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Paramyxoviruses are important pathogens affecting various animals, including 
mammals and humans. Parainfluenza virus 5 (PIV5)—a member of the family 
Paramyxoviridae—is a major threat to the health of mammals and humans. 
However, studies on terrestrial wild animals infected with PIV5 are scanty. In 
this study, we  utilized reverse transcription PCR to detect PIV5 infection in 
the visceral organ tissues of a Siberian tiger (Panthera tigris ssp. altaica) with 
vomiting, diarrhea, and dyspnea before its death. A novel PIV5 (named SR 
strain) with a slowly progressive cytopathic effect was isolated in Vero cells and 
validated using a transmission electron microscope. Full-length sequencing 
and analysis revealed that the whole genome of the PIV5 SR strain contained 
15,246 nucleotides (nt) and seven non-overlapping genes (3’-N-V/P-M-F-SH-
HN-L-5′) encoding eight proteins. Phylogenetic analysis of three PIV5 strains 
identified in the same zoo confirmed that PIV5 strains SR and ZJQ-221 shared 
the closest genetic relationship as they were clustered in the same branch, while 
the recently found Siberian tiger strain SZ2 kept a certain distance and formed 
a relatively unique branch. Furthermore, mutations of nt and amino acids (aa) 
between strains ZJQ-221, SR, and SZ2 were identified. In summary, we report 
the identification and genomic characterization of a novel PIV5 strain SR isolated 
in a Siberian tiger, which may help future research on interspecific transmission 
mechanisms.
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Highlights

 •  A novel PIV5 strain (named SR) was isolated from a Siberian tiger (Panthera tigris ssp. 
altaica) with clinical symptoms.

 •  PIV5 SR strain infection was diagnosed by molecular biology and caused a slowly 
progressive cytopathic effect in Vero cells, the virions of which were imaged using a 
transmission electron microscope.

 •  Full-length sequencing and analysis of the PIV5 SR strain genome were performed for 
alignment and phylogenesis.
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Background

Parainfluenza virus 5 (PIV5)—originally known as canine 
parainfluenza virus (CPIV) and simian virus 5 (SV5) for its first 
identification in primary monkey kidney cells in 1956 (1)—is a 
member of the genus Rubulavirus in the family Paramyxoviridae (2, 
3). With a virion diameter of 50–200 nm, PIV5 has a non-segmented 
negative-sense single-stranded RNA of ~15,246 nucleotides (nt), 
which contains seven genes and encodes eight proteins (NP, V/P, M, 
F, SH, HN, and L) (4–7). The V and P proteins of PIV5 share the same 
genomic encoding region and are encoded by a specific RNA editing 
mechanism (8).

Paramyxoviruses (PVs) represent important zoonotic pathogens 
with implications for the central nervous system, encephalitis, and 
respiratory systems, posing risks for both animal and human health 
(9–12). They are members of the Paramyxoviridae family and exhibit 
a global prevalence in various animal populations, including PIV5 in 
Korean porcine (13) and in Switzerland cattle populations (9). In 
addition, peste des petits ruminant viruses have been identified in the 
Comoros Archipelago (14), canine distemper virus (CDV) in captive 
Siberian tigers and red pandas (15), and novel PVs of the Jeilongvirus 
genus in bats from China (16). Notably, Nipah and Hendra viruses 
were predicted to have the potential to cause the next zoonotic 
pandemic (10). Zoonotic pathogens, such as PVs, have demonstrated 
the ability to cross species boundaries, leading to zoonotic outbreaks 
and posing a public health risk over the past two decades. Particularly, 
PVs exhibit a wide range of common hosts, suggesting a heightened 
potential for interspecies transmission. The role of the tick as an 
intermediate host has been proposed, promoting the transmission of 
PVs among mammals (17). Nonetheless, the evolutionary dynamics 
of PVs during interspecies transmission remain inadequately studied. 
This knowledge gap underscores the need for further research to 
enhance our understanding of the mechanisms underlying the 
evolution of PVs in the context of interspecies transmission.

To investigate the etiology of the death of the Siberian tiger 
(Panthera tigris ssp. altaica) exhibiting symptoms of vomiting, 
diarrhea, and dyspnea, we  utilized RT-PCR, virus isolation, and 
electron microscopy, ultimately confirming PIV5 infection. 
Subsequently, we conducted phylogenetic and evolutionary analyzes 
and compared nt and amino acid (aa) mutations of the successive 
PIV5 strains SR, SZ2, and ZJQ-221 identified in the zoo. These 
findings might provide valuable insights into the prevalence and the 
interspecies transmission mechanisms of PIV5.

Materials and methods

Samples

A 12-year-old male Siberian tiger (~230 kg) died in 2015 at a zoo 
in Guangdong province in southern China after vomiting, diarrhea, 
and dyspnea for approximately a month. Lobular pneumonia was 

observed after necropsy, and tissue samples of the livers, spleen, lungs, 
and kidneys were collected and stored at −80°C.

Reverse transcription PCR (RT-PCR)

Tissue samples of the Siberian tiger were tested for the possible 
presence of PIV5, feline parvovirus (FPV), feline coronavirus (FCoV), 
and CDV using RT-PCR according to previous studies (18). Total 
RNA of tissue homogenates was extracted using a RNeasy Lipid Tissue 
Kit (Qiagen, CA, United States) and reverse transcribed using the 
Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, 
Mannheim, Germany) according to the manufacturers’ 
recommendations. PCR assays were carried out to detect viral nt using 
a pair of detection primers named PIV5-1-F/R, and full-length 
genome sequences were amplified using a set of 12 pairs of primers 
following our previous study (19). Complementary DNA (cDNA) 
samples as templates were added to a total volume of 25 μL using 
PrimeSTAR® Max DNA Polymerase (TaKaRa, Japan) according to the 
manufacturer’s protocol. PCR reactions were performed using the 
following conditions: 95°C for 4 min; 35 cycles of 95°C for 30 s, 55°C 
for 30 s, and 72°C for 45 s to 2 min; and final extension of 72°C 
for 10 min.

Gel electrophoresis, sequencing, and 
similarity analysis

To separate the indicated DNA fragments, the prepared PCR 
products were added to a 1% agarose gel with Golden View™ 
(TaKaRa) and electrophoresed with DL2000 DNA marker (TaKaRa) 
at 120 V for approximately 25 min, as we reported (20). PCR band 
products were visualized using a Gel Doc™ EZ imaging system (Bio-
Rad, CA). Positive PCR products were purified (MiniBEST Agarose 
Gel DNA Extraction Kit, TaKaRa), tailed with “A”-overhang tails 
(DNA A-Tailing Kit, TaKaRa), and cloned into the pMD19-T vector 
(TaKaRa). Positive recombinant plasmids were sequenced by 
Ruibiotech Co., Ltd. (Beijing, China). Nucleotide sequences were 
blasted against sequences deposited in GenBank using the basic local 
alignment search tool, nt (BLASTn)1 for similarity analysis.

Virus isolation

Tissue samples were homogenized in sterile phosphate-buffered 
saline (PBS, pH 7.4) in a ratio of 1/10 (w/v) and centrifuged at 5,000 × g 
for 10 min at 4°C. Then, supernatants filtered with 0.22-μm membrane 
were inoculated onto 90% monolayer Vero cells with Dulbecco’s 

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi

 •  Mutations of nucleotides and predicted viral proteins were found in ZJQ-221, SR, and 
SZ2 isolated from the same zoo, which might help to explore the potential pattern of 
evolution and interspecies transmission.
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minimal essential medium (DMEM, Gibco) and incubated at 37°C 
under 5% CO2 for 1 h. Cells were then maintained in DMEM containing 
3% fetal bovine serum (FBS, Gibco) and 1% Pen-Strep (21, 22) at 37°C 
under 5% CO2 and monitored daily for the cytopathic effect (CPE). Cell 
supernatants were collected after a freeze–thawing cycle three times 
when the CPE reached ~70% and stored at −80°C as virus stock.

TEM scanning

To observe virus particles in infected cells, cytopathic Vero cells 
infected with virus stock were scraped gently and fixed using 2.5% 
glutaraldehyde fixation fluid at 4°C for 4 h. Finally, ultrathin sections 
of the infected cell aggregate samples were stained with 2% uranium 
acetate and 2.6% lead citrate and then scanned on a Hitachi TEM 
system (Hitachi H-7000FA, Japan).

Sequence alignment and phylogenetic 
analysis

Nucleotide sequence alignment based on different rubulavirus 
species genome sequences was performed using DNAStar Lasergene 
7.10 (Madison, WI, United States), and phylogenetic analysis was 
performed using MEGA 7 (23) with the maximum likelihood 
algorithm. Bootstrap values were calculated with 1,000 replicates. 
Geneious Prime (Version 2021.1.1) was used to compare sequences of 
nt and related encoding proteins of PIV5 SR, ZJQ-221, and SZ2 strains 
isolated in the same zoo, and then the results of nt and aa mutations 
were organized using Adobe Photoshop CC 2019.

Results

Isolation and identification of PIV5 from 
Siberian tiger

A Siberian tiger in a zoo of southern China died after vomiting, 
diarrhea, and dyspnea, and tissue samples of which were collected 
during necropsy and tested for virus infection. RT-PCR revealed the 
positive presence of PIV5 nt in the Siberian tiger tissue samples 
(Figure 1A), which were negative for FCoV, FPV, or CDV (data not 
shown). The supernatants of tissue homogenates were prepared for 
virus isolation by inoculating Vero cells with a 90% monolayer for 
several passages. Compared with uninfected cells, Vero cells 
inoculated with virus stocks from tissue homogenates for 5 days post-
infection (dpi) showed loose attachment, roundness, and random 
orientation, which indicated a slowly progressive CPE (Figure 1B) of 
this PIV5 strain. PIV5 infection in Vero cells was further confirmed 
by TEM, which exhibited spherical particles with a diameter of 
50–200 nm (Figure 1C). Thus, the PIV5 strain from the Siberian tiger 
was isolated and named SR.

Genome characterization of PIV5 SR strain

A set of 12 pairs of primers was designed to amplify the full-length 
amplification of genome sequences from Siberian tiger tissue samples 

(Figure 2) as previously reported. After sequencing, alignment, and 
high similarity analysis, a full genome of the PIV5 SR strain with 
15,246 nt was obtained, encompassing a 3′ leader sequence (55 nt), a 
non-overlapping encoding area (15,160 nt), and a 5′ trailer sequence 
(31 nt). The encoding area was predicted to encode seven viral 
proteins, including the NP gene (position: 152–1,681), V/P gene 
(position: 1,850–2,518), M gene (position: 3,141–4,274), F gene 
(position: 4,530–6,185), SH gene (position: 6,303–6,437), HN gene 
(position: 6,584–8,281), and L gene (position: 8,414–15,181), and six 
non-coding interval sequences between each gene. The complete 
genome sequence of the PIV5 SR strain was deposited in GenBank 
under the accession number KY685075.

Sequence alignments and phylogenetic 
analysis of PIV5 SR strain

Whole-genome sequence alignment showed that the PIV5 SR 
strain had the lowest nt similarity (~97.13%) with the D277 strain of 
canine-origin (GenBank: KC237065) from South Korea and the 
highest nt similarity (~99.76%) with the ZJQ-221 strain of lesser 
panda (GenBank: KX100034) isolated from the same zoo. 
Phylogenetic analysis further confirmed the close genetic relationship 
between SR and ZJQ-221, as they were clustered in the same branch 
(Figure 3). Interestingly, the PIV5 SZ2 strain (GenBank: OQ939949.1), 
recently isolated from another dead Siberian tiger in the same zoo 
using Metavirome sequencing, kept a distance from the branch of SR 
and ZJQ-221 strains and formed an individual branch, indicating that 
SZ2 might have been evolved in a different way.

Nt and aa comparisons of PIV5 ZJQ-221, 
SR, and SZ2 strains

Since Siberian tiger strains SR and SZ2, as well as lesser panda 
strain ZJQ-221, were all found in the same zoo, these three strains 
might be helpful in exploring the potential pattern of evolution and 
interspecies transmission of PIV5. Thus, ZJQ-221, SR, and SZ2 
sequences were analyzed using Geneious Prime (Version 2021.1.1), 
and mutation sites of nt and aa between strains are listed in 
Supplementary Table S1. The three PIV5 strains had several sense 
mutations in viral encoding areas (Figure 4). Intriguingly, no sense 
mutation in F or SH was found between ZJQ-221 and SR, while the 
newly found PIV5 strain SZ2 had 6 and 5 sense mutations in each viral 
protein, respectively. Furthermore, compared with ZJQ-221 and SR 
strains, three aa mutations of the PIV5 SZ2 strain in SH (13: Ala to 
Thr), HN (447: Ser to Asp), and L (2,229: Val to Met) resulted from 
two nt mutations in each codon (Figure 4).

Discussion

The Paramyxoviridae family boasts a broad spectrum of viral 
reservoirs and is implicated in various diseases, including mumps and 
measles in humans, Newcastle disease in poultry, and distemper in 
carnivorous animals (24–26). Since its identification in 1954, PIV5 has 
evolved into a globally infectious agent over the past half century. 
Research has revealed that PIV5 can infect a diverse array of 
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mammals, including humans, dogs, pigs, rats, rabbits, foxes, and cats, 
across different countries and regions. Despite the extensive 
knowledge of the infectivity of PIV5  in various species, the 
evolutionary dynamics of PVs during interspecies transmission 
remain elusive. While the virus has demonstrated its ability to traverse 

species boundaries, the mechanisms and factors influencing its 
evolution in the context of interspecies transmission are yet to be fully 
elucidated. This knowledge gap underscores the need for further 
investigations to unravel the intricacies of the evolutionary pathways 
of PVs during interspecies transmission.

FIGURE 1

Identification of a paramyxovirus isolated from a Siberian tiger. (A) PIV5 viral nucleotides (nt) were detected in a Siberian tiger sample using reverse 
transcription PCR (RT-PCR). M, DL2000 DNA marker; −, negative control; S, Siberian tiger sample. (B) Vero cells of mock infection (left) and PIV5 
infection (right) using an inverted microscope. Bar, 100  μm. (C) Transmission electron microscopy images of Vero cells inoculated with PIV5 virus stock. 
Bar, 10  μm or 50  μm; black arrow, viral particles.

FIGURE 2

Full-length genome sequence of the PIV5 SR strain was amplified using RT-PCR. M, DL2000 DNA Marker; 1–12, 12 pairs of primers were used to 
amplify the full-length of the PIV5 SR strain.
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FIGURE 3

Phylogenetic analysis of the PIV5 SR strain based on the nucleotide sequences of the complete viral genome sequence. The nucleotide sequences of 
various parainfluenza virus strains were aligned using MEGA 7. One thousand bootstrap replicates were subjected to nt sequence distance and 
neighbor-joining analyzes, and a consensus phylogenetic tree was generated. Red triangles indicate strains found in the same zoo.
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In this study, a novel PIV5 strain named SR, with a full length of 
15,246 nt and exhibiting spherical particles with a diameter of 
50–200 nm consistent with previously reported studies (7, 13), was 
isolated from a captive Siberian tiger with clinical symptoms. The 
isolated PIV5 SR strain conforms to Koch’s postulates 
(Supplementary Table S1). Meanwhile, alignment and high similarity 
analysis demonstrated that this novel PIV5 SR strain shared the same 
genome structure and had the highest nt similarity (~99.76%) with the 
ZJQ-221 strain of lesser panda (GenBank: KX100034) from the same 
zoo. Additionally, the PIV5 SR strain was predicted to encode a small 
hydrophobic (SH) protein, which is a type II membrane protein of 44 
aa residues, including a 5-aa C-terminal ectodomain, a 23-aa 
transmembrane domain, and a 16-aa N-terminal cytoplasmic region 
(13, 27). The SH protein was absent in PIV5 strains isolated from pigs, 
dogs, calves, and cells (19), implying that this protein might 
be dispensable in the lifecycle of PVs (28–31). However, the absence 
of SH protein in PIV5 induced apoptosis of infected cells by activating 
tumor necrosis factor-alpha expression (32). Interestingly, the role of 
SH protein in the inhibition of apoptosis, which contributes to the 
virulence of PV members, was further confirmed in the J 
paramyxovirus (JPV), mumps virus, and respiratory syncytial virus 
(RSV) (33). Our study identified the presence of the SH protein in 
tiger PIV5 strains SR and SZ2. The presence of this protein is 
speculated to play a role in reducing apoptosis and contributing to 
virulence throughout the lifecycles of these strains, thereby facilitating 
transmission among diverse host species.

One specific mutation in proteins might play an important role in 
the lifecycle, pathogenesis, evolution, and even interspecies 
transmission of viruses (34). It has been previously reported that 
mutations in the F fusogenic peptide (G3A) and near the F 
transmembrane domain (S443P) not only enhanced viral fusion 
activity but also increased viral susceptibility to antibody-mediated 
neutralization (35). A point mutation of glutamine at position 202 of 
the RNA-binding domain of human parainfluenza virus type 2 (hPIV2) 
nucleocapsid protein (NP) enhanced polymerase activity by 
approximately 30-fold, whereas a recombinant hPIV2 possessing the 
NP Q202A mutation could not be  recovered from cDNA (36). 
Moreover, leucine at position 302 of the M protein of hPIV3 played a 
crucial role in viral RNA synthesis by regulating inclusion body 
formation (12). Hemagglutinin-neuraminidase (HN) of PV is a 
multifunctional protein mediating hemagglutination, neuraminidase, 
and fusion promotion activities. A study of PIV5 HN ectodomain 
structure revealed that V81T and L85Q mutations in the stalk region 
significantly impaired cell–cell fusion, while the D398L mutation 

within the head domain showed reduced fusion activity (37). A second 
receptor binding site on hPIV3 HN contributed to the activation of the 
fusion mechanism during host cell invasion (38). However, the creation 
of a second receptor binding site by site-specific mutagenesis at residue 
523 on hPIV1 HN did not significantly affect the growth or fusion 
activity of the recombinant virus (39). pH-dependent (acid-activated) 
channel activity of human RSV SH proteins in transiently expressing 
HEK 293 cells was abolished when both His22 and His51 residues of the 
SH protein were mutated, but not when either was present (40). An 
additional mutation in E1658D of the PIV5 L protein might enhance 
virus replication in Vero cells when PIV5 without the conserved 
C-terminal of the V protein was inserted with hemagglutinin from the 
H5N1 Influenza A virus between the HN and L genes in the genome 
(41). Post-translation modification of specific residues of viral proteins 
also plays a vital role in virus transmission in hosts. The phosphoprotein 
status of PIV5 viral phosphoprotein (P) acted as a replication switch 
during virus replication (42), while SUMOylation played a key role in 
the growth of PIV5. Mutation of the P protein at 254 lysine to arginine 
(K254R) reduced PIV5 minigenome activity and the SUMOylation 
level of the P protein (43). The present study compared nt and protein 
mutations, which may help in exploring mechanisms underlying the 
evolution and interspecies transmission of PIV5.

In the current study, a novel PIV5 strain, designated SR strain, 
causing slowly progressive CPEs in Vero cells was isolated from a dead 
Siberian tiger with clinical symptoms including vomiting, diarrhea, 
and dyspnea. Virions of the PIV5 SR strain in infected cells were 
imaged using a transmission electron microscope (TEM). The full 
genome of the SR strain showed a classical PIV5 genome structure 
characteristic and the closest genetic relationship with a lesser panda 
strain, ZJQ-221, isolated in the same zoo. Furthermore, mutations of 
nt and aa in SR, SZ2, and ZJQ-221 strains were identified. Our study 
findings provide insight into the epidemiology and genomics of PIV5 
and highlight the urgent need to control PIV5 in zoo animals to avoid 
interspecies transmission. The occurrence of PIV5 mutations in these 
wild animals might provide potential candidates for future research 
on the molecular mechanisms underlying virus evolution and 
interspecies transmission.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material. 

FIGURE 4

Sense mutations of lesser panda PIV5 strain ZJQ-221 and Siberian tiger PIV5 strains SR and SZ2 identified from the same zoo. Amino acid (aa) 
sequences of ZJQ-221, SR, and SZ2 strains were analyzed using Geneious Prime (Version 2021.1.1). The schematic diagram of the PIV5 genome 
structure and aa mutations was illustrated. Aa sense mutations resulting from two nt site mutations in one codon are shown in red. Yellow box, viral 
protein encoding area and direction in the genome. NP, nucleocapsid protein. V/P, V protein/phosphoprotein. M, Matrix protein. F, fusion protein. SH, 
small hydrophobic protein. HN, hemagglutinin-neuraminidase protein. L, large protein, or RNA-dependent RNA polymerase.
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The data presented in the study are deposited in the NCBI repository, 
SRA accession number: SRR27458479
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