is not sustainable because of the low cure rate with 
antimicrobial treatment and the development of resistance. Non-antimicrobial 
effective and sustainable control tools are critically needed. This review describes 
the current status of S. aureus and NAS mastitis in dairy cows and flags areas of 
knowledge gaps.
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1 Introduction

Mastitis is an inflammation of mammary glands usually caused by bacteria. It can also 
be caused by fungi or occasionally by mechanical injury, resulting in increased milk somatic 
cell count (SCC) and/or abnormal changes in milk and gland tissue (1). Mastitis incurs huge 
economic losses to dairy farming worldwide; in the United States (U.S.) dairy industry alone, 
economic losses are more than $2 billion annually (2–4). Clinical mastitis costs $444 for each 
case during 30 days in milk (DIM) post-calving (2). Staphylococcus aureus and non-aureus 
staphylococci (NAS) cause mastitis in dairy cows. S. aureus is a major contagious mammary 
pathogen on the U.S. dairy farms and throughout the globe (5). NAS comprises more than 50 
different species of coagulase-negative staphylococci (6–9) and some coagulase-positive and 
coagulase-variable staphylococci (8, 10–16). Approximately 95% of coagulase-positive 
Staphylococcus isolates from bovine mastitis are S. aureus (17), and about 15% of NAS have 
been linked to bovine mastitis (18, 19). S. chromogenes is a predominant NAS (19–21) 
consistently isolated from subclinical mastitis cases (22, 23), cows’ udder, and teat skin (24, 25).

Management-based mastitis control measures have been developed and implemented with 
mild success in reducing contagious bacteria such as S. aureus and S. agalactiae (26–28) but 
limited success due to the application disparities across mastitis management (29). Dependence 
on antimicrobial drugs to control S. aureus and NAS is not sustainable due to limited success 
(30, 31) and the emergence of bacteria resistant to the commonly used antimicrobial drugs 
(32, 33).
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Currently, one commercial bacterin vaccine is claimed to have 
some effects against S. aureus mastitis in dairy cows in the 
US. However, studies evaluating the efficacy of this commercial 
vaccine found no significant difference between vaccinated and 
unvaccinated control cows (34–36). Another polyvalent commercial 
bacterin vaccine containing inactivated high biofilm-forming S. aureus 
strain SP 140 and E. coli J5 strain is available in Europe and a few other 
countries for the control of mastitis caused by S. aureus, NAS, E. coli, 
and other coliforms in dairy cows. Some efficacy studies on this 
vaccine concluded that vaccination with the polyvalent bacterin 
reduced mastitis incidence, severity, and duration (37–39), whereas 
others concluded that vaccination with the polyvalent bacterin did not 
induce a significant reduction in staphylococcal intramammary 
infection (IMI) between vaccinated and unvaccinated groups (40–43). 
However, Freick et al. (42) found a significantly lower SCC in cows 
vaccinated with an autogenous vaccine compared to the unvaccinated 
group. Based on published vaccine efficacy studies in the United States, 
currently available vaccines cannot be recommended as part of the 
routine measures for controlling mastitis due to S. aureus and NAS in 
dairy cattle. Therefore, effective and sustainable non-antimicrobial 
bovine S. aureus and NAS mastitis control tools are urgently needed.

2 Bovine staphylococcal mastitis

Staphylococcus belongs to the family of Staphylococcaceae (44–46). 
Based on the 16S rRNA gene sequence similarity and analysis of 
overall genome-related indices such as DNA–DNA hybridization, 
average nucleotide identity, and average amino acid identity analyses, 
some Staphylococcus subspecies were reclassified as novel species. Five 
Staphylococcus species (S. sciuri, S. fleurettii, S. lentus, S. stepanovicii, 
and S. vitulinus) were reassigned to the new Mammaliicoccus genus 
(47). Since our focus is on the genus Staphylococcus, we  did not 
include the Mammaliicoccus genus in this review. Staphylococci are 
opportunistic commensal or opportunistic environmental bacteria 
that inhabit the nostrils, mucus membranes, and skin of mammals and 
birds (15, 48). More than 60 valid species exist in the Staphylococcus 
genus (44, 48, 49). In dairy cattle, mastitis is usually caused by 
Staphylococcus aureus (5) and NAS, which comprises coagulase-
negative Staphylococcus species (CNS) (6, 19, 21) and some coagulase-
positive and coagulase variable staphylococci (8, 50, 51).

Staphylococci are non-motile facultative anaerobic [except 
S. saccharolyticus and S. aureus subsp. anaerobius, which are anaerobic 
(48)] cocci that grow in an aggregating grape-like cluster due to 
perpendicular division planes. They are biochemically positive or 
negative or variable for coagulase, negative for oxidase, and positive 
for gram staining and catalase (44, 48, 49). Staphylococci can survive 
in the environment over an extended period (52, 53). They are usually 
catalase-positive, but some catalase-negative rare strains have also 
been reported (54, 55). All Staphylococcus species are lysed by 
lysostaphin except a few rare species (55, 56). Staphylococci have a low 
G/C content of approximately 27–41% in the chromosomal DNA, and 
most strains grow at 10% NaCl (48). Some species of staphylococci 
produce coagulase (Coa) and/or von Willebrand factor binding 
protein (vWbp), both of which can bind to prothrombin and convert 
it to a complex that can convert fibrinogen in the blood to fibrin (57–
59). Coagulase-positive S. aureus is considered a major pathogenic 
species (15, 48, 55), whereas NAS are considered minor pathogens (15, 

48, 55). Though a majority of coagulase-positive Staphylococcus 
species from bovine mastitis are S. aureus (17), non-aureus coagulase-
positive or variable staphylococci occasionally cause mastitis and 
other diseases in animals, including dairy cows. Staphylococcus 
intermedius, S. pseudintermedius, and S. coagulans are coagulase-
positive Staphylococcus species that cause different diseases in dogs 
and cats and occasionally rare or sporadic cases of bovine mastitis 
(10–12). S. aureus subs. Anaerobius (newly reclassified as S. aureus) is 
coagulase-positive and causes chronic purulent subcutaneous 
inflammation near superficial lymph nodes in sheep and goats (16, 
60). Some coagulase variable species (S. hyicus and S. agnetis) cause 
mastitis in dairy cows (8). Staphylococcus hyicus causes different 
diseases in pigs (13–15). Some studies reported the presence of 
atypical strains of S. chromogenes that cause clotting of plasma (61).

There are also coagulase-negative variants of S. aureus (62, 63). 
Some coagulase-negative Staphylococcus species (S. chromogenes, 
S. simulans, S. xylosus, S. haemolyticus, and S. epidermidis) (8, 18, 19) 
are increasingly reported as the cause of subclinical mastitis and some 
clinical mastitis in dairy cows (8, 19, 64). The NAS comprises diverse 
species that vary in pathogenicity, epidemiological distribution, and 
genomic composition. Describing each species individually and 
studying its virulence, pathogenicity, distribution, effect on milk 
somatic cell count (SCC), and milk production losses is more helpful 
for controlling mastitis caused by these groups of bacteria.

2.1 Staphylococcus aureus mastitis

Staphylococcus aureus is a major contagious mastitis pathogen in 
the US dairy farms and throughout the globe (5, 65, 66). There are 
different S. aureus strains (67–69) that also vary in their ability to 
spread in herds (70, 71), cause mastitis (72–74), incur losses in milk 
yield (75), possess virulence traits (76–78), and invade mammary 
epithelial cells (79, 80), but a single strain is reported to predominate 
in a herd (72). Some dominant clones are reported to cause mastitis 
worldwide (71, 81–83). Campos et al. reported that genotypes CC97, 
CC1, CC5, CC8, and CC398 are the most predominant lineages 
isolated from dairy herds worldwide (71). Of these, CC97 and CC151 
seem more pathogenic than others based on molecular and genomic 
comparative analysis (84). A study on S. aureus isolates from clinical 
and subclinical cases of mastitis in Finland found five clonal 
complexes, including CC97, CC133, CC151, CC479, and CC522 (85). 
The authors evaluated the presence of a total of 296 virulence factors 
and found 219 were present in all isolates (85). The authors concluded 
that there was no association between the presence of virulence factors 
and clinical outcomes of infection, but the presence of virulence 
factors varied with clonal complexes (85).

Staphylococcus aureus usually causes subclinical mastitis (SCM) 
and chronic mastitis with high SCC (30, 86). There are considerable 
variations in the mastitis caused by S. aureus, ranging from the 
peracute form with the development of gangrene in the udder, which 
usually occurs during early lactation, to more common subclinical 
chronic forms resulting in increased SCC and decreased milk 
production (87, 88). In general, S. aureus mastitis decreased in farms 
that fully applied mastitis control programs. In dairy farms with low 
bulk tank milk SCC, the cow-level prevalence of S. aureus IMI is 
1–10%. However, in farms with high bulk tank milk SCC, the 
cow-level prevalence of S. aureus IMI may increase to 50–75% with 
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individual udder quarter IMI prevalence of 10–25% (89, 90). The 
prevalence of S. aureus IMI in heifers is 5–15% at parturition (89, 91). 
Staphylococcus aureus mastitis treatment with antibiotics is not 
effective, and the cure rate is very low (30).

2.2 Mastitis due to non-aureus 
staphylococci

2.2.1 NAS as minor pathogens/commensals in the 
mammary glands

NAS is a group of over 50 different species of coagulase-negative 
staphylococci, along with some coagulase-positive and variable 
staphylococci. Despite the presence of different species, only about 
15–20 species are associated with bovine IMI, and the most frequent 
isolates include S. chromogenes, S. simulans, S. xylosus, S. haemolyticus, 
and S. epidermidis (8, 18, 19). NAS are increasingly reported as the 
most frequent isolates from lactating dairy cows (6, 20, 25, 92). Some 
NAS are frequently reported as etiology of subclinical mastitis in dairy 
ruminants (6–9, 93, 94), while others occasionally cause mastitis in 
dairy cows as well as other diseases in animals (10–15). Some studies 
reported S. chromogenes, S. simulans, S. epidermidis, and S. xylosus as 
major isolates from teat skin and teat tips, whereas other studies 
identified S. chromogenes, S. haemolyticus, and S. xylosus as major 
isolates from milk samples (95–98). S. chromogenes usually colonize 
the skin of teat and udder in heifers during calving (24, 99, 100), 
bovine milk of primiparous cows during first lactation (101, 102), and 
milk of cows with mastitis, especially primiparous cows (25, 101–103). 
S. simulans is usually isolated from the milk of cows with mastitis (101, 
104–106). S. agnetis is a coagulase variable (107) species originally 
isolated from cows with mastitis and very similar to S. hyicus (105). 
Based on molecular data, S. simulans is usually isolated from milk with 
mastitis, but S. chromogenes can be associated with subclinical mastitis 
and skin microbiota (24, 100). S. epidermidis colonizes the teat apices 
of dairy cows and healthy human skin (108, 109). NAS inhabit 
different ecological niches, including bedding materials and different 
parts of the animal body, including udder and teat skin, nostrils, and 
teat canal (110). The epidemiological distribution of these groups of 
bacteria, their spread mechanisms, and reservoirs vary and are 
affected by environmental, managemental, and host factors (19, 22, 
111, 112). The natural habitat of each species needs to be determined 
to differentiate environmental and host-adapted species (64, 113) to 
design appropriate control measures for these groups of bacteria.

2.2.2 Genetic diversity and virulence factors of 
NAS

NAS are genetically different in their ability to cause mastitis in 
dairy cows (114, 115). They have species-specific virulence factors and 
pathogenicity that affect the productivity of dairy animals. NAS also 
form a biofilm that enables them to colonize milking utensils and 
milkers’ hands, which helps their spread and transmission (116, 117). 
They also vary in their susceptibility to antimicrobial drugs (19, 112).

2.2.3 Host immune responses against NAS IMI
Macrophages are the first responders of the innate immunity in 

the mammary glands, with the subsequent recruitment of 
neutrophils from systemic circulation into the mammary glands 
(118). Staphylococcus species vary in their ability to induce 

inflammatory reactions in the mammary glands and increase SCC, 
with the highest counts usually caused by S. aureus. However, NAS, 
such as S. chromogenes, S. hyicus, S. agnetis, S. simulans, and 
S. xylosus are also reported to cause increased SCC similar to 
S. aureus (87, 119). Staphylococcal IMI, especially S. aureus, usually 
increases SCC initially, which leads to subclinical mastitis. If 
S. aureus resists clearance by host defense, the infection becomes 
chronic, and SCC decreases to a modest level (120). NAS 
occasionally causes clinical mastitis with SCC, usually ranging in the 
low to moderate increase, but may cause significantly increased 
SCC (22).

In experimental challenge infection, S. simulans caused more 
inflammatory reactions than S. epidermidis (121). Similarly, in field 
studies, S. simulans caused more clinical mastitis than other NAS (101, 
106). Another study found that S. chromogenes originally isolated from 
milk with mastitis induced more inflammatory reactions than 
S. chromogenes originated from teat apex (122). However, it is unclear 
if this difference is because strain differences in virulence or teat skin 
colonizing strains are non-pathogenic microbiota. In contrast, strains 
from intramammary areas are pathogenic microbiota. In another 
study, S. epidermidis and S. haemolyticus were shown to cause high 
SCC (123). In some studies, a slight increase above 100,000 cells/mL 
was reported for quarters infected with NAS (109, 124), whereas in 
another study, SCC varied from as low as 70,000 cells/mL to as high 
as 123,000 cells/mL of milk depending on the species of NAS involved 
(20). Some NAS species, such as S. agnetis, S. hyicus, and S. simulans, 
cause clinical mastitis more frequently than others (101, 104, 105), 
whereas some others, such as S. epidermidis cause mild inflammatory 
responses compared to S. simulans (121). However, S. epidermidis was 
also reported to cause high SCC in subclinical cases of mastitis (123).

Another study found that S. agnetis was more phagocytosed by 
murine macrophages than S. simulans or S. chromogenes but more 
resistant to killing by phagocytic cells similar to S. simulans and 
S. aureus, whereas S. chromogenes was more efficiently killed than 
S. simulans and S. agnetis (125). Despite observed differences in 
opsonophagocytic killing of S. simulans and S. chromogenes by 
phagocytic cells, both can exist in the mammary glands throughout 
lactation with increased SCC (103, 126). In another study, 
S. haemolyticus was better phagocytosed by blood neutrophils than 
S. aureus and S. chromogenes, and both S. aureus and NAS did not 
prevent intracellular reactive oxygen species (ROS) production in 
blood and milk neutrophils (127). The authors showed that 
S. chromogenes induced less ROS in milk neutrophils than S. aureus 
but induced ROS comparable to S. aureus from blood neutrophils and 
more ROS from blood neutrophils than S. haemolyticus. Transcripts 
and protein level evaluations of expression of proinflammatory 
chemokines and cytokines in the udder of cows with chronic mastitis 
due to coagulase-positive and coagulase-negative Staphylococci 
showed no difference between the Staphylococci (128). In another 
study, S. aureus was known to cause persistent intramammary 
infection-induced proliferation of CD4+ and CD8+ lymphocytes, 
whereas S. aureus (originated from nostrils) and S. chromogenes 
strains (known to cause persistent IMI) had no effect on T and B cell 
proliferation (129). The authors showed that both S. aureus and 
S. chromogenes originating from persistent IMI significantly increased 
IL-17A and IFN-γ production from peripheral blood mononuclear 
cells. Peripheral blood mononuclear cells (PBMC) from multiparous 
cows produced significantly higher IL-17A and IFN-γ; multiparous 
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cows tend to have a higher B-lymphocyte and a lower T-lymphocytes 
proliferative response than primiparous and nulliparous cows.

Staphylococci can resist opsonophagocytic killing by forming 
capsules and other extracellular polysaccharides (130–132). There are 
differences among NAS species in their susceptibility to 
opsonophagocytic killing by macrophages (125). The pathogenic 
mechanisms responsible for the differences between NAS and 
S. aureus strains are still unknown and need further investigation. 
These differences could be due to yet unknown novel virulence factors. 
Therefore, further investigation is required.

2.2.4 Role of NAS on udder health, milk quality, 
and SCC

The prevalence of NAS in quarter milk samples in the US and 
European dairy cattle farms ranges from 27 to 55% (21, 133). Similarly, 
the prevalence of NAS in bulk tank milk of herds ranges from 43% to 
60 or 90% (7, 19, 134). In different countries, NAS species are 
increasingly reported as an etiology of subclinical mastitis in cows, 
goats, and sheep (135). Differences in cattle housing, grouping, and 
age affect NAS prevalence and bacterial count (64). Variations in study 
methodologies and methods of species identification affect the 
prevalence assessment of mastitis due to these groups of bacteria 
(113, 136).

Some studies consider NAS as minor pathogens that cause only a 
slight increase in SCC and mild clinical mastitis (CM) with no effect 
(137–139) or little effect on milk production (96, 101, 124, 140–146) 
In contrast, others report a higher milk production in infected animals 
than in noninfected animals (142, 147). Some investigators reported 
no differences among NAS species in individual quarter milk SCC (9, 
148), while others reported differences between species (119, 149). A 
recent study reported that IMI with S. chromogenes early in lactation 
led to a significantly increased quarter SCC (124). Some NAS species, 
such as S. chromogenes, S. simulans, and S. xylosus, induced increased 
SCC comparable to S. aureus (119, 149). Similar to differences 
observed for the effect on SCC, species-specific differences in 
persistence were also reported (19, 103, 119, 123). NAS can cause 
increased SCC (142) and play a role in clinical mastitis development 
in well-managed herds (142).

The persistence of NAS IMI depends on the specificity of the 
species involved. Persistent IMI by S. chromogenes and other NAS 
species induce increased SCC compared to transiently infected 
quarters (145). However, the authors concluded that both transient 
and persistent IMI were not significantly associated with quarter milk 
yield during early lactation (145). Yet, milk yield from quarters 
recovered from S. chromogenes IMI was significantly lower than 
uninfected quarters (145), which might indicate some sequential effect 
in milk production.

NAS species induce only mild inflammatory response with mild 
to moderate increase in SCC in the infected quarter, reducing milk 
quality and price, and low bulk tank milk SCC may discourage 
producers from intervening in IMI, allowing these pathogens to cause 
continuous loss of productivity (124, 143, 146). In dairy cows with 
subclinical infection with these groups of pathogens at peak lactation 
can result in approximately 1.8 kg/d reduction in milk production (94, 
146). Because of a modest increase in milk SCC, the IMI due to NAS 
may not account for increased SCC in dairy farms that already have 
high SCC due to major mastitis pathogens. Data from farms also 
showed that NAS species are more prevalent in farms with low bulk 

tank milk SCC (8, 142), which may indicate that current mastitis 
control measures that reduce the incidence of some contagious 
bacteria such as S. aureus and S. agalactiae may not be effective on 
NAS. The occurrence of mastitis due to these groups of bacteria varies 
with farms, and economic losses due to subclinical mastitis of these 
bacteria are difficult to estimate due to the absence of easy and 
producer-friendly accurate diagnostic tools at the farm level (146, 147, 
150). Similar to differences observed for the effect on milk SCC, 
species-specific differences in persistence have also been reported (19, 
103, 119, 123). All these observations clearly indicate that further 
detailed investigations at the individual species level are required to 
determine the role of each species in bovine mastitis. Therefore, it is 
important to study each species of NAS individually and determine 
their virulence factors, pathogenicity to the host, and disease 
pathogenesis mechanisms to determine their role in causing mastitis, 
milk quality, and economic losses.

Some NAS species produce different antimicrobial agents, 
including bacteriocin, subtilosin A, lysostaphin, and Lugdunin, 
potentially protecting the colonization of udder or their 
microenvironmental niches by other bacteria (151–154). Under in 
vitro conditions, NAS species inhibit biofilm formation by bacterial 
mastitis pathogens (155), and metabolites from NAS species prevent 
the expression of S. aureus agr-related genes known to regulate the 
expression of virulence genes (156). Similarly, under in vivo 
conditions, the udder, pre-colonized by some strains of NAS, was 
shown to resist colonization by major bacterial mastitis pathogens 
(157–160). However, even though pre-colonization of the udder by 
some members of NAS species seems protective against colonization 
by major mastitis pathogens, some NAS species themselves were 
isolated and identified as the etiology of mastitis and shown to 
be responsible for milk production losses (94, 142, 146). It has also 
been shown that priming the murine mammary glands with 
S. chromogenes induced innate responses that reduced the growth of 
S. uberis (161). However, the authors did not clearly demonstrate if 
priming with S. chromogenes itself induced mastitis rather than 
enhancing protective innate immunity. Another study showed that 
intramammary challenge with S. chromogenes during a dry period 
resulted in colonization of challenged quarters by S. chromogenes, 
which induced high SCC, IFN-γ, and IgG2 production in challenged 
quarters but lower IL-6 and IL-10 in both challenged and colonized 
and non-colonized quarters (162). To conclude these findings as 
protective, it is important to determine how long the colonized 
quarters were shedding S. chromogenes without causing mastitis and 
if intramammary infusion of other bacterial mastitis pathogens into 
these S. chromogenes colonized quarters can prevent IMI or mastitis. 
Detailed controlled experimental challenge studies under in vivo 
conditions in dairy cows are critically needed to determine the roles 
of colonization of udder quarters by specific NAS species on mastitis 
status, milk quality, and milk production losses.

2.2.5 Therapeutic measures and antimicrobial 
resistance of NAS

Staphylococci are known to become resistant to several antibiotics, 
including methicillin resistance, which is important for public health 
(163, 164). Methicillin-resistant Staphylococcus aureus (MRSA) 
infection can only be treated with limited antibiotics and needs long-
term treatment (163, 165–167). MRSA infection is zoonotic (168), and 
continuous antimicrobial susceptibility surveillance is very crucial to 
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control the transmission of this strain from animal production to 
humans and vice versa (169). They may transfer resistance traits to 
S. aureus or other bacteria, resulting in the emergence of multidrug-
resistant strains (94, 135). The prevalence of infection by these groups 
of bacteria is on the rise mainly due to the spread of drug resistance 
among these groups (135). The most frequently seen resistance among 
staphylococci is resistance due to the production of β-lactamases, with 
more common production among subclinical non-aureus 
staphylococci isolates than clinical isolates (170). They exhibit 
resistance to multiple classes of antimicrobial drugs (32, 171, 172). The 
response to the treatment of S. aureus mastitis during lactation is poor 
(30, 173–175), with a 25–75% quarter cure rate for treatment at 
dry-off and 3–63% for short-term treatment during lactation 
(174, 175).

A recent antimicrobial susceptibility study involving S. aureus and 
NAS from bovine mastitic milk samples in Finland showed the 
presence of the blaZ gene and penicillin resistance of 9.3% in S. aureus 
and 28.9% in all NAS (176). The proportion of penicillin-resistant 
isolates was highest in S. epidermidis and lowest in S. simulans. The 
S. epidermidis is the predominant species carrying the mecA gene. 
Some phenotypically penicillin-susceptible staphylococci have the 
blaZ gene, but isolates negative for blaZ or mec rarely manifest 
resistance, indicating that genotypic AMR testing (176) may be good 
for the choice of antimicrobial drug for treatment. Another study from 
Switzerland to determine intramammary microbiome and resistome 
from the milk of healthy dairy cows reported a high prevalence of 
resistance to clindamycin and oxacillin (65 and 30%, respectively) in 
S. xylosus but not associated with chromosomal or plasmid-borne 
ARGs (177). The authors found that most resistance was justified by 
the presence of mobile genetic elements such as tetK-positive plasmids.

2.3 Universal staphylococcal virulence 
regulators

Staphylococci are opportunistic commensal bacteria (23, 178) that 
can cause different diseases such as superficial skin infections, 
endocarditis, osteomyelitis, necrotizing fasciitis in humans (179) and 
mastitis, necrotizing endometritis, pyometra, exudative epidermitis, 
cystitis, and otitis in animals (30, 180). However, it is important to 
emphasize that the virulence factors of human-adapted and bovine-
adapted strains may differ. Nevertheless, understanding similarities 
and differences between bovine-adapted strains and human-adapted 
strains at cellular and molecular (genomic, transcriptomic, proteomic, 
and metabolomic) levels is critically important to control infection 
caused by Staphylococcus. To inhabit or colonize different hostile 
microenvironmental niches, such as in the host body, S. aureus 
regulates the expression of its different virulence genes (181). The 
function of these different virulence factors can be attachment to host 
cells, immune evasion, nutrient breakdown, and acquisition (182, 
183). The virulence factors of S. aureus and NAS are encoded from the 
chromosome and mobile genetic elements [e.g., phages or prophages, 
plasmids, pathogenicity islands (SaPIs), and staphylococcal cassette 
chromosome mec (SCCmec)] (182, 184). These different pathogenicity 
factors are controlled by universal virulence regulators (regulons), 
such as the two-component regulatory systems (TCS) that comprise 
16 different TCS (185–187), and the DNA binding cytoplasmic 
proteins, such as the staphylococcal accessory regulator A (SarA) 

(188). Its homologs SarR, SarS, SarT, and other protein families (189–
191) are essential for the pathogenesis of S. aureus infections. The 
TCS, such as the accessory gene regulator AC (AgrAC) (187), the 
S. aureus exoprotein expression locus RS (SaeRS) (192, 193), the 
staphylococcal respiratory regulator AB (SrrAB) (194–196), and the 
autolysis-regulated locus RS (ArlRS) (197–199) regulate the expression 
of many virulence factors at different growth phases of the 
staphylococci (Figure  1). Out of the 16 TCS, the WalKR (WalK-
histidine kinase and WalR-response regulator) controls cell wall 
metabolism and is essential for the viability of S. aureus; the other 15 
are not active in multiple strains (200–202). S. aureus survives in the 
hostile host body or environmental niches by coordinated expression 
of its cytoplasmic regulators (185). These include the SarA family of 
regulators, repressor of toxin (Rot), multiple gene regular A (MgrA) 
(203), alternative sigma factors (SigB and SigH), and various TCS such 
as AgrCA, SaeRS, SrrAB, and ArlRS.

SarA and SaeRS act together to decrease protease production and 
help in biofilm formation in S. aureus (204). The sarA mutation 
decreases biofilm but increases sensitivity to antibiotics and the 
expression of alpha toxin, which is a pathogenicity factor. saeRS 
induces the transcription of fnbA and other S. aureus surface proteins. 
The saeRS mutation decreases surface proteins and biofilm formation 
(204) but increases efficacy with antimicrobial treatment (205). The 
mutation of sarA increases extracellular proteases, which decrease the 
ability to bind to fibronectin, therefore limiting the accumulation of 
surface-associated proteins. Several of these regulatory mechanisms 
have not been well studied in bovine-adapted strains of staphylococci. 
It is very important to understand the regulatory mechanisms of both 
human-adapted and bovine-adapted strains, their similarities and 
differences, and how these regulatory mechanisms change if human-
adapted strains infect bovine or vice versa.

2.3.1 Staphylococcal virulence factors
A study on the presence of a total of 296 virulence factors in 

S. aureus from bovine mastitis found 219 were present in all isolates 
(85). The authors concluded that there was no association between the 
presence of virulence factors and clinical outcomes of infection, but 
the presence of virulence factors varied with clonal complexes.

The presence of virulence genes and antimicrobial resistance 
genes varies among S. aureus isolates from bovine mastitis. The major 
factor causing disease is not the presence or absence of a specific 
virulence factor or resistance gene in a given isolate. Instead, it is their 
opportunistic pathogenic ability to acquire any virulence gene or 
resistance gene under certain environmental pressure. However, the 
ability to acquire mobile genetic elements that may disseminate within 
or across different lineages is much more important (206). It has been 
shown that the SOS responses from antimicrobial drug pressure 
promote horizontal gene transfer of pathogenicity islands (207, 208).

S. aureus has different virulence factors (VFs) that are responsible 
for mastitis pathogenesis, such as adhesion and internalization into 
host cells, tissue damage, evasion of host immunity, and getting 
nutrients from the host (209, 210). However, detailed pathogenic 
mechanisms and effects of several VFs in mastitis pathogenesis are still 
poorly defined. The disease severity is influenced by the expression of 
virulence genes (211) of the pathogen, the immunological defense of 
the host, and environmental stress factors (212). However, 
understanding detailed mechanisms of pathogenesis and associated 
symptoms needs further investigation (213).
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A comparative analysis of S. aureus and NAS virulence factors 
from clinical and subclinical bovine mastitis did not show any 
association between the presence of any virulence factors and the 
clinical outcome of mastitis (214). Similarly, a comparative genomic 
analysis of S. aureus from subclinical and clinical bovine mastitis 
did not find any association between the presence of virulence genes 
and the clinical outcome of mastitis (215). However, the authors 

found that S. aureus from clinical and subclinical mastitis were 
separated based on sequence variation of membrane-bound 
lipoprotein (215). However, another genomic study on S. aureus 
from clinical and subclinical mastitis reported an association of 
multiple genes with the clinical outcome of mastitis (216), but these 
genes were clustered in the same clonal complex (CC). Some 
authors suggest that a combination of certain virulence genes 

FIGURE 1

Staphylococcus aureus Universal Virulence Regulators. AgrA: accessory gene regulator A; AIP: Autoinducing peptide (AIP); SarA: staphylococcal 
accessory regulator A; SaeRS: S. aureus exoprotein expression locus RS; AgrAC: accessory gene regulator AC AgrAC; Rot: repressor of toxin; SigB: the 
alternative sigma factor; ArlRS: the autolysis regulated locus RS., Spa: Staphylococcal protein A, psms: phenol-soluble modulins, sRNAs: Small RNA 
regulators, TSST-1: toxic shock syndrome toxin-1. The S. aureus global regulators consist of the agr, ArlRS, SaeRS, and the SarA homologs (SarA, Rot 
and MgrA). The agr system induction causes expression of toxins and enzymes.The AIP is encoded from AgrD. The AgrD is processed to AgrB by SpsB 
peptidase. The extracellular AIP is detected by histidine kinase AgrC. This induced phosphorylation that transfers phosphate to AgrA that induces 
activation and binding to the P2 and P3 promoters inducing expression of RNAII and RNAIII, respectively. The RNAII comprises agrBDCA operon that 
encodes AgrB, AgrD, AgrC and AgrA. RNAIII is the major effector of the agr system through inducing target genes. Activated AgrA binds to promoters of 
PSMs genes and induces their expression. The SaeRS induce expression of exo-proteins. The SaeS phosphorylates its associated response regulator 
SaeR. This cause activation of SaeR which binds to the promoter region and induce expression of different virulence factors. The sae gene consists of 
saeP, saeQ, saeR and saeS that are under the control of the P1 promoter. SarA: sarA is induced from P1, P2 and P3 promoters and trigger expression of 
exo-proteins but represses spa. The alternative sigma factor σB (SigB) induces sarA through binding to the P3 promoter and prevents agr activity. The 
SarR binding to all three promoters prevents expression. SarA is an inducer of the agr system, and it represses the three SarA-like proteins SarH1, SarT 
and Rot. Rot regulates toxins and extracellular proteases and agr activation prevents Rot translation. MgrA: Induces expression of efflux pumps and 
capsule but represses surface proteins. The ArlRS induced by unknown factor and then activate MgrA but represses agr and autolysis. It down-
regulates surface proteins, enabling ClfA/ClfB to interact with fibrinogen.
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appears to cause mastitis than any single virulence gene (213). One 
study reported some level of differences in the virulence genes of 
S. aureus isolates from subclinical and gangrenous mastitis in 
sheep (217).

A study on the presence of known virulence genes and their 
regulation in S. aureus isolates from bovine mastitis found that all 
isolates were in Agr I and II classes, but sarT and sarU were lacking in 
some isolates. On the other hand, sarB and sarD were absent from all 
isolates. Most of the regulatory genes were present in all bovine 
isolates. The rot gene coding for the transcriptional regulator was 
present in all bovine isolates (85). The authors reported that toxins 
were variably present in S. aureus from bovine mastitis (85). Another 
study reported the presence of all hemolysin genes in S. aureus from 
bovine mastitis (85), and all were negative for the chemotaxis 
inhibitory protein of S. aureus (CHIPS) but were positive for the 
staphylococcal complement inhibitor gene (scn) (85). It has been 
shown that the presence of genes coding for cell-wall-anchored 
proteins such as sasC, sasD, sasF, sash, sasG, and sasK varies among 
bovine isolates but sasB and bap gene was absent from all isolates 
(85, 218).

Intracellular invasion and infection were possibly mediated by 
the cysteine proteases SspB and SspC, which were evident in all the 
isolates (219). Proteins associated with bovine immune invasions, 
such as Sbi, Cap, and AdsA, were identified in the isolates. All the 
isolates demonstrated crucial virulence characteristics, including 
hemolysis induction and biofilm formation (220). Some isolates 
were positive for agr and sarA systems associated with quorum 
sensing (221). All isolates were positive for intercellular adhesion, 
such as icaA, icaB, icaC, icaD, and icaR (220). Some isolates were 
positive for the spa gene (222). All isolates were positive for Ssp 
serine protease, which is responsible for in vivo multiplication and 
intracellular survival (223). The majority of the isolates were positive 
for the second immunoglobulin-binding protein (Sbi), which is 
responsible for immune evasion (224). All the isolates were positive 
for serotype eight capsular polysaccharide (Cap) and adenosine 
synthase A (AdsA), which are responsible for bovine immune 
evasion. All isolates were also positive for cysteine proteases 
(staphopain B [SspB] and staphopain C [SspC]), which enable 
biofilm production and intracellular colonization of S. aureus 
(219, 225).

Staphylococcus aureus and NAS virulence factors can be divided 
into two groups: (1) non-secretory or cell wall-associated structural 
parts and (2) secretory parts.

2.3.2 Non-secretory virulence factors
These are surface proteins associated with the peptidoglycan 

cell wall that help to colonize host tissues (226) during 
staphylococcal pathogenesis. Additionally, non-secretory surface 
proteins are involved in evading host immune responses, invading 
host cells and tissues, and forming physical barriers such 
as biofilms.

Staphylococcal protein A (SpA) is present in the cell walls of 
S. aureus and NAS. It binds Fcγ domains of the IgG and prevents the 
immunoglobulin-mediated removal of S. aureus from the body (227). 
It also binds the Fab of IgM cross-linking B-cell receptors, which leads 
to the programmed death of B lymphocytes (228). Consequently, 
immunoglobulins cannot effectively clear S. aureus infection due to 
the effects of protein A (229).

2.3.2.1 Biofilm formation
A biofilm is an extracellular matrix composed of 

exopolysaccharides, surface proteins, and nucleic acids (230, 231) that 
protect bacteria against host immunity and antimicrobial drugs (232–
234). Biofilms bind to the host tissue surfaces by polysaccharide 
intercellular adhesin (235). Proteases promote the detachment of 
attached bacteria and increase entry into intracellular areas or invasion 
(236). The biofilm formation by S. aureus may enhance their 
colonization of the mammary gland and protection from host 
phagocytic cells (237, 238), resulting in chronic mastitis (239–242). 
However, the role of biofilm formation in mastitis pathogenesis 
remains unresolved and needs detailed in vivo study.

A previous study on 90 NAS found that barring a few (3.3%), the 
majority (96.7%) of them had some ability to form a biofilm (243). 
Other studies also found that 90% of NAS were positive for biofilm, 
and at least 11 species were identified in each study (244–247).

Staphylococci form biofilm through different mechanisms (235) 
that vary with species and the microenvironmental niche (237). Some 
of the mechanisms include the production of polysaccharide 
intercellular adhesin (PIA), surface proteins including biofilm-
associated protein (Bap) (230, 248), slime, teichoic acids, and 
extracellular DNA (eDNA) (249–251).

The intercellular adhesin (ica) operon encodes different proteins 
(IcaA, IcaB, IcaC, IcaD, and IcaR) (235, 252, 253). Each of these 
proteins has a different function; for example, IcaR controls the ica 
operon, the induction of icaA and icaD at the same time promotes 
slime formation, and icaC encodes receptor protein (249, 250, 254). 
The presence or absence of these different ica genes in this operon also 
varies with strains. A previous study found that approximately 24.1 
and 21.4% of NAS isolates were positive for the icaA and icaD genes, 
respectively (255), whereas all S. aureus isolates (100%) were positive 
for the icaD gene (255). The majority (73.2%) of NAS were positive for 
icaA and icaD genes (256). However, the majority (81.7%) of the icaA 
and icaD positive NAS were negative for the bap gene (256). Contrary 
to S. aureus, despite being negative for icaA and icaD genes, NAS 
species form a biofilm, indicating that these genes are not always 
essential for phenotypic mechanisms (256).

Slime is an exopolysaccharide layer or extracapsular layer of some 
biofilm that increases adhesion to host cells and protects bacteria from 
opsonophagocytic killing and the effect of antibiotics but is not found 
on all biofilms (257, 258). The formation of biofilm/slime depends on 
the strain. A study on staphylococci reported that 80% of S. aureus 
produced slime and formed strong biofilms (255), whereas 
approximately 87 and 84.2% of NAS with and without slime formation, 
respectively, produced strong biofilms (255).

Biofilm-associated protein is a high-molecular-weight surface 
protein responsible for cellular aggregation and biofilm formation in 
staphylococci (259, 260). Staphylococcus aureus from cases of bovine 
mastitis may carry ica and bap genes, be positive for the ica gene but 
negative for the bap gene, or be negative for both (261). A previous 
study (261) showed that bap-positive S. aureus was more able to cause 
IMI and less susceptible to antibiotics if it produced biofilm in vitro, 
which may show the enhancing ability of Bap and associated chronic 
S. aureus IMI.

An evaluation of the link between the presence of ica locus genes, 
slime formation, and the presence of Bap protein with biofilm 
formation did not show a consistent association of biofilm formation 
with any of these factors. A study on S. aureus from cases of bovine 
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mastitis showed that all isolates tested carry icaA and icaD genes (262, 
263), most of which were slime producers (262). The presence of bap, 
icaA, and icaD was linked with biofilm synthesis. However, most 
S. aureus isolates negative for these genes were biofilm formers (264). 
Similarly, all slime-positive ones could not form biofilm in vitro (262). 
Therefore, the presence of ica genes is linked with biofilm; however, 
ica genes are not mandatory for biofilm production since some ica-
negative S. aureus can produce biofilm using different mechanisms 
(265, 266).

2.3.2.2 Role of biofilms in the pathogenesis of bovine 
mastitis

The role of biofilms in bovine mastitis is still unclear. Most studies 
on the role of biofilm in bovine mastitis were focused on the 
characterization of the biofilm-forming capability of different bacterial 
mastitis pathogens in vitro using different methods (microtiter plates 
with crystal violet staining for bacterial biomass quantification, Congo 
red Agar test, and standard tube method for biofilm formation assay) 
(116). The majority of S. aureus isolates from cases of mastitis form 
biofilm in vitro, but that may not be the case under in vivo conditions. 
The physiological characteristics of biofilm formation in vitro are 
different from in vivo, as also seen with P. aeruginosa during human 
infections (267). The role of biofilm in human infections is well known 
since the finding of bacterial aggregates in the lungs of cystic fibrosis 
patients (268) in 1977 and the first report of a medical biofilm causing 
recurrent infection in 1982 (269). Despite these findings in human 
medicine, most studies focus on in vitro characterization in veterinary 
medicine. In human medicine, biofilm is responsible for several 
diseases ranging from wound infections to lung infections, 
osteomyelitis, urinary tract infections, dental plaque, and 
endocarditis (270).

In vivo, there are interactions among bacteria, host immune 
response, and antimicrobial drugs administered for treatment, which 
is not the case under in vitro conditions. Therefore, more in vivo 
studies on dairy cows are required to determine the role of biofilm in 
the pathogenesis of S. aureus and NAS mastitis. Only two studies have 
reported biofilm formation inside the mammary glands of dairy cows 
with mastitis (271, 272). One reported the clustering of S. aureus 
bacteria in the alveolar lumen and lactiferous ducts of mammary 
glands of experimentally challenged cows using microscopy (271). 
The second study reported the presence of polysaccharide intercellular 
adhesions (PIA) in the swabs obtained from different parts of the 
mammary glands of slaughtered dairy cows with S. aureus mastitis 
using fluorescence microscopy (272). One study found that S. aureus 
biofilm had less invasive ability in mammary epithelial cells compared 
to planktonic S. aureus cultures, and the biofilm culture triggered less 
cellular response than the planktonic cultures. Both planktonic and 
biofilm forms of culture triggered the induction of IL-6 by mammary 
alveolar cells, which could be an anti-inflammatory response (273). 
This is in line with the role of biofilm in human disease, where biofilms 
do not induce any specific immune responses (274) when the cell 
density is low to avoid detection by immunity but increase expression 
of the virulence factors (275) when cell density is high. However, in 
vitro studies showed no difference in host cell invasion between 
biofilm former and non-biofilm former (276, 277). The most 
important question is how biofilm resists host immunological 
responses (278). More detailed in vivo studies in dairy cows are 
needed to determine the role of biofilm in the pathogenesis of bovine 
mastitis. Currently, the most preferred diagnostic method to detect 

bacterial biofilms in tissue is peptide nucleic acid fluorescence in situ 
hybridization (PNA-FISH), which uses probes that hybridize to 
bacterial ribosomal RNA that can be  detected by confocal laser 
scanning microscopy (CLSM). This is a sensitive method preferred in 
the research on biofilm in humans (279–283). This method can 
be used on mammary glands in dairy cows.

Detailed knowledge of the genotypic and phenotypic requirements 
of S. aureus and NAS to produce biofilm, especially in vivo, may 
improve our understanding of the pathogenesis of staphylococcal IMI 
and may allow us to develop methods to disintegrate or decrease 
biofilm formation or increase its removal.

2.3.2.3 Coagulase, von Willebrand factor binding protein, 
and staphylokinase

These staphylococcal proteins serve as cofactors to activate host 
zymogens (284). Coagulase (Coa) and von Willebrand factor 
binding protein (vWbp) interact with prothrombin, causing 
activation of zymogen (inactive form) that converts fibrinogen, a 
plasma protein produced by the liver, to fibrin. Fibrin catalyzes 
blood clot formation, inhibiting bacterial killing by phagocytic 
cells (284–286). Staphylokinase (Sak) is encoded from lysogenic 
phage and interacts with plasmin in serum, leading to the 
conversion of plasminogen to plasmin, resulting in the lysis of 
fibrin clots (287).

2.3.3 Staphylococcal secretory (secreted) 
virulence factors

Exotoxins are secreted toxins that represent approximately 10% 
of the total secretory product of S. aureus (288). The majority of 
S. aureus isolates from cases of bovine mastitis produce exotoxins such 
as hemolysins, nucleases, proteases, lipases, hyaluronidase, and 
collagenase (289). Staphylococcal exotoxins can be  divided into 
cytotoxins and superantigens. Cytotoxins damage host cell 
membranes, causing target cells lysis and inflammation. Superantigens 
induce increased cytokine production and trigger B and T 
cell proliferation.

2.3.3.1 Cytotoxins or cell membrane-damaging toxins
Staphylococcal α-toxin (hemolysin-α or Hla) is a 33 kDa pore-

forming toxin encoded by the hla gene from chromosome through agr 
system and causes membrane damage and cell lysis (290, 291). It 
causes the lysis of different cells (e.g., erythrocytes, platelets, 
endothelial cells, epithelial cells, and certain leukocytes) (292, 293). It 
binds to A Disintegrin and metalloproteinase domain-containing 
protein 10 (ADAM-10) receptors on cells that determine its species 
and cell type specificity (294). In mice, it causes cleavage of 
E-Cadherin, which is the junction protein, and the loss of the epithelial 
barrier (295). β-toxin (hemolysin-β or Hlb) is non-pore forming but 
causes hydrolysis of the sphingomyelin component of the cell 
membrane (leukocytes and red blood cells) (296). γ- toxin 
(hemolysin-γ or Hlg) is a bi-component (S [slow, HlgA or HlgC and 
F fast, HlgB]) pore-forming toxin encoded from core genome where 
F binds to phosphatidylcholine of cells, and S binds to cell membranes 
causing lysis (macrophages, neutrophils) and monocytes (297, 298). 
δ-toxin (hemolysin-δ or Hld) causes lysis of neutrophils, monocytes, 
and degranulation of mast cells (299). All (α, β, and γ) toxins require 
specific receptors, but δ-toxin does not require a specific receptor to 
cause cell lysis and is believed to belong to phenol soluble 
modulins (300).
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Phenol soluble modulins (PSM) are amphipathic (both lipophilic 
and hydrophilic) peptides encoded from psmα and psmβ operons on 
the chromosome and induced by the agr system (298). The PSM 
causes cell death, biofilm production, and modulation of immunity 
(284). α- and β- hemolysins and PSM induce breaks in the cell 
membranes of the immune cells and trigger inflammatory reactions 
(301). A previous study showed that approximately 69% of hemolytic 
S. aureus isolates are positive for β-toxin, which may indicate its effect 
on virulence and pathogenicity (233). The α- and β- hemolysins 
enhance invasion and exacerbate the spread and transmission of 
infection (233). The ability to invade cells and stay in the intracellular 
area enhances chronic recurrent infection (235).

Leukocidins are 32–35 kDa toxins encoded on the core genome 
or phage (298) that cause damage to leukocytes such as macrophages, 
neutrophils, monocytes, and dendritic cells (227, 236, 302). LukMF is 
encoded by the temperate phage ΦSa1 and is present in most S. aureus 
isolates of bovine, ovine, and caprine mastitis cases (303, 304). It binds 
to the C-C chemokine receptors, also known as beta-chemokine 
receptors (CCR1, CCR2, and CCR5) on neutrophils and macrophages, 
leading to cell lysis (293, 305).

2.3.3.2 Staphylococcal superantigens
Staphylococcal superantigens bind to T cell receptor (TCR) Vβ 

domains on T cells with major histocompatibility complex (MHC) 
class II protein on antigen-presenting cells (APC) that result in 
activation and proliferation of T cells without antigen processing and 
presentation (299). T-cell superantigens are exotoxins produced by 
S. aureus that range between 19–30 kDa and are resistant to heat, 
proteolysis, and desiccation (306). There are also superantigen-like 
proteins, previously called staphylococcal enterotoxin-like proteins 
(307). However, because of their lack of emetic but strong mitogenic 
properties, they were renamed staphylococcal superantigens (308). 
They are mainly involved in immune evasion (309). They are broadly 
divided into staphylococcal enterotoxins (SEs), Staphylococcal 
enterotoxin-like superantigens (SE-ls), and toxic shock syndrome 
toxin-1 (TSST-1).

Enterotoxins are water-soluble, stable extracellular proteins that 
are resistant to heat and enzymatic degradation (310–312). 
Enterotoxins include SEA, SEB, SECn, SED, SEE, and SEG (313) that 
bind to receptors on the host cell surface and trigger a series of 
signaling and responses inside the cell, causing emesis (308). They are 
superantigens that bind to MHC-II outside antigen binding site and 
to T-cell receptors on CD4+ cells and trigger potent polyclonal 
activation of T cells and increased release of inflammation mediating 
cytokines that lead to shock and death (236).

The presence of enterotoxin genes and the protein production 
capability of NAS species are still being studied, and there is a lack of 
understanding of their enterotoxigenic effects (314). NAS from bovine 
IMI tends to have variable SE genes that are continuously being lost 
with proceeding generations compared to S. aureus isolates containing 
SE genes (315, 316).

Staphylococcal food poisoning is intoxication due to the 
consumption of food that contains preformed enterotoxins from 
staphylococci that multiply in food that is inappropriately stored or 
handled (317–319). The first staphylococcal food poisoning was 
reported in 1884 in Michigan (US) by Vaughan and Sternberg due to 
the ingestion of contaminated cheese (320). Staphylococcal 
enterotoxins are produced over different temperatures, pH, salt 

concentrations, and water content (321). S. aureus can be killed by 
heating the food, but the SE remains active and can cause food 
poisoning (310). Staphylococcus aureus grows well in milk and milk 
products, which is a main source of human infection (322).

Two major factors for S. aureus multiplication and growth are 
improper milk storage temperature and unhygienic handling of 
foodstuff (322, 323). Higher starch and protein in food, pH, water 
activity, and warm temperature increase enterotoxin production (322). 
S. aureus can survive in a pH of 4.5–7.0, a low water activity of 0.86, 
and a salt concentration of up to 20%, which would normally kill 
bacteria (324, 325). Lower pH decreases S. aureus attachment to solid 
surfaces, subsequently decreasing the ability to colonize and cause 
infection (326).

The sea gene is present in temperate bacteriophages, and when 
bacteriophages infect bacteria, it becomes integrated into the bacterial 
chromosome as a prophage and remains as part of the genome (327). 
Under stressful conditions of improper food preservation, the 
prophage gets activated, multiplies the phage genome, and produces 
new bacteriophages (328). To avoid the multiplication of S. aureus, 
milk must be refrigerated at all times, from production to consumption 
(310, 329). Milk should be pasteurized to kill pathogenic bacteria in 
milk, but pasteurization does not detoxify already produced 
enterotoxins (330, 331).

Milk from cows with subclinical mastitis due to NAS, if consumed, 
can affect human health in different ways (113, 150). Therefore, the 
consumption of raw milk must be discouraged, and pasteurization of 
milk is recommended for safety and improved shelf life (146). Even 
though proper pasteurization is expected to kill pathogenic bacteria, 
the mobile genetic elements (e.g., plasmids) mediated resistance genes 
in bacteria may not be  destroyed by pasteurization and could 
transform the carrier bacteria to become viable but nonculturable 
(VBNC) form (332, 333). Toxins produced by NAS due to 
inappropriate cooling during manufacturing and post-processing 
contamination are resistant to extreme heating or cold and can cause 
foodborne intoxication (146, 150).

The roles of different virulence factors of S. aureus and NAS in the 
pathogenesis of mastitis in dairy cows require detailed study since 
most of S. aureus and NAS isolates from cases of bovine mastitis are 
known to carry these virulence genes, but their expression and 
production of proteins and their phenotypic effects or exact roles in 
mastitis are not well defined.

2.4 Intracellular survival of Staphylococcus 
aureus

S. aureus can internalize into and multiply in different types of 
phagocytic and non-phagocytic cells (206). Viable S. aureus has been 
demonstrated in macrophages from milk samples of cows with 
mastitis (206). S. aureus can persist in the intracellular area of immune 
cells of different species (334, 335). However, the detailed molecular 
mechanisms of how S. aureus survives in the intracellular area are not 
fully defined. One of the mechanisms believed to be responsible for 
the intracellular survival of S. aureus is the induction of the formation 
of autophagy, which leads to the formation of autophagosomes that 
cannot bind to lysosomes to form autolysosomes that destroy S. aureus 
(334). Autophagy is a host defense mechanism or a eukaryotic cell’s 
homeostatic mechanism for survival during cellular stress and for 
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destruction and clearance of intracellular pathogens (336, 337). It has 
been shown that infection of bovine phagocytic cells by S. aureus 
induces the formation of autophagy, and the autophagosomes increase 
the number of viable intracellular S. aureus (334). Other studies have 
also shown that S. aureus could utilize autophagy to survive in cells 
(338, 339). Similarly, autophagy was induced in bovine mammary 
epithelial cells challenged by S. aureus, but the autophagic flux was 
obstructed, leading to an increased number of intracellular S. aureus 
(340). Inhibition of the formation of autophagosomes in bovine 
mammary epithelial cells improved the clearance of intracellular 
S. aureus, whereas enhancing the formation of autophagosomes with 
the inhibition of the degradation of the autolysosomes increased the 
number of S. aureus inside bovine mammary epithelial cells (340). 
Several pathogens have developed mechanisms to avoid or even utilize 
the autophagic process to persist and multiply in host cells (341). 
Some studies show that S. aureus internalized into intracellular areas 
and remains in a membrane-bound vacuole, being converted to small 
colony variants (SCVs) with atypical small morphology and dormant 
biochemical properties, enabling it to survive in intracellular areas 
protected from host defenses and effects of antimicrobial drugs (342, 
343) in dairy cows with a history of chronic intramammary S. aureus 
infection (78, 344). Cytotoxic S. aureus strains internalized into 
epithelial cells and could exit from the phagosome into the cytosol, 
where they multiplied and employed staphylococcal cysteine proteases 
and induced host cell death (219). The authors also reported the 
presence of serotype eight capsular polysaccharides (Cap), adenosine 
synthase A (AdsA), cysteine proteases (staphopain B SspB, and 
staphopain C, SspC), which are responsible for biofilm production 
and intracellular survival (219, 225) in all isolates. S. aureus can switch 
its phenotypes between wild types and small colony variants and 
survive inside cells, causing persistent intramammary colonization 
leading to recurrent bovine mastitis.

3 Host defense against staphylococcal 
mastitis

3.1 Natural defense

3.1.1 Physical barriers
The teat canal opening is closed by the smooth muscle sphincter 

or Rosette of Furstenberg (345, 346) and keratin plug, a wax-like 
product of stratified squamous epithelial cells in the teat canal (346). 
Keratin contains bacteriostatic fatty acids (347) and fibrous structural 
proteins (348–350). Fibrous proteins are produced by stratified 
squamous epithelial cells in the teat canal that bind to bacteria and 
induce changes in the cell wall that make them prone to osmotic 
pressure and death (346). Fibrous proteins inhibit Streptococcus 
agalactiae and Staphylococcus aureus (351) and are functionally 
similar to bovine neutrophils (352). Keratin plug breakage (353) or 
interference with keratin formation due to damage by a faulty milking 
machine (354) increases bacterial invasion and colonization (355). 
After milking, the teat canal remains open for about 2 h, and during 
this time, bacteria can enter the intramammary area (356–358).

Despite the presence of these physical barriers (sphincter muscle 
and keratin plug) and bacteriostatic fatty acids and scleroproteins, 
S. aureus can gain access to intramammary areas and cause IMI 
during dry and lactation periods, as confirmed by previous studies 

(160, 359) or remain alive for several days after being infused a few 
millimeters inside the teat canal (360–362). The contaminant 
microorganisms from milking liners or milkers’ hands can 
be propelled from the open teat area into the teat cistern by fluctuating 
milking machine pressure, which is believed to be the major way for 
the spread of contagious mastitis pathogens to the proximal part of the 
mammary glands (363).

3.1.2 Mammary gland microbiome and long 
non-coding RNA (lncRNA) and microRNA 
(miRNA) in milk

Mastitis has long been associated with a variety of bacterial 
pathogens. However, approximately 10–40% of clinical mastitis cases 
yield “no significant growth” following routine bacteriologic culture. 
Current advances in sequencing technology allow the comparison of 
culture-negative quarters with clinical mastitis to that of clinically 
normal quarters (364). Recent sequencing studies have revealed that 
milk, once considered sterile, is actually home to a complex microbial 
community with great diversity (365). Normal milk hosts a diverse 
community of non-culturable bacteria. Several bacterial species were 
differentially abundant in the clinical mastitis samples compared to 
the control quarters. Some culture-negative clinical cases have 
demonstrated almost 100% abundance of some species (e.g., 
Mycoplasma sp.). Further investigation is needed to determine the 
roles of mammary gland microflora in SCC and the physiologic basis 
for these associations, as well as to evaluate the microbial dynamics 
during and following IMI. Given the increasing recognition of the 
complex and important role of microbiota in host health, an analysis 
of the microbiota under health and disease conditions would provide 
important information on the role of microbiota in udder health.

Long non-coding RNA (lncRNA) is a novel endogenous 
non-coding RNA molecule with a length of more than 200 nucleotides 
(nt) (366) that is involved in transcriptional and epigenetic regulation 
of human and animal genes (367, 368). lncRNAs are emerging as 
critical regulators of gene expression in the immune system (369). 
lncRNAs are expressed in a highly lineage-specific manner and control 
the differentiation and function of innate and adaptive immune cell 
types (369). In the body’s immune response, lncRNAs regulate the 
occurrence and development of various inflammatory diseases, 
including bovine mastitis. Wang et al. (370) identified differentially 
expressed lncRNAs in the mammary epithelial cells induced by E. coli 
and S. aureus using high-throughput sequencing. Currently, only four 
lncRNAs —lncRNA H19 (371–373), lncRNA TUB (370), lncRNA 
XIST (374), and LRRC75A-AS1 (375)—have been studied with 
respect to their role in bovine mastitis.

3.2 Immunity

Mammary gland infection by bacteria or fungi induces immune 
responses (376, 377). Two types of immunity are induced by infection: 
innate and adaptive (378). Both are very important for the immune-
mediated control of invading pathogens in mammary glands.

3.2.1 Innate immunity
The skin, teat sphincter, and teat canal membranes serve as the 

first line of defense. Once the physical barriers are compromised, 
innate immunity gets involved. The teat canal tissue expresses toll-like 
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receptors (TLRs) and secretes cytokines and antimicrobial peptides 
(379, 380). Innate immunity is divided into cellular (Leukocytes: 
neutrophils, macrophages, lymphocytes, and mammary epithelial 
cells) and humoral (Lactoferrin, transferrin, lysozyme, 
lactoperoxidase, and myeloperoxidase, complement systems, 
cytokines, chemokines, host defense peptides) components (346, 381).

3.2.1.1 Cellular
Neutrophils are the most abundant (80%) leukocytes during IMI, 

and they are recruited by innate immunity (382). Neutrophils are 
recruited to the site of infection following chemical signals 
(chemoattractants), which include C5a, C3a, and IL-8 from the infection 
site (383, 384). The production of chemoattractants can be triggered by 
staphylococcal lipoteichoic acid (LTA) that attracts neutrophils and 
monocytes to the infection sites (385). Bone marrow produces 
neutrophils, which enter blood circulation and circulate through blood 
under normal circumstances. When there is IMI, their production is 
increased, and they are recruited from blood circulation into the infection 
site following chemoattractants. At high concentrations of 
chemoattractants, neutrophils slow down their movements through 
blood by binding with their cell surface receptor to the ligand on 
endothelial surfaces and move out of the blood into the infection site by 
squeezing themselves (diapedesis) between endothelial cells (386).

Some S. aureus strains can avoid getting killed by neutrophils 
(387, 388) and stay inside phagocytic cells. In that case, the natural 
killer cells (NK) or cytotoxic T cells kill infected phagocytic cells, 
releasing S. aureus for another possibility of killing by phagocytic cells 
(389). If S. aureus is not controlled by innate immunity, adaptive 
immunity takes over the battle through antibodies specifically 
produced against S. aureus that bind to bacteria and clear them by 
opsonophagocytic killing of phagocytic cells. Previous studies (390–
392) have demonstrated that IL-8 is the most important 
chemoattractant for neutrophils-based quick response. A quick and 
effective cellular response is required to control S. aureus IMI from 
developing into mastitis.

3.2.1.2 Humoral
Lactoferrin deprives the infected area of iron, leading to oxidative 

stress, preventing bacterial multiplication and growth, and assisting 
the survival of host cells (393).

The complement system is a series of proteolytic processes 
involving 30 plasma and cell surface proteins that lead to the 
production of proinflammatory mediators, opsonins, and membrane 
attack complexes (394). There are three complement pathways that 
clear invading pathogens. These include (1) classical, (2) lectin, and 
(3) alternative systems (395). The C3a and C5a are anaphylatoxins that 
induce histamine, vasodilation, and inflammation to eliminate or 
remove pathogens (395). The membrane attack complex (MAC) 
breaks holes, or pores, into the invading bacteria’s cell membranes, 
causing irreparable damage (396).

Antimicrobial peptides (AMPs) are small peptides of 10 to 60 
amino acids that are commonly present in animals (mammals, 
amphibians, insects, aquatic), plants, and microorganisms with a 
broad spectrum of antimicrobial activity on bacteria, fungi, parasites, 
and viruses (397, 398). Almost all AMPS are cationic, but some are 
anionic (350, 398).

Antimicrobial peptides are also produced by different tissue cells, 
such as PMNs, macrophages, and mucosal epithelial cells. 

Antimicrobial peptides that are present in cattle are defensins, 
cathelicidins, and anionic peptides (399). Domestic animals have 
many cationic AMPS and a few anionic AMPS (400). Other 
mammalian AMPS are histatins (401) and dermcidin (402). 
Antimicrobial peptides kill microbes by different mechanisms, 
including the induction of ion channel formation (e.g., defensins) 
(403) and flocculation of intracellular contents (e.g., anionic peptides) 
(404), thereby affecting transport and energy metabolism (e.g., 
bactenecins) (405, 406).

β-defensins are AMPS mainly produced by polymorphonuclear cells 
(407–409). Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) induce 
the production of β-defensins by mammary epithelial cells (410).

Type 3 immunity – Mastitis is usually caused by bacterial 
infections such as streptococci, staphylococci, and coliform bacteria, 
which is characterized by massive recruitment of neutrophils into 
mammary glands. Consequently, cell-mediated immunity, especially 
type 3 immunity, is the most likely intramammary defense mechanism. 
However, this mechanism is not well investigated. Efforts toward 
improving intramammary immunity against bacterial mastitis 
pathogens through better vaccine design that enhances type 3 immunity 
can be  beneficial in controlling and understanding effective 
intramammary immunity.

Recent studies have shown that both innate and adaptive cell-
mediated type 3 effector immunity have the capability to function as 
effectors on epithelial and mucosal surfaces (411, 412). Type 3 
immunity is characterized by the recruitment of neutrophils, 
production of antimicrobial defenses by epithelial cells, involvement 
of type 3 innate lymphoid cells (ILC3s), expression of cytokines 
(IL-17A, IL-17F, IL-22), and transcription factors (retinoic acid-
related orphan receptors γt and α -Rorγt and Rorα) (412, 413). Cells 
that are responsible for type 3 immunity include ILC3s, γδ T cells, 
CD4+ helper T cells (Th17), and CD8+ cytotoxic T cells (Tc17) (414). 
IL-17A-producing CD4+ cells were isolated from ruminants, and the 
Th17 cells were purified and cultured in vitro (258, 415, 416). The CD4 
and CD8 lymphocytes with characteristic features of memory 
lymphocytes were detected in the milk from healthy and infected 
udder quarters (392, 417). The RORγt-expressing and IL-17A-
producing CD4+ T cells were detected in mouse mammary glands, 
but CD8+ T cells expressing RORγt were not yet detected (418, 419). 
The innate immune system receptors [e.g., Toll-like receptors (TLR); 
TLR1, TLR2, TLR3, TLR4, and dectin-1] expressing T 17 cells and γδ 
T cells that can respond to mammary associated molecular patterns 
(MAMPs) were detected (420, 421). They could also secrete IL17A 
and IL-22 without interacting with the T-cell receptor (TCR) in the 
presence of IL-1β and IL-23. Bovine WC1+ γδ T cells, CD4+ (T17), 
and CD8+ T cells produce IL-17A (415, 416, 422, 423). In the 
peripheral tissues, a majority of the bovine γδ T cells are WC1- and 
functionally different from the WC1+ cells (420). Specific γδ T cells 
were shown to be recruited into milk during infection (391, 424). The 
ILC3 reside in the parenchymal tissues and mucosal-epithelial 
surfaces, where they function as effectors of cell-mediated innate 
immunity to protect against infection by pathogens and regulate 
inflammation and homeostasis (425). Bovine ILCs have not been 
detected yet, but human and mice ILCs have been shown to exist, and 
human ILCs can respond to pathogen-associated molecular patterns 
(PAMPs), whereas mice ILCs cannot. The ILC3 are stimulated by 
IL-23 and IL-1α or IL-1β and produce effectors such as IL17A, IL-17F 
and IL-22 (425).
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3.2.2 Adaptive immunity
Adaptive (acquired) immunity is a more advanced immune system 

that exists in higher vertebrates (426, 427). It consists of humoral 
(immunoglobulin-mediated) and cellular (cell-mediated) immunity. 
The innate immunity creates the basis for the induction of adaptive 
immunity during phagocytosis, processing, and presenting of antigens 
of infecting staphylococci to the immune system (428). Due to this 
process, adaptive immunity takes approximately a week to respond to 
an infecting pathogen. Adaptive immunity involves antigen processing 
and presentation by antigen-presenting cells (APCs). An antigen can 
be processed and presented to the naïve T cells circulating in the body 
by binding to major histocompatibility molecule I (MHC-I) or (MHC-
II). All nucleated body cells can process and present antigens generated 
in the intracellular area coupled to MHC-I molecule, but only 
professional antigen-presenting cells can process and present 
extracellular antigens coupled to MHC-II molecules. There are three 
types of professional antigen-presenting cells. These are macrophages, 
B-lymphocytes, and dendritic cells. The mature naïve T cells released 
from the thymus and circulating in the blood frequently exit from 
blood circulation into regional lymph nodes at high endothelial venules 
where they bind to foreign antigen attached to MHC-II by its T cell 
receptor (TCR) and become activated T helper cells (e.g., Th1 or Th2 or 
Th17). The helper T cells activate B-cells to become antibody-producing 
plasma cells or activate other T-cells to become cytotoxic effector cells 
depending on the type and location of antigen in the body (429).

To prevent the body from future attack by the same etiological agent, 
the adaptive immune system produces memory T cells (430) and B cells. 
For antigens generated in the intracellular area, the helper T cells activate 
CD8+ T cells to become effector cytotoxic T cells that kill infected cells. 
For extracellular pathogens, the T helper cells activate B-cells to become 
antibody-producing plasma cells. The antibody binds to the pathogen 
and leads to its removal by opsonophagocytic mechanism (431) or block 
bacterial binding to host tissue surface receptors (382).

Adaptive immunity produces antibodies or activated cytotoxic T 
cells that remove pathogens and memory cells (T and B cells) that 
keep the information about a specific pathogen for quicker response 
in case of future attack by the same pathogen.

4 Host-pathogen-environment 
interactions as risk factors for 
staphylococcal mastitis

There are many host, pathogen, and environmental risk factors for 
mastitis. The host risk factors include age/parity, lactation stage, 
somatic cell count, heredity, anatomical structure of the udder and 
teat, local defense mechanisms or immune competence, colonization 
with less pathogenic pathogens, and the presence of other diseases 
(432). Parity is one factor; a cow on its third lactation or greater is 
prone to developing clinical mastitis (433). An increase in the number 
of lactations increases the chance of exposure to mastitis pathogens 
and deterioration of previous infections (433). Cows are more likely 
to develop clinical mastitis (CM) during the first 30 days postpartum, 
with >50% of cases of mastitis occurring during this period than the 
remaining days of lactation (434). However, 80% of the CM cases 
occurring after 30 DIM were due to new IMI (434).

Pathogen risk factors include the type of pathogen (staphylococci), 
volume, genotype of the strain (74, 435–438), ability to form biofilm 

(439–441), formation of small colony variant (78, 343), frequency of 
exposure, methicillin-resistant S. aureus (MRSA) (442), attachment 
and internalization ability (79, 271), and resistance to antimicrobials 
(443, 444). The type of bacterial species affects infection duration, 
severity, treatment outcomes, and milk yield. More than 50% of 
recurring CM cases are due to the same pathogen that caused mastitis 
in the same animal previously (445).

The environmental and/or managemental risk factors include 
faulty milking machines, udder injury, hygiene, climate, nutrition, the 
season of the year, housing, and biosecurity measures (446). The 
prevalence of mastitis can be affected by post-milking teat dipping, 
clean and dry bedding, cleaning teat orifice with antiseptic solution 
before giving intramammary infusion, milking cows with CM last, 
good maintenance for the milking machine, preventing udder trauma, 
and climate. Warm and humid climates support the multiplication and 
growth of bacteria and the risk of IMI and mastitis (446).

Staphylococcus species vary in their ability to induce inflammatory 
reactions in the mammary glands, and SCC with the highest counts is 
usually caused by S. aureus. However, other NAS species such as 
S. chromogenes, S. hyicus, S. agnetis, S. simulans, and S. xylosus have also 
been reported to cause increased SCC similar to S. aureus (87, 119). 
S. simulans, S. agnetis, and S. hyicus cause robust inflammatory 
responses (101, 104, 105, 107). S. simulans is more resistant to 
phagocytic killing, whereas S. chromogenes can be easily phagocytosed 
and killed. S. simulans is usually isolated from the milk of cows with 
mastitis (101, 104–106). In field studies, S. simulans caused more 
clinical mastitis than others (101, 106), and experimentally-induced 
mastitis by S. simulans caused a stronger inflammatory response than 
S. epidermidis (121). Similarly, another study found that S. chromogenes 
originally isolated from milk with mastitis induced more inflammatory 
reactions than S. chromogenes from the teat apex (122). In another 
study, S. epidermidis and S. haemolyticus caused high SCC (123). In 
some studies, a slight increase above 100,000 cells/mL was reported for 
quarters infected with NAS (109, 124), whereas in another study, SCC 
varied from as low as 70,000 cells/mL to as high as 123,000 depending 
on the species of NAS involved (20). Some NAS species (S. agnetis, 
S. hyicus, S. simulans) caused clinical mastitis more frequently than 
others (101, 104, 105), whereas some others (e.g., S. epidermidis) 
caused mild inflammatory responses than S. simulans (121). Based on 
molecular data, S. simulans was usually isolated from milk with 
mastitis, but S. chromogenes can be associated with subclinical mastitis 
as well as skin microbiota (24, 100). Despite observed differences in the 
opsonophagocytic killing between S. simulans and S. chromogenes, 
both can usually exist in the mammary glands throughout lactation 
and be responsible for increased SCC (103, 126). Under controlled 
experimental infection (121), the majority of S. simulans induced 
chronic infection. S. agnetis was more phagocytosed by murine 
macrophages than S. simulans (125) but more resistant to killing, 
similar to S. simulans and S. aureus (125). S. aureus usually caused 
subclinical mastitis that often became chronic with a moderate increase 
in milk SCC. NAS occasionally caused clinical mastitis with SCC, 
usually ranging in the low to moderate increase, but could cause 
significantly increased high SCC (22).

The pathogenesis mechanisms responsible for the differences 
between NAS and S. aureus are still unknown and need further 
investigation. In some studies, S. simulans was different from other 
NAS in opsonophagocytic killing (125). However, other studies that 
used neutrophils instead of macrophages, which were recruited to the 
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mammary gland after macrophages initiated an inflammatory 
response, reported significant differences in opsonophagocytic killing 
among S. aureus strains (447). All observed differences were not 
correlated with the type of mastitis (clinical or subclinical) (125). 
There was a difference in the opsonophagocytic killing of some NAS 
by murine macrophages (125). Staphylococci can resist 
opsonophagocytic killing by the formation of capsules and other 
extracellular polysaccharides (130–132). There are differences among 
NAS isolates in their susceptibility to opsonophagocytic killing by 
macrophages (125). These differences could be due to yet unknown 
novel virulence factors. Therefore, further investigation is required.

5 Pathogenesis of staphylococcal 
mastitis and clinical manifestation

S. aureus and NAS enter the intramammary area either by 
progressive colonization from the teat apex or propelled into the 
intramammary area during milking machine vacuum fluctuations 
(80). Staphylococcus aureus binds to the α-5β1 integrin on the 
mammary epithelial cell surface through fibronectin-binding proteins 
(FnBPs) (448). The presence of FnBP is vital for adherence, but its 
expression may vary with S. aureus strains (448). This initial adherence 
leads to actin polymerization, cytoskeleton formation, and entry of 
bacterium into the host cell (448).

Staphylococcal mastitis affects physical and chemical properties 
and microbial status in milk due to pathological changes in the udder 
tissue (449). These changes in milk and gland tissue are characterized 
by visible abnormal local inflammatory signs in milk and gland tissue 
or systemically in the animal body (15). Staphylococcus aureus mastitis 
can manifest as peracute, acute, or chronic clinical forms or subclinical 
forms. Subclinical S. aureus mastitis is the most common udder 
infection in dairy cows (213), but S. aureus is also one of the most 
common causes of clinical mastitis in dairy cows (450, 451). Clinical 
S. aureus mastitis varies from mild changes in milk to peracute 
gangrenous mastitis with severe systemic manifestations and death of 
infected cows (213). Severe cases occur occasionally in dairy cows 
(452–454). Severe peracute gangrenous mastitis has been reported in 
other species, including sheep (217), goats (455), rabbits (456), and 
humans (457). Clinical S. aureus mastitis is characterized by swollen, 
red, hot, and painful udder with total loss or reduced milk yield (359). 
Subclinical S. aureus mastitis does not show clinically visible abnormal 
inflammatory changes in the milk and/or gland tissues but reduces 
milk yield and quality. The occurrence of SCM is 15–40 times higher 
than CM (458). S. aureus mastitis is usually subclinical and chronic, 
with low cure rates even with antibiotic treatment (89).

Acute and peracute S. aureus mastitis is manifested by sudden 
onset with the swollen udder, fever, and purulent inflammation. The 
sudden onset during the first few days after parturition may develop 
into gangrene and is highly fatal. Local clinical mastitis may develop 
into systemic acute or peracute mastitis manifested by increased 
temperature, pulse, and respiratory rates, anorexia, toxemia, muscle 
weakness, ruminal stasis, and dehydration (459). Chronic S. aureus 
mastitis is manifested by high SCC, gradual inflammatory process, 
necrosis, fibrosis, atrophy of the udder, decrease in milk production, 
occasional clots in milk, and watery milk. Chronically infected cows 
must be  culled before the infection spreads through the whole 
herd (215).

6 Diagnosis of staphylococcal mastitis

6.1 Clinical signs

Clinical mastitis causes damage to the blood-milk barrier in the 
gland epithelial lining and breaks tight junctions, causing the leakage of 
blood, cells, and other extracellular fluid components (460) into milk 
and udder tissue, resulting in visible abnormal changes in milk and 
mammary gland tissue as clinical signs (460). Leukocytes, especially 
neutrophils, are recruited to the gland to fight off infection. The fight 
results in dead bacteria, mammary gland cells, and tissue forming 
purulent inflammatory fluid or pus that are usually seen when foremilk 
is stripped out prior to milking. The influx of fluid and white blood cells 
results in a swollen gland, and the increased flow of blood to the infected 
area causes redness/hyperemia and increased heat on the gland tissue 
surface. The gland tissue becomes painful to touch due to increased 
pressure on local nerve fibers, and the death of milk-producing cells 
leads to decreased or loss of milk yield, which altogether constitute 
cardinal signs of inflammation or mastitis (460). Most studies consider 
NAS species as minor pathogens that cause only a slight increase in SCC 
and mild clinical mastitis (CM) (96, 142–145). However, differences 
among species are not well defined and understood.

6.2 Bacteriological culture

Bacteriological culture is a good method for diagnosing S. aureus 
IMI. However, because of the cyclical shedding of S. aureus through milk, 
more than two consecutive milk samples are required to increase the 
sensitivity of the culture result (461, 462). Individual quarter milk culture 
has higher sensitivity (463) than composite milk culture, but the sensitivity 
of bacterial culture is affected by the type of sample (individual or 
composite), volume, and time interval of repeated samplings. Individual 
quarter milk sampling at one-day intervals with 0.1 mL volume culturing 
separately is expected to have sensitivities of 90 to 95%, whereas individual 
quarter milk sampling at three or four-day intervals with 0.1 mL volume 
culturing separately is expected to have sensitivities of 94 to 99%. Daily 
individual quarter milk culturing separately provides a sensitivity of 97% 
and a specificity of 97 to 100%.

S. aureus in milk samples from clinical mastitis ranges between 104 
and 105 CFU /mL, but only one colony needs to be  positive (464). 
However, S. aureus and NAS can be isolated from udder quarter milk 
samples of dairy cows without an increase in SCC (465, 466). Subclinical 
and clinical mastitis cases due to NAS had 103–104 and 105–106 CFU/mL 
of bacterial counts, respectively (18). A milk sample containing at least 10 
NAS or 1,000 CFU/mL of milk with SCC > 100,000 cells/mL is considered 
subclinical mastitis. Composite milk culture increases the number of false-
negative results than individual quarter milk culture; however, culturing 
500 μL than 10 μL increases sensitivity. Reports from different studies 
indicated that freezing milk samples had no effect on S. aureus count or 
increased count because of cell death and release of intracellular bacteria 
(467–469). Staphylococci are differentiated from other gram-positive 
cocci, especially streptococci, by positive coagulase and catalase tests. 
S. aureus may cause double hemolysis on blood agar characterized by an 
outer zone of incomplete hemolysis due to β-hemolysin with an inner 
zone of complete hemolysis due to α-hemolysin (470, 471), but the 
production of hemolysins varies with strains (471). A tube coagulase test 
is an important test, and S. aureus is coagulase-positive with 100% 
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specificity within 24 h. Coagulase-positive Staphylococcus species can 
be differentiated by matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF MS) or inoculating a colony from 
blood agar plate with hemolysis after 24 h into S. aureus CHROMagar 
plates; mauve to rose colonies (470) is a positive diagnosis for S. aureus. 
NAS isolation and individual pure colonies can be obtained following 
National Mastitis Council Guidelines (472), and each pure colony is 
identified at the species level by MALDI-TOF MS (96, 473).

6.3 MALDI-TOF MS

The MS principle involves ionizing chemical compounds to 
generate charged molecules and measure their mass-to-charge ratio. 
Such molecular “signatures” can be  used for rapid bacterial 
identification from isolated colonies. It can differentiate S. aureus from 
the other coagulase-positive Staphylococcus species (474–476). In a 
previous study testing 152 staphylococcal species, 99.3% were 
identified correctly (477). Another study found that the MALDI-TOF 
MS achieved 100% specificity and sensitivity when characterizing 
coagulase-positive and negative strains of staphylococcal species 
isolates (478). The limitation of MALDI-TOF MS is the lack of 
non-clinical isolates in the comprehensive database for comparison, 
for example, cases of NAS mastitis (474).

6.4 Somatic cell count

A healthy individual quarter has SCC < 100,000 cells/mL, and an 
individual quarter infected with minor pathogens has SCC > 100,000 cells/
mL, whereas an individual quarter infected with major pathogens has 
SCC > 350,000 cells /mL. If composite milk (from 4 quarters of a cow) 
SCC < 200,000 cells/mL, milk production loss is not expected or minimal, 
but a few quarters may have an infection (479, 480). The bulk tank SCC 
threshold of ≤200,000 cells/mL of milk is used to determine high-quality 
milk that qualifies for premium milk sale price. The International Dairy 
Federation considers an SCC > 200,000 cells/mL as a case of subclinical 
mastitis regardless of any determination of the presence of 
microorganisms. In addition to monitoring SCC at bulk tank milk level 
to determine high milk quality that can be  sold at premium prices, 
individual cow SCC is used to identify and treat or segregate specific 
subclinically infected animals to continue to ensure high milk quality and 
low transmission of pathogens during milking.

Different indirect testing methods can detect the presence of an 
inflammatory response in milk samples. These include the Sodium 
Lauryl Sulphate Test (SLST), California Mastitis Test (CMT) (481), 
White Side Test (WST), electric conductivity (EC), pH Multistix 
strips, detection of enzymes, Tanuchek kits, DeLaval cell Counter 
(DCC), flow cytometry, and Surf Field Mastitis Test (SFMT).

7 Control of staphylococcal mastitis

7.1 Management

The National Institute for Research into Dairying developed a 
five-point mastitis control measure in England (482), and later, 
these measures were adopted by the National Mastitis Council 

(NMC) as a five-point mastitis management program or Five-Point 
Plan for the Control of Contagious Mastitis (483–485). The Five-
Point Plan comprises (1) post-milking teat dipping in antiseptic 
solutions, (2) antibiotic dry cow therapy at the end of each 
lactation, (3) treatment of clinical cases, (4) culling of cows with 
chronic mastitis, and (5) proper maintenance of the milking 
machine to maintain stable teat end vacuum pressure. After 
implementing this plan, infection rates decreased by up to 50%, 
and cow-to-cow transmission also decreased gradually. The NMC 
improved the five-point plan to a ten-point plan by adding five 
additional measures such as (6) setting goals for udder health, (7) 
keeping cows in a clean, dry, suitable environment, (8) good record 
keeping, (9) regular monitoring of udder health status, and (10) 
periodic review of the mastitis control program. Current S. aureus 
control measures include maintaining healthy teat condition, 
pre-milking teat dipping in antiseptic solution and drying, using 
disposable gloves during milking, keeping the milking machine in 
good condition, post-milking teat dipping in antiseptic solution, 
dry cow therapy, cull chronic cases, and milking infected cows last. 
Teat dipping in antiseptic solution pre- and post-milking decreased 
new IMI by 50 to 65% compared to control cows without dipping 
teats (486).

7.2 Use of antimicrobial drugs

7.2.1 Therapeutic
Prudent antimicrobial drug use and antibiotic stewardship in 

dairy farms are strongly recommended to reduce the development of 
antimicrobial resistance (AMR). The chance of cure by antibiotic 
treatment depends on treatment plans for cows and pathogen-related 
risk factors (487, 488); however, these factors are not considered 
during the treatment of S. aureus mastitis (30). The cure rates for 
subclinical S. aureus mastitis range from 4 to 92% (489, 490). The 
chance of cure of an infected quarter decreased when SCC increased 
(> 250,000 cells/mL) (491), cow aged, another quarter of the cow had 
IMI, hindquarter infected, and high prevalence of S. aureus IMI before 
drying off (30).

Management-based mastitis control measures have been 
developed and implemented with mild success in reducing contagious 
bacteria such as S. aureus and S. agalactiae (26–28) but limited success 
due to application disparities across mastitis management (29).

The cure rate of S. aureus mastitis with intramammary treatment 
during lactation or at dry-off is poor (30, 173–175) and rarely exceeds 
50%. S. aureus IMI usually exists throughout the lactation period due 
to limited anti-microbial drug access to the S. aureus in the purulent 
inflammatory fluids or formation of micro-abscess and fibrosis (492–
494), S. aureus formation of L-forms (495, 496) or small colony variant 
(78), β-lactamase production (488, 497), survival of S. aureus in the 
intracellular area of phagocytic cells (76, 498) and internalization into 
mammary epithelial cells (79, 271, 499). The selection of antibiotics for 
treatment based on in vitro susceptibility testing may not be effective 
under in vivo conditions. However, for S. aureus mastitis cases of less 
than 2 weeks’ time, an in vitro susceptibility test can be  used as a 
predictor of cure, but not for chronic cases of mastitis (490). The 
importance of antibiotic susceptibility testing for the treatment of 
clinical mastitis is arguable (500), yet the majority agree that it is better 
to do susceptibility testing (30) than treat without testing.
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Antibiotics approved for use in dairy cattle for treatment and the 
prevention of mastitis and other dairy cattle diseases (bovine 
respiratory diseases, feet infection, metritis, diarrhea, or scours) 
include cephalosporins, fluoroquinolones, aminoglycosides, 
penicillin, sulfonamides, macrolides, amphenicols, tetracyclines, and 
lincosamides (501, 502). In the US, there are seven approved 
intramammary (IMM) antimicrobial drugs (502, 503). These include 
lincosamides (pirlimycin) and beta-lactams which include cephapirin 
(first-generation cephalosporin, 1GC), ceftiofur (third-generation 
cephalosporins, 3GC), aminopenicillins (amoxicillin and hetacillin), 
penicillin G, and penicillinase-resistant penicillin (cloxacillin) 
(376, 502).

Clavulanic acid with amoxicillin or cloxacillin with ampicillin 
overcomes β-lactamase resistance, making them antimicrobial drugs 
of choice for intramammary formulation. The 1GC 3GC and 
erythromycin are effective against β-lactamases-
producing staphylococci.

Antibiotic treatment of subclinical S. aureus mastitis during 
lactation is not economical because of the low cure rate, milk disposal 
during treatment, and lack of increased milk yield after treatment (30). 
Intramammary infusion of long-acting antibiotics at drying off (dry 
cow therapy) is more effective, with a 40–70% successful clearance rate 
(504). The cure rate of a lactating cow with antibiotic treatment 
depends on the length of infection, number of udder quarters infected, 
type of quarter (hind or front) infected, strain of S. aureus, immunity 
of the cow, type of antibiotic used for treatment, and length of 
treatment with better cure rate and longer treatment (489). Current 
recommendations are to use both IMM and parenteral antibiotics or 
treat only with IMM for 4–8 days. Penicillin G is the antibiotic of 
choice for penicillin-sensitive S. aureus strains. The IMM of pirlimycin 
is effective when administered for 8 days (505). Extended treatment 
with pirlimycin decreased transmission and clinical mastitis in the 
herd (505).

A previous study on subclinical S. aureus mastitis treatment with 
IMM antibiotics showed no difference between treated and untreated 
controls with bacterial cure rates of 65, 47, and 43% for erythromycin 
and penicillin, cloxacillin, and amoxicillin and cephapirin, 
respectively, (89). Treatment of clinical S. aureus mastitis with 
extended cefquinome IMM improved clinical cures from 60 to 84% 
but did not change bacterial cures (491). The treatment of subclinical 
S. aureus mastitis with simultaneous IMM of amoxicillin and 
intramuscular injection of procaine penicillin G achieved a cure rate 
of 50% (506).

Staphylococci are known to become resistant to several antibiotics, 
including methicillin resistance, which is important for public health 
(163, 164). Methicillin-resistant Staphylococcus aureus (MRSA) 
infection can only be treated with limited antibiotics and needs long-
term treatments (163, 165–167). MRSA infection is zoonotic (168), 
and continuous antimicrobial susceptibility surveillance is crucial to 
control the transmission of this strain from animal production to 
humans and vice versa (169). They may transfer resistance traits to 
S. aureus or other bacteria, resulting in the emergence of multidrug-
resistant strains (94, 135). The prevalence of infection by these groups 
of bacteria is on the rise mainly due to the spread of resistance to 
antimicrobial drugs among these groups (135). The most frequently 
seen resistance among staphylococci is resistance due to the 
production of β-lactamases, with more common production among 
subclinical non-aureus staphylococci isolates than clinical isolates 

(170). They exhibit resistance to multiple classes of antimicrobial 
drugs (32, 171, 172).

7.2.2 Prophylactic
In general, under an ideal dairy farming situation, cows are in 

lactation for about 300 days, and the dry period is about 60 days. Dairy 
cows are prone to IMI during the first 2 weeks of the dry period and 
during the transition period (507–509). The risk of IMI is high during 
the first 2 weeks of the dry period because of increased colonization 
of teat skin by bacteria due to the absence of pre- and post-milking 
teat dip in antiseptic solutions known to reduce bacterial colonization 
and IMI. During the transition period, dairy cows experience various 
metabolic, immunological, and physiological changes, increasing the 
risk of periparturient diseases (510). The high risk of IMI during the 
transition period is associated with parturition-inducing 
immunosuppressive hormones (e.g., cortisol), negative energy 
balance, and parturition-related stress (508).

In general, IMI during the dry period is expected to be low due to 
the involution and closure of the teat opening by the keratin plug in 
the teat canal. However, teat canal closure after drying off varies from 
animal to animal (511). Some bacteria may enter into the 
intramammary area by crossing the keratin plug or when the keratin 
plug is broken by intramammary infusion. Dry cow therapy (DCT) 
has been used as the major preventive tool for new IMI, as well as to 
cure IMI or subclinical mastitis established during the previous 
lactation (511, 512). Additional benefits of DCT include no milk 
disposal and treatment with antibiotics during the dry period to 
achieve high bacteriologic cure rates. There are two kinds of 
DCT. These are blanket and selective DCT. Blanket dry cow therapy 
(BDCT) is an IMM of long-acting antibiotic into all quarters of 
lactating cows on farms at drying off. The BDCT is the most common 
form of usage in over 90% of dairy farms in the US (513). According 
to the US Department of Agriculture (USDA) survey results, 85% of 
conventional dairy farms use BDCT (514), which is estimated to 
account for one-third of the total antibiotics used on conventional 
farms in the US (515). According to the 2013 USDA National Animal 
Health Monitoring System (NAHMS) survey, antibiotics used for the 
treatment of mastitis accounted for 85.4% of antibiotics used on US 
dairy farms (USDA, 2016). BDCT is of growing concern because this 
practice exposes healthy animals to antimicrobials, allowing for 
antimicrobial selection pressure on commensal and opportunistic 
bacteria to develop AMR.

Selective dry cow therapy (SDCT) selectively treats only quarters 
of an infection during drying-off. Despite decreasing antibiotic usage, 
SDCT is only applied in 10% of US dairy operations (501), and the 
risk of missing IMI exists when compared to BDCT (114, 516, 517). 
The concern is the increased risk of IMI could influence herd health 
and profitability (518, 519). SDCT needs to be evaluated in great detail 
before fully implementing it across dairy operations. However, with 
growing concern about the use of antibiotics in food animals, BDCT 
is being extensively reviewed and has motivated research into 
alternative disease control measures (520). Finding alternatives, such 
as effective vaccines, for preventive antibiotics use at dry-off is key in 
controlling mastitis and easing concerns of AMR.

Alternatives to antibiotics, such as internal teat sealants, are shown 
to reduce IMI during the dry period (521) and reduce new IMI after 
calving when used with or without antibiotics (522). Another 
alternative is boosting the nutritional supplement of dairy cows with 
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diet or supplementation of feed with nutrients that boost the immune 
system. Well-known dietary ingredients in the dairy industry, vitamin 
E and selenium (Se), when fed daily, promote immune competency 
and reduce the duration of clinical mastitis (523, 524).

7.2.3 Antimicrobial resistance
Specific antibiotic usage data are not available from dairy farms in 

the US, and it is not possible to know the exact amount of antibiotics 
used. Information on doses, frequency, duration, and diseases treated 
are also not known. However, the US Food and Drug Administration 
(FDA) report showed that more than 16,155 kg of medically important 
antimicrobial drugs intended for intramammary therapy were sold in 
2019 (525). A previous review showed no widespread resistance 
among mastitis pathogens (444). However, some studies have shown 
that the treatment of mastitis with antibiotics is associated with AMR 
and changes in the diversity of mastitis pathogens (526, 527). Similarly, 
other studies (528) have established a positive association between 
antimicrobial drug use (pirlimycin, ampicillin, erythromycin, and 
tetracycline) and increased resistance among gram-positive mastitis 
pathogens. Another previous study (529) showed higher resistance 
among bacterial mastitis pathogens from conventional dairy farms 
(ampicillin, erythromycin, penicillin, and tetracycline) than organic 
dairy farms, indicating antibiotics usage increases antimicrobial 
resistance. Yet another study (33) on S. aureus isolates from cases of 
mastitis in East Tennessee showed that about 34.3% were resistant to 
at least one of the 10 tested antimicrobial drugs. The authors also 
indicated an increasing trend in AMR in S. aureus for some 
antimicrobials (e.g., tetracycline).

S. aureus resistance to penicillin is well known. Penicillin-resistant 
S. aureus decreased in the US between 1994 and 2001 (530, 531), but 
resistance levels differ considerably across countries (532, 533) and 
within a country. The prevalence of penicillin-resistant S. aureus 
isolates from bovine mastitis in the US ranged from 30 to 70% (66, 
531, 532). S. aureus resistance to macrolides ranged from 14 to 17% 
based on phenotypic testing (534).

A study on 121 NAS isolates from cases of bovine mastitis found 
that methicillin resistance was commonly observed among some 
(S. epidermidis and S. haemolyticus) isolates (535). Multiple NAS 
isolates were positive for mecA or mecC gene located on the 
staphylococcal cassette chromosome mec (SCCmec) (243). The mecA 
and its variant mecC encode for methicillin resistance. However, the 
use of mecA solely as a methicillin resistance marker provided false 
positives due to the ancestor of mecA naturally occurring in 
NAS (536).

A study on S. aureus from Canada identified the major facilitator 
superfamily (MFS) of transporters such as tet (37), NorA, and NorB 
efflux genes in all isolates from bovine mastitis (220). AMR genes, 
such as the mepA gene, code for multidrug export protein MepA and 
its repressor mepR. Additionally, the norA gene coding for quinolone 
resistance protein NorA and its regulators arlS (signal transduction 
histidine-protein kinase ArlS) and arlR (response regulator ArlR) were 
identified. Other genes detected in some isolates were tet (37) 
(tetracycline efflux MFS transporter), LmrS (major facilitator 
superfamily multidrug efflux pump), and mgrA (HTH-type 
transcriptional regulator MgrA, also known as NorR), which is a 
positive regulator for norA expression and repressor for norB and 
tet38. Finally, the murA (antibiotic-resistant murA transferase), glpT 

(antibiotic-resistant GlpT), and fosB (fosfomycin thiol transferase) 
were detected in some isolates (85).

7.3 Vaccines

Different vaccines were evaluated for the control of S. aureus 
mastitis in dairy cows (537). Vaccination with simultaneous antibiotic 
administration (36, 86, 538) and vaccination with autogenous vaccines 
(539) were shown to have some protective effects.

There is only one bacterin vaccine for S. aureus mastitis in the US, 
but recent efficacy studies concluded that it cannot be recommended 
to control S. aureus mastitis in the US because of its limited efficacy 
(34–36). Another bacterin vaccine is available in Europe for the 
control of mastitis caused by S. aureus, non-aureus staphylococci, and 
E. coli. Some efficacy studies with this bacterin vaccine concluded that 
it reduced the incidence, severity, and duration of mastitis (37–39), 
whereas others concluded that it did not confer a reduction in 
S. aureus mastitis (40–43).

In the US, based on reported efficacy results, there is no 
recommended vaccine for the control of S. aureus mastitis. Major 
obstacles to developing an effective S. aureus mastitis vaccine are the 
bacterial ability to survive in the intracellular area of phagocytic and 
non-phagocytic cells, strain variation, and variation of virulence 
factors and mechanisms with strain (540) that lead to different clinical 
symptoms in infected host (229). Further, the physiology of the 
mammary gland is such that the effector immunity is diluted with a 
large volume of milk that is removed two to three times daily (34, 541). 
An optimized vaccination regimen is critically required to achieve 
protection by an effective vaccine (542).

8 Priority research gaps that need to 
be addressed

Based on current literature, the following research gaps are 
evident and need to be addressed:

 1. Staphylococcus aureus is a zoonotic bacteria that mainly causes 
human endovascular infections and bovine mastitis. Yet 
differences and similarities between human-adapted and 
bovine-adapted strains at cellular and molecular levels are not 
well defined, and further investigation and evaluation are 
needed to develop improved, knowledge-based control tools.

 2. Non-aureus staphylococci comprise more than 50 species of 
diverse groups, including coagulase-negative, some coagulase-
positive, and coagulase-variable staphylococci that vary in 
virulence, pathogenicity, and epidemiological distribution. 
Each species requires a focused, detailed study to understand 
its role in milk somatic cell count, the development of IMI and 
mastitis, and its contribution to normal milk microbiota and 
intramammary homeostasis.

 3. Staphylococci are one of the major host-adapted opportunistic 
bacteria that live with a host for several decades and have 
several virulence factors. They are considered one of the 
intramammary microbiota in bovines, as determined by 
metagenomic sequencing at one time, but can cause IMI and 
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mastitis at another time. However, there is a need for further 
investigation, especially from the perspective of innate and 
adaptive immunity, to understand the interactions between 
staphylococci and bovine hosts that allow them to 
remain opportunistic.

 4. Current advances in sequencing technology allow the 
comparison of culture-negative quarters with clinical mastitis 
to that of clinically normal quarters. Sequencing studies reveal 
that normal milk hosts a diverse community of non-culturable 
bacteria. Several bacterial species were differentially abundant 
in the clinical mastitis samples compared to the control 
quarters. Some culture-negative clinical cases demonstrated 
almost 100% abundance of some species (e.g., Mycoplasma sp.). 
Further investigation is needed to determine the roles of 
mammary gland microflora in SCC and the physiologic basis 
for these associations.

 5. S. aureus can internalize into and multiply in different types of 
phagocytic and non-phagocytic cells. In humans, S. aureus and 
NAS are also known to form biofilm in vivo, which is known to 
be responsible for infection resistance to the host’s immune 
response and antimicrobial drug treatment. However, the 
detailed molecular mechanisms of how S. aureus survives in 
the intracellular area of phagocytic and non-phagocytic cells 
and the role of biofilm in the pathogenesis of bovine mastitis 
need further investigation.

9 Conclusion

Mastitis is the most common disease of dairy cows and incurs 
huge economic losses in dairy farming worldwide. Bovine mastitis is 
an inflammation of the udder of dairy cows, usually caused by 
bacteria, which results in increased milk SCC and loss or reduced milk 
production. The most common bacterial etiology of mastitis are 
staphylococci, streptococci, and coliforms. Staphylococci are a major 
bacteria that cause mastitis and huge economic losses to dairy farms. 
According to recent reports, there are more than 60 valid species in 
the Staphylococcus genes, and each species varies in many aspects, 
including genetic makeup, pathogenicity, and ability to cause disease; 
even strains within species differ in their pathogenicity, virulence, and 
host adaptation. Because of these variations, each species of 
Staphylococcus should be considered different in its ability to cause 

mastitis, and appropriate control measures need to be designed based 
on the knowledge of each species. Current control measures for 
mastitis due to S. aureus and NAS are not fully effective. An improved 
understanding of virulence factors of dairy cows adapted strains of 
S. aureus and NAS, their pathogenesis, and host immunological 
responses is required to develop effective and sustainable 
non-antibiotic control tools such as vaccines, prophylactic therapy, 
and other innovative tools.
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