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There is a critical need to develop and validate non-invasive animal-based 
indicators of affective states in livestock species, in order to integrate them into 
on-farm assessment protocols, potentially via the use of precision livestock 
farming (PLF) tools. One such promising approach is the use of vocal indicators. 
The acoustic structure of vocalizations and their functions were extensively 
studied in important livestock species, such as pigs, horses, poultry, and goats, yet 
cattle remain understudied in this context to date. Cows were shown to produce 
two types of vocalizations: low-frequency calls (LF), produced with the mouth 
closed, or partially closed, for close distance contacts, and open mouth emitted 
high-frequency calls (HF), produced for long-distance communication, with the 
latter considered to be largely associated with negative affective states. Moreover, 
cattle vocalizations were shown to contain information on individuality across 
a wide range of contexts, both negative and positive. Nowadays, dairy cows 
are facing a series of negative challenges and stressors in a typical production 
cycle, making vocalizations during negative affective states of special interest 
for research. One contribution of this study is providing the largest to date 
pre-processed (clean from noises) dataset of lactating adult multiparous dairy 
cows during negative affective states induced by visual isolation challenges. 
Here, we  present two computational frameworks—deep learning based and 
explainable machine learning based, to classify high and low-frequency cattle 
calls and individual cow voice recognition. Our models in these two frameworks 
reached 87.2 and 89.4% accuracy for LF and HF classification, with 68.9 and 
72.5% accuracy rates for the cow individual identification, respectively.
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Introduction

Farm animal welfare is commonly defined as the balance between positive and negative 
emotions, where positive emotions are considered as the main indicators of a moral animal 
life (“a life worth living” concept), with most of the recent research body of literature outlining 
the importance of affective states in farmed animals’ health and wellbeing (1, 2). Non-human 
mammals’ affective states might vary in valence (positive to negative) and arousal levels (high 
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to low), having functional adaptations linked to behavioral decisions 
that facilitate individual survival and reproduction while promoting 
approaches toward rewards and avoidance (3, 4).

There is an evident need to develop valid non-invasive animal-
based indicators of emotions in domestic animals in order to 
integrate them into future on-farm assessment protocols, potentially 
via the use of precision livestock farming (PLF) tools, such as novel 
sensors (5, 6). To this end, the use of bioacoustics to evaluate health, 
emotional states, and stress responses has been validated for some 
of the most important livestock species such as pigs (Sus scrofa 
domesticus), goats (Capra hircus), horses (Equus caballus), and 
poultry (Gallus gallus domesticus). The research findings 
consistently show that vocal parameters differ substantially during 
positive and negative experiences (7–15). Consequently, these 
developments started to be implemented and used in commercial 
settings in order to automatically classify animal vocalizations and 
identify health issues. For instance, the AI-based solution 
SoundTalks® was introduced in pig farms to detect respiratory 
diseases. However, compared to the aforementioned species, there 
is a significant knowledge gap regarding cattle communication 
behavior (16, 17). A potential explanation of this might be  that 
cattle have a lower incidence of emitting vocalizations (16, 18), 
especially alarm and pain-specific vocalizations, developed as an 
adaptive response of the species as prey animals in order to avoid 
the risk of alarming potential predators.

Domestic cattle vocalizations were shown to contain 
information on individuality, given the high levels of inter-cow 
variability in the acoustic characteristic of the vocalizations emitted 
under various contexts, as well as allowing facilitation of short-and 
long-distance interactions with herd-mates. This variability found 
in vocalizations produced by cattle allows for each animal to 
be identified by the “fingerprint” of their call (19–22). Cattle are 
highly gregarious and form complex social relationships, having a 
strong innate motivation for continuous social contact (23, 24), 
with isolation from conspecifics resulting in physiological changes 
such as increased heart rates, cortisol levels, ocular and nasal 
temperature, and an increase in vocalization production (22, 25). 
Furthermore, it was suggested that individual cattle vary in 
susceptibility to emotional stressors and challenges (26–28), with 
limited research being undertaken to evaluate the effects that 
isolation over prolonged periods of time has on vocalization 
response in adult cattle. Throughout a typical production cycle, 
dairy cows face a series of negative emotional challenges and 
stressors, such as separation from a calf immediately after calving, 
frequent regrouping based on production levels and lactation phase, 
re-establishing social hierarchy and dominance, frequent milking, 
isolation from herd-mates for insemination, pregnancy check-ups, 
being at high risks of developing metabolic disorders, isolation in 
sickness pens, etc.

Cattle are known to produce two types of vocalizations, which 
are modulated by the configuration of the supra-laryngeal vocal 
tract (21). The first type is low-frequency calls (LF), produced by 
the animal with the mouth closed or partially closed, used for close 
distance contact, and regarded as indicative of lower distress or 
positive emotions. The second type is open-mouth emitted high-
frequency calls (HF), produced for long-distance communication, 
and indicating higher arousal emotional states, generally associated 
with negative affective states (22, 29).

In domestic ungulates, individuality was proven to be encoded 
in a wide range of vocal parameters, most evidently in the 
F0-contour (15, 30), amplitude contour and call duration (31), as 
well as in filter-related vocal parameters including formant 
frequencies (21). Individuality expression was shown to be distinct 
for each call type (22, 30), with individual differences in cattle high-
frequency calls being attributed mainly to sound formants (21, 22), 
while vocalization formants are being modulated in turn by the 
caller vocal tract morphology (32). Given that cattle can produce 
vocalizations with fundamental frequencies of over 1,000 Hz (30), 
which are more likely to occur during times of higher arousal 
affective states, it was hypothesized by the authors that high-
frequency calls encode a larger amount of individuality information, 
than their low-frequency equivalents, due to their propagation over 
longer distances where vision and/or olfactory signaling are 
not possible.

Methods of studying animal vocal communication are 
becoming increasingly automated, with a growing body of research 
validating the use of both hardware and software that are capable of 
automatically collecting and processing bioacoustics data [reviewed 
by Mcloughlin et al. (18)]. In this vein, Shorten and Hunter (33) 
found significant variability in cattle vocalization parameters, and 
suggested that such traits can be monitored using animal-attached 
acoustic sensors in order to provide information on the welfare and 
emotional state of the animal. Therefore, automated vocalization 
monitoring could prove to be a useful tool in precision livestock 
farming (18, 34, 35), especially as dairy farming systems become 
increasingly automated with wide-scale use of milking and feeding 
robots, all this having the potential to dynamically adjust the 
management practices while the number of animals per farm unit 
tends to increase.

Machine learning techniques are therefore increasingly applied in 
the study of cattle vocalizations. Some tasks that have been addressed 
to date include the classification of high vs. low frequency calls (33), 
ingestive behavior (35), and categorization of calls such as oestrus and 
coughs (34).

This study makes the following contributions to the investigation 
of cattle vocalizations using machine learning techniques. First of all, 
we present the largest dataset to date of (n = 20) cows’ vocalizations 
collected under a controlled “station” setting, exclusively for negative 
affective states. Furthermore, we develop two types of AI models: 
deep-learning-based and explainable machine-learning-based for two 
tasks: (1) classification of high and low-frequency calls, and (2) 
individual cow identification. Finally, we  investigated the feature 
importance of the explainable models.

Materials and methods

Ethical statement

All experiments were performed in accordance with relevant 
guidelines and regulations. The experimental procedures and 
protocols were reviewed and approved by the Ethical Committee 
from the Research and Development Institute for Bovine, Balotesti, 
Romania (approval no. 0027, issued on July 11, 2022), with the 
isolation challenge producing exclusively temporary distress 
to cows.
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Subjects and experimental approach

The study was carried out at the experimental farm of the Research 
and Development Institute for Bovine in Balotesti, Romania. At the 
experimental facilities, cattle were managed indoors year-round (zero-
grazing system), being housed under tie-stall conditions (stanchion 
barn) in two identical animal barns with a housing capacity of 100 
heads/barn, having access to outdoor paddocks (14–16 m2/head) 10 h/
day, between milkings (7:00–17:00). Cows had ad libitum access to 
water and mineral blocks, receiving a daily feed ration of 30 kg corn 
silage (37% dry matter, DM), 6 kg of alfalfa hay (dehydrated whole 
plant, 90.5% DM), and 6 kg of concentrates (88.3% DM). Concentrates 
were given immediately after morning and evening milkings (3 kg/
feeding session); while silage and hay were offered at the feeding rails 
in the outside paddocks, assuring a feeding space of 0.7 m/cow. In 
total, 20 lactating adult multiparous cows of the Romanian Holstein 
breed were tested between August and September 2022. The 
Romanian Holstein breed (RH, national name Bălțată cu Negru 
Românească) belongs to the dairy Holstein-Friesian strain, with a 
current census of 264,000 cows, representing 22% of the breed 
structure in Romania (36). The RH originates in the 19th century, 
being the result of systematic crossbreeding between Friesian bulls 
imported from Denmark and Germany and local cattle, such as 
Romanian Spotted and Dobruja Red. The average milk yield for the 
RH breed ranges between 6,000 and 8,500 kg of milk/lactation, with 
adult body weights of cows ranging between 550 and 650 kg. The 
selection index for the RH breed is focused on milk yield (90%) and 
fertility related traits (10%) (37). In order to avoid bias and to have a 
homogeneous study group, cattle included in our research were of 
similar age (lactations II & III), were habituated previously to the 
housing system (min. 40 days in milk), and were comparable for body 
weight (619.5 ± 17.40 kg, mean ± SEM). Cows were individually 
isolated inside the two identical barns, remaining tethered at the neck 
to their stall (stall dimensions of 1.7/0.85 m), starting at 7:00 AM for 
240 consecutive minutes post-milking when the rest of the herd 
members were moved to the outside paddocks. The two paddocks 
were in the immediate vicinity of the barns, having one lateral shared 
concrete compact wall, thus the animal that remained inside the barn 
was visually isolated, while being able to hear and communicate 
vocally with their herd-mates. The isolated cows had ad-libitum access 
to water throughout individual drinkers and fresh wheat straws 
bedding was provided for animal comfort. After the commencement 
of recordings, animal caretakers were restricted from access to barns, 
and human traffic and machinery noise production outside the two 
barns were limited as much as possible.

Vocalization recordings

The vocalizations for this study were obtained using two 
identical directional microphones (Sennheiser MKH416-P48U3, 
frequency response 40–20.000 Hz, max. sound pressure level 130 dB 
at 1 kHz, producer Sennheiser Electronic®, Wede-mark, Germany) 
attached to Marantz PMD661 MKIII digital solid-state recorders 
(with file encryption, WAV recording at 44.1/48/96 kHz, 16/24-bit, 
recording bit rates 32–320 kbps, producer Marantz Professional®, 
United  Kingdom). The microphones were directed toward the 
animal using tripods placed on the central feeding alleys at a 

distance of 5–6 m from the cows. For shock and noise reduction, 
Sennheiser MZW 415 ANT microphone windshields were used. 
After the end of each experimental day, vocal recordings were saved 
as separate files in the WAV uncompressed format, at 44.1 kHz 
sampling rate and a 16-bit amplitude resolution. Despite the fact 
that all 20 multiparous lactating cows were isolated and recorded 
for 240 min post-milking, under identical conditions, not all cows 
vocalized with a similar frequency during the trials, resulting in the 
analysis of 1,144 vocalizations (57.2 vocalizations per cow, ranging 
between 33 and 90 vocalizations per cow), out of which 952 were 
high-frequency vocalizations (HF) and 192 low-frequency 
vocalizations (LF). All sounds included in our investigation had 
undergone quality control check, while looking for clear, under- 
and un-saturated vocalizations, without combined environmental 
noises such as rattling equipment, chains clanging, or wind. 
Vocalizations were visualized on spectrograms using the fast 
Fourier transform method, at window lengths of 0.03 s, time steps 
of 1,000, frequency steps of 250, dynamic range of 60 dB, and a view 
range between 0 and 5,000 Hz (Figure 1).

Vocalization recordings were then analyzed using Praat DSP 
package v.6.0.31 (38), as well as previously developed custom-built 
scripts (10, 15, 39–41), for the automatic extraction of the 23 acoustic 
features of each vocalization, with the vocal parameters studied and 
their definitions being presented in Table 1, the output data being 
exported to Microsoft Excel for further analysis.

Classification models

We developed two different computational frameworks of the 
following types:

 i Explainable model—a pipeline that uses as features the 23 vocal 
parameters described in Table 1, which have been studied in 
the context of cattle vocalizations. By using features that are 
highly relevant to our domain, we increase the explainability of 
our pipeline, allowing for the study of the feature importance 
of our model.

 ii Deep learning model, which uses learned features and operates 
as a “black box” that is not explainable. This model was 
expected to be more flexible and to have increased performance.

The explainable framework was based on the TPOT (42), 
AutoSklearn (43), and H2O (44) automatic machine learning libraries. 
Namely, we assumed a dataset represented by a matrix x Rn m∈ ×  and 
a vector y Rn∈ , where n is the number of rows and m is the number 
of features in the dataset. Notably, we used the features described in 
Table 1, which made the model more explainable, as the contribution 
of each feature to the model’s prediction could be computed. This 
dataset was divided into training and testing sets, such that the first 
has 80% of the data and the latter the remaining 20%, divided 
randomly. The training cohort was used to train the model and the 
testing cohort was used to evaluate its performance. Moreover, 
we randomly picked 90% of the training dataset each time for r = 50 
times, making sure each value was picked at least half of the times. For 
each of these cohorts, we first obtained a machine learning pipeline 
from TPOT, AutoSklearn, and H2O aiming to optimize the following 
loss function: Σik

i ia f
k=

+







1 2

 where ai and f i  are the ith  model’s 
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instance accuracy and F1 scores, respectively, where k was the number 
of k-folds in the cross-validation analysis (45). Once all three models 
were obtained, we used all three of them to generate another cohort 
containing their predictions and the corresponding y value. These 
were then used to train an XGboost (46) model for the final prediction. 
For the hyperparameter tuning of the XGboost, we took advantage of 
the grid-search method. Finally, a majority vote between the r 
instances was used to determine the final model’s prediction. 
We  reported the results for k = 5 fold cross-validation over the 
entire dataset.

The DL framework was adopted from Ye and Yang (47) which 
proposed a deep-gated recurrent unit (GRU) neural network (NN) 
model, combining a two-dimensional convolution NN and recurrent 
NN based on the GRU cell unit that gets as input the spectrogram of 
the audio signal. Generally, the two-dimensional convolution NN is 
used as a feature extraction component, finding spatio-temporal 
connections in the signal which than is being fed into the recurrent 
NN that operates as a temporal model able to detect short-and long-
term connections in this feature space over time, these being 
effectively the rules for the voice identifications. For the 

hyperparameters of the model such as batch size, learning rate, 
optimization, etc., we adopted the values from Ye and Yang (47).

Results

In this section, we examined the data obtained and outlined the 
performance of the proposed explainable and DL models for the 
two different tasks based on the collected dataset. First, we provided 
a descriptive statistical analysis of the obtained dataset and its 
properties. Secondly, we present the performance of the models in 
classification between high and low-frequency calls. Finally, 
we present the models’ ability to identify each cow according to its 
vocalizations, divided into low, high, and all low + high 
vocalizations. Table 2 summarizes the results of the explainable and 
DL models’ performance in separating between the high and 
low-frequency calls. The results are shown as mean ± standard 
deviation for k = 5 fold. Importantly, we made sure that the train 
and test cohorts had vocalizations from both classes at each fold and 
that the ratio between the classes was kept between folds. Both 

FIGURE 1

Example of a Low Frequency Call (LFC) left-side and a High Frequency Call (LFC) right-side with intensity contours (above), oscillograms (middle), and 
spectrograms [below; fast Fourier transform (FFT) method, at window lengths of 0.03  s, time steps of 1,000, frequency steps of 250, dynamic range of 
60  dB, and a view range between 0 and 5,000  Hz] of typical vocalizations produced by cows during the isolation challenge.
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models achieved good results with almost nine out of 10 correct 
detections. One can notice that the DL model outperforms the 
explainable model. One explanation for this is that the DL is more 
expressive and therefore captures more complex dynamics, which 
are not necessarily expressed by the features provided to the 
explainable model (see Table  2). Figure  2 presents the features’ 
importance of the explainable model for the high and low-frequency 
calls calculated by reducing one feature from the input and 
calculating its influence on the model’s performance. One can 
notice that AMvar, AMrate, AMExtent, Formant dispersal, and the 
Weiner entropy mean are the most important features, with a joint 
importance of 55.36%.

Table 3 summarizes the results of the explainable and DL models’ 
individual cow identification accuracy. The results are shown as 
mean ± standard deviation for k = 5 fold. For this case, we made sure 

that the train and test cohorts had vocalizations from all cows such 
that the proportion of the vocalizations of each individual cow was 
present both in the train and test cohorts at each fold. The models 
obtained around 70% accuracy, with a relatively low standard 
deviation. Like the previous experiment, the DL model outperformed 
the explainable model.

Figure  3 presents the features’ importance of the explainable 
model for the cow identification task, calculated by reducing one 
feature from the input and calculating its influence on the model’s 
performance. The sound duration played a critical role with 14.27% 
importance, indicating that different cows have a significant pattern 
in their vocal duration, or at least a non-linear connection between 
the vocal duration to other features that allows for capturing unique 
identification patterns. The Wiener Entropy mean is the second best, 
with 11.65% importance.

TABLE 1 Abbreviations and definitions of the 23 vocal parameters studied (21, 29).

Abbreviation/Unit of 
measure

Definition

F0Mean (Hz) Mean F0* frequency value across the call

F0Max (Hz) Maximum F0 frequency value across the call

F0Min (Hz) Minimum F0 frequency value across the call

F0Range (Hz) Difference between minimum and maximum F0

Q25 (Hz) Frequency value at the upper limit of the first quartiles of energy (below 25%)

Q50 (Hz) Frequency value at the upper limit of the second quartiles of energy (below 50%)

Q75 (Hz) Frequency value at the upper limit of the third quartiles of energy (below 75%)

Fpeak (Hz) Frequency of peak amplitude

Sound duration (s) Duration of the call from start to end, measured on the oscillogram

AMVar (dB/s) Cumulative variation in amplitude divided by the total call duration

AMRate (s−1) Number of amplitude modulations in a certain time frame

AMExtent (dB) Mean-to-mean peak variation of each amplitude modulation

Harmonicity (dB) Degree of acoustic periodicity, also called harmonic-to-noise ratio—higher values indicate more tonal voice

F1Mean (Hz) Mean frequency value of the first formant

F2Mean (Hz) Mean frequency value of the 2nd formant

F3Mean (Hz) Mean frequency value of the 3rd formant

F4Mean (Hz) Mean frequency value of the 4th formant

F5Mean (Hz) Mean frequency value of the 5th formant

F6Mean (Hz) Mean frequency value of the 6th formant

F7Mean (Hz) Mean frequency value of the 7th formant

F8Mean (Hz) Mean frequency value of the 8th formant

Formant dispersal (Hz) Minimum spacing of the formants

Wiener entropy mean Spectral flatness of a sound, calculated as the ratio of a power spectrum’s geometric mean to its arithmetic mean measured on a 

logarithmic scale

TABLE 2 The high- and low-frequency calls (LF and HF) classifier models’ performances.

Model Train set accuracy Test set accuracy

Explainable 89.9 ± 2.2% 87.2 ± 4.1%

Deep learning 91.5 ± 2.6% 89.4 ± 3.8%

The results are shown as mean standard deviation for k = 5 fold.
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Discussion

In this study, we present a dataset of cattle vocal recordings 
during negative affective states caused by isolation of the cows, 
which is, to the best of our knowledge, the largest dataset collected 
to date. The data from n = 20 cows has been manually cleaned from 
background noises and trimmed to contain only the low-frequency 
(LF) and high-frequency (HF) calls, to ensure as high quality of 
data as possible. The resulting dataset comprises 1,144 records in 
total. Based on this data, we conducted two sets of tasks. Firstly, 
we  provided a classifier for separating between low and high-
frequency calls. Secondly, we provided a classifier for identifying 
individual cows based on their high-, low-, or high + low-frequency 
vocalizations produced.

As shown in Table 2, both the explainable and DL models were 
able to accurately classify between the low- and high-frequency 
calls, with 87.2 and 89.4% accuracy, respectively. This outcome 
slightly outperforms (2%, 4.4%) the current state-of-the-art model 
(33), which used a smaller dataset of n = 10 individuals. Notably, 

the differences between the models’ performances between the 
training and testing cohorts was around 2.5% toward the training 
cohort, compared to the state-of-the-art, which reports a 14.2% 
difference. As such, our model resulted in less over-fitting, if any 
at all, than the previous model. In addition, as the standard 
deviations of both models were 4.1 and 3.8%, this indicates that 
both models are robust.

For the individual cow identification task for both the LF and 
HF data, the explainable and DL models obtained 68.9 and 72.5% 
accuracy, respectively. When focusing only on the HF calls, the 
results were similar, with only 0.5 and 1.7% decrease in 
performance. On the other hand, when using only the LF samples, 
the accuracy sharply dropped to 50.9 and 46.8%, respectively, while 
also revealing overfit over the training dataset. This may be an 
indication that high-frequency calls contain more individuality 
information than low-frequency calls in cattle. These results are in 
accordance with previous findings across non-human mammals 
(29, 48), where an increase in the arousal states was shown to lead 
to higher frequency vocalizations for both F0 and formant-related 

FIGURE 2

The distribution of the features’ importance for the high and low frequency calls (LF and HF) explainable classifier model. The results are shown as the 
average of a k  =  5 fold cross-validation where the error bars indicate one standard deviation.

TABLE 3 The individual identification classifier models’ performances.

Dataset Model Train set accuracy Test set accuracy

Low Frequency + High Frequency Explainable 73.0 ± 3.3% 68.9 ± 5.1%

Deep learning 76.3 ± 4.2% 72.5 ± 4.7%

Low Frequency Explainable 58.2 ± 1.3% 50.9 ± 2.8%

Deep learning 65.5 ± 1.8% 46.8 ± 3.3%

High Frequency Explainable 79.6 ± 2.6% 68.4 ± 3.2%

Deep learning 74.9 ± 3.0% 70.8 ± 3.4%

The results are shown as mean standard deviation for k = 5 fold.
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features, with vocalization parameters being more variable in 
negative-high arousal states. An alternative explanation for this 
might be  attributed to the reduced amount of LF data, which 
contained 192 samples (i.e., 16.8% of the entire dataset). While the 
performance of the model of Shorten and Hunter (33) was better, 
this study worked with a reduced dataset for LF calls. In addition, 
their results may be  indicative of overfitting, while explainable 
frameworks were not considered.

Considering homologies in the physiology of vocalization 
production and the commonalities found across species (48), the 
current findings could be extrapolated to other European cattle 
(Bos taurus), both dairy and beef specialized breeds. In a 
comparative study conducted on the two cattle sub-species 
(B. taurus and B. indicus), Moreira et  al. (49) found B. indicus 
animals to be  more reactive to both low and high frequencies 
sounds, which the authors attributed to the smaller auricle and 
greater interaural distance found in B. taurus, when compared to 
the indicine cattle. Although the hearing range might differ among 
closely related species, Maigrot et al. (14) found the functions of 
vocalizations to exceed intraspecies exchanges of information in 
domestic horses and Przewalski’s horses, wild boars, and domestic 
pigs, these species being able to discriminate among positive and 
negative vocalizations produced by heterospecifics, including 
humans. Moreover, another potential contribution of the current 
research becomes apparent based on the experimental design and 
data collection. Whereas the studies conducted on cattle 
communication behavior to-date analyzed predominantly 
vocalizations emitted by cows either in an un-controlled setting 
(e.g., mob on pasture or inside the barn), or assessed and compared 
calls among a wider set of contexts (e.g., positive and/or negative, 
with different putative valences and arousal levels) (21, 22, 33, 35). 

Conversely, our experimental setting was exclusively focused on a 
single negative context, while changes in affective states of the 
same animal being proven previously to result in modulations of 
the vocal parameters and behavior, e.g., during dam-calf separation 
and reunion in beef cattle (50). However, it is worth pointing out 
that our isolation challenge replicates an event that is occurring 
frequently under production conditions, with cows being 
individually isolated for health (e.g., sickness and veterinary visits) 
and reproduction (e.g., artificial insemination, fertility treatments, 
and pregnancy diagnosis) reasons.

Moreover, the use of vocalization scoring as an indicator of 
welfare during cattle handling at slaughter was shown to be  a 
feasible approach, with vocalizations frequency and cortisol levels 
being influenced by the use of electric prods, deficient stunning 
and aversive handling (51, 52).

Our results are in alignment with previous research which 
showed that isolation from herd-mates induces a wide range of 
behavioral and physiological responses in cattle (22, 25), given the 
much higher incidence of HF calls observed during the isolation 
challenge, and taking into account the previous research results 
which suggested that the production and broadcasting of a 
repetitive single call type is indicative of persistent negative 
affective states (53), while reflecting a high urgency for the animal 
itself (54).

This research is, however, not without its limitations. Factors such 
as emotional contagion among herd-mates, and thus the potential 
biological role of the distress vocalizations emitted by cows during the 
isolation challenge were not studied in the current trial. For instance, 
Rhim (55) found that vocalization and behavior of Holstein cows and 
calves during partial separation (with vocal and olfactory 
communication) has led to significantly higher vocalization rates in 

FIGURE 3

The distribution of the features’ importance for identification explainable classifier model for the Low Frequency  +  High Frequency dataset. The results 
are shown as the average of a k  =  5 fold cross-validation, where the error bars indicate one standard deviation.
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both cows and calves, when compared to complete separation. To 
address this, in our future research, we  plan to include the use of 
additional sensors such as heart rate monitors, infrared thermography, 
and stress-related biomarkers, to have a more generalized approach 
when evaluating emotional responses to negative contexts. Moreover, 
considering the psychology and behavioral patterns of the species, 
mental processes such as learned helplessness could have contributed 
to the time-modulation of the vocal parameters following herd isolation, 
with animals abandoning their attempts to signal the negative event due 
to a perceived lack of control, which, however, does not mean that the 
negative event is being perceived as neutral by the animals. Additionally, 
the study herd consisted of multiparous adult cows, with various degrees 
of existing habituation to social isolation being presumed.

To summarize, cattle vocalizations can be seen as commentaries 
emitted by an individual on their own internal affective state, with the 
challenges lying in understanding and deciphering those 
commentaries. Looking forward, significantly more work needs to 
be done, taking into account a wider range of contexts and potential 
influencing factors on the vocal cues, in order to be able to draw strong 
conclusions regarding arousal or valence in cattle bioacoustics. Our 
study highlights the promising applications of machine learning 
approaches in cattle vocalization behavior. In order for such approaches 
to be validated for commercial use and adopted at farm-level, further 
important developments need to occur, such as designing of hardware 
and software capable to filter and limit external farm noises, and to 
process vocalizations automatically. Furthermore, in order for 
vocalizations to be reliable welfare and health predictors, the training 
and testing vocalization sets need to include a significant wider variety 
of negative affective states (e.g., sickness, cow-calf separation, weaning, 
estrous, and pain inducing vocalizations), all while keeping a special 
focus on changes in individual animal vocalizations.

Conclusion

In this study, we  compiled a data set of dairy cattle vocal 
recordings during the negative affective state of isolation, which is 
one of the largest and cleanest datasets of its kind. Through our 
experiments using explainable and DL models, we  have 
demonstrated the effectiveness of these models in classifying high- 
and low-frequency calls, as well as for identifying individual cows 
based on their vocalization productions. These results highlight the 
future potential of vocalization analysis as a valuable tool for 
assessing the emotional valence of cows and for providing new 
insights into promoting precision livestock farming practices. By 
monitoring cattle vocalizations, animal scientists could gain crucial 
insights into the emotional states of the animals, empowering them 
to make informed decisions to improve the overall farm animal 
welfare. Future work endeavors can take these results a step forward, 
gathering cattle vocalizations at different critical affective states to 
identify possible health risks or early real-time disease diagnostics.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 

number(s) can be  found here: https://gitlab.com/is-annazam/
bovinetalk.

Ethics statement

The experimental procedures and protocols were reviewed and 
approved by the Ethical Committee from the Research and 
Development Institute for Bovine, Balotesti, Romania (approval no. 
0027, issued on July 11, 2022). The studies were conducted in 
accordance with the local legislation and institutional requirements. 
Written informed consent was obtained from the owners for the 
participation of their animals in this study.

Author contributions

DG: Conceptualization, Formal Analysis, Funding acquisition, 
Investigation, Project administration, Resources, Supervision, Writing 
– original draft, Writing – review & editing. MM: Data curation, 
Formal Analysis, Investigation, Methodology, Software, Validation, 
Writing – original draft, Writing – review & editing. TL: Data curation, 
Formal Analysis, Investigation, Software, Validation, Visualization, 
Writing – original draft, Writing – review & editing. AO: Data 
curation, Formal Analysis, Investigation, Software, Validation, Writing 
– original draft, Writing – review & editing. IN: Formal Analysis, 
Investigation, Resources, Supervision, Validation, Visualization, 
Writing – original draft, Writing – review & editing. AZ: Data 
curation, Formal Analysis, Investigation, Software, Supervision, 
Validation, Visualization, Writing – original draft, Writing – review & 
editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by a grant of the Ministry of Research, Innovation and 
Digitization, CNCS—UEFISCDI, project number PN-III-P1-
1.1-TE-2021-0027, within PNCDI III.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

https://doi.org/10.3389/fvets.2024.1357109
https://www.frontiersin.org
https://gitlab.com/is-annazam/bovinetalk
https://gitlab.com/is-annazam/bovinetalk


Gavojdian et al. 10.3389/fvets.2024.1357109

Frontiers in Veterinary Science 09 frontiersin.org

References
 1. Webster J. Animal welfare: freedoms, dominions and “a life worth living”. Animals. 

(2016) 6:35. doi: 10.3390/ani6060035

 2. Webb LE, Veenhoven R, Harfeld JL, Jensen MB. What is animal happiness? Ann 
N Y Acad Sci. (2019) 1438:62–76. doi: 10.1111/nyas.13983

 3. Kremer L, Holkenborg SK, Reimert I, Bolhuis J, Webb L. The nuts and bolts of animal 
emotion. Neurosci Biobehav Rev. (2020) 113:273–86. doi: 10.1016/j.neubiorev.2020.01.028

 4. Laurijs KA, Briefer EF, Reimert I, Webb LE. Vocalisations in farm animals: a 
step towards positive welfare assessment. Appl Anim Behav Sci. (2021) 236:105264. 
doi: 10.1016/j.applanim.2021.105264

 5. Ben Sassi N, Averós X, Estevez I. Technology and poultry welfare. Animals. 
(2016) 6:62. doi: 10.3390/ani6100062

 6. Matthews SG, Miller AL, Clapp J, Plötz T, Kyriazakis I. Early detection of health 
and welfare compromises through automated detection of behavioural changes in 
pigs. Vet J. (2016) 217:43–51. doi: 10.1016/j.tvjl.2016.09.005

 7. Silva M, Ferrari S, Costa A, Aerts JM, Guarino M, Berckmans D. Cough 
localization for the detection of respiratory diseases in pig houses. Comput Electron 
Agric. (2008) 64:286–92. doi: 10.1016/j.compag.2008.05.024

 8. Tallet C, Linhart P, Policht R, Hammerschmidt K, Šimeček P, Kratinova P, et al. 
Encoding of situations in the vocal repertoire of piglets (sus scrofa): a comparison 
of discrete and graded classifications. PLoS One. (2013) 8:e71841. doi: 10.1371/
journal.pone.0071841

 9. Whitaker B. M., Carroll B. T., Daley W., Anderson D. V. (2014). “Sparse 
decomposition of audio spectrograms for automated disease detection in chickens” 
in IEEE Global Conference on Signal and Information Processing (GlobalSIP), 
IEEE, 2014. 1122–1126.

 10. Briefer EF, Tettamanti F, McElligott AG. Emotions in goats: Mapping 
physiological, behavioural and vocal profiles. Anim Behav. (2015) 99:131–43. doi: 
10.1016/j.anbehav.2014.11.002

 11. Linhart P, Ratcliffe VF, Reby D, Špinka M. Expression of emotional arousal in 
two different piglet call types. PLoS One. (2015) 10:e0135414. doi: 10.1371/journal.
pone.0135414

 12. Briefer EF, Mandel R, Maigrot AL, Briefer Freymond S, Bachmann I, Hillmann E. 
Perception of emotional valence in horse whinnies. Front Zool. (2017) 14:1–12. doi: 
10.1186/s12983-017-0193-1

 13. McGrath N, Dunlop R, Dwyer C, Burman O, Phillips CJ. Hens vary their vocal 
repertoire and structure when anticipating different types of reward. Anim Behav. 
(2017) 130:79–96. doi: 10.1016/j.anbehav.2017.05.025

 14. Maigrot A-L, Hillmann E, Briefer EF. Encoding of emotional valence in wild 
boar (sus scrofa) calls. Animals. (2018) 8:85. doi: 10.3390/ani8060085

 15. Briefer EF, Sypherd CCR, Linhart P, Leliveld LMC, Padilla de la Torre M, Read 
ER, et al. Classification of pig calls produced from birth to slaughter according to 
their emotional valence and context of production. Sci Rep. (2022) 12:3409. doi: 
10.1038/s41598-022-07174-8

 16. Ede T, Lecorps B, von Keyserlingk MA, Weary DM. Symposium review: 
scientific assessment of affective states in dairy cattle. J Dairy Sci. (2019) 
102:10677–94. doi: 10.3168/jds.2019-16325

 17. Green AC, Lidfors LM, Lomax S, Favaro L, Clark CE. Vocal production in 
postpartum dairy cows: temporal organization and association with maternal and 
stress behaviors. J Dairy Sci. (2021) 104:826–38. doi: 10.3168/jds.2020-18891

 18. Mcloughlin MP, Stewart R, McElligott AG. Automated bioacoustics: methods 
in ecology and conservation and their potential for animal welfare monitoring. J 
Royal Soc Interface. (2019) 16:20190225. doi: 10.1098/rsif.2019.0225

 19. Watts JM, Stookey JM. The propensity of cattle to vocalise during handling and 
isolation is affected by phenotype. Appl Anim Behav Sci. (2001) 74:81–95. doi: 
10.1016/S0168-1591(01)00163-0

 20. Yajuvendra S, Lathwal SS, Rajput N, Raja TV, Gupta AK, Mohanty TK, et al. 
Effective and accurate discrimination of individual dairy cattle through acoustic 
sensing. Appl Anim Behav Sci. (2013) 146:11–8. doi: 10.1016/j.applanim.2013.03.008

 21. de la Torre MP, Briefer EF, Reader T, McElligott AG. Acoustic analysis of cattle 
(Bos taurus) mother–offspring contact calls from a source–filter theory perspective. 
Appl Anim Behav Sci. (2015) 163:58–68. doi: 10.1016/j.applanim.2014.11.017

 22. Green A, Clark C, Favaro L, Lomax S, Reby D. Vocal individuality of Holstein-
Friesian cattle is maintained across putatively positive and negative farming 
contexts. Sci Rep. (2019) 9:18468. doi: 10.1038/s41598-019-54968-4

 23. Boissy A, Le Neindre P. Behavioral, cardiac and cortisol responses to brief peer 
separation and Reunion in cattle. Physiol Behav. (1997) 61:693–9. doi: 10.1016/
S0031-9384(96)00521-5

 24. Holm L, Jensen MB, Jeppesen LL. Calves’ motivation for access to two different 
types of social contact measured by operant conditioning. Appl Anim Behav Sci. 
(2002) 79:175–94. doi: 10.1016/S0168-1591(02)00137-5

 25. Müller R, Schrader L. Behavioural consistency during social separation and 
personality in dairy cows. Behaviour. (2005) 142:1289–306. doi: 
10.1163/156853905774539346

 26. van Reenen CG, O'Connell NE, van der Werf JTN, Korte SM, Hopster H, Jones 
RB, et al. Responses of calves to acute stress: individual consistency and relations 
between behavioral and physiological measures. Physiol Behav. (2005) 85:557–70. 
doi: 10.1016/j.physbeh.2005.06.015

 27. Lecorps B, Kappel S, Weary DM, von Keyserlingk MA. Dairy calves’ personality 
traits predict social proximity and response to an emotional challenge. Sci Rep. 
(2018) 8:16350. doi: 10.1038/s41598-018-34281-2

 28. Nogues E, Lecorps B, Weary DM, von Keyserlingk MA. Individual variability 
in response to social stress in dairy heifers. Animals. (2020) 10:1440. doi: 10.3390/
ani10081440

 29. Briefer EF. Vocal expression of emotions in mammals: mechanisms of 
production and evidence. J Zool. (2012) 288:1–20. doi: 
10.1111/j.1469-7998.2012.00920.x

 30. Volodin IA, Lapshina EN, Volodina EV, Frey R, Soldatova NV. Nasal and oral 
calls in juvenile goitred gazelles (Gazella subgutturosa) and their potential to encode 
sex and identity. Ethology. (2011) 117:294–308. doi: 10.1111/j.1439-0310.2011.01874.x

 31. Sèbe F, Poindron P, Ligout S, Sèbe O, Aubin T. Amplitude modulation is a 
major marker of individual signature in lamb bleats. Bioacoustics. (2018) 27:359–75. 
doi: 10.1080/09524622.2017.1357146

 32. Taylor AM, Charlton BD, Reby D. Vocal production by terrestrial mammals: 
source, filter, and function. Vertebrate Sound Product Acoustic Commun. (2016) 
53:229–59. doi: 10.1007/978-3-319-27721-9_8

 33. Shorten P, Hunter L. Acoustic sensors for automated detection of cow 
vocalization duration and type. Comput Electron Agric. (2023) 208:107760. doi: 
10.1016/j.compag.2023.107760

 34. Jung DH, Kim NY, Moon SH, Jhin C, Kim HJ, Yang JS, et al. Deep learning-
based cattle vocal classification model and real-time livestock monitoring system 
with noise filtering. Animals. (2021) 11. doi: 10.3390/ani11020357

 35. Li G, Xiong Y, Du Q, Shi Z, Gates RS. Classifying ingestive behavior of dairy cows 
via automatic sound recognition. Sensors. (2021) 21:5231. doi: 10.3390/s21155231

 36. Ilie DE, Gao Y, Nicolae I, Sun D, Li J, Han B, et al. Evaluation of single 
nucleotide polymorphisms identified through the use of SNP assay in Romanian 
and Chinese Holstein and Simmental cattle breeds. Acta Biochim Pol. (2020) 
67:341–6. doi: 10.18388/abp.2020_5080

 37. Mincu M, Gavojdian D, Nicolae I, Olteanu AC, Vlagioiu C. Effects of milking 
temperament of dairy cows on production and reproduction efficiency under tied 
stall housing. J Vet Behav. (2021) 44:12–7. doi: 10.1016/j.jveb.2021.05.010

 38. Boersma P., Praat D.W. (2022). Doing phonetics by computer [computer 
program]. Available at: http://www.praat.org/

 39. Reby D, McComb K. Anatomical constraints generate honesty: acoustic cues 
to age and weight in the roars of red deer stags. Anim Behav. (2003) 65:519–30. doi: 
10.1006/anbe.2003.2078

 40. Gabriël J.L.B. (2004). Wiener entropy, script developed in praat v. 4.2.06. 
Available at: https://gbeckers.nl/pages/phonetics.html

 41. Briefer EF, Vizier E, Gygax L, Hillmann E. Expression of emotional valence in 
pig closed-mouth grunts: involvement of both source-and filter-related parameters. 
J Acoust Soc Am. (2019) 145:2895–908. doi: 10.1121/1.5100612

 42. Le TT, Fu W, Moore JH. Scaling tree-based automated machine learning to 
biomedical big data with a feature set selector. Bioinformatics. (2020) 36:250–6. doi: 
10.1093/bioinformatics/btz470

 43. Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Auto-sklearn 2.0: 
hands-free automl via meta-learning. J Mach Learn Res. (2022) 23:11936–96. doi: 
10.48550/arXiv.2007.04074

 44. Daugela K., Vaiciukynas E. (2022). “Real-time anomaly detection for 
distributed systems logs using apache kafka and h2o AI” in International Conference 
on Information and Software Technologies. Springer, 33–42.

 45. Fushiki T. Estimation of prediction error by using k-fold cross-validation. Stat 
Comput. (2011) 21:137–46. doi: 10.1007/s11222-009-9153-8

 46. Chen T., Guestrin C. (2016). “Xgboost: a scalable tree boosting system” in 
Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge 
Discovery and Data Mining, 785–794.

 47. Ye F, Yang J. A deep neural network model for speaker identification. Appl Sci. 
(2021) 11:3603. doi: 10.3390/app11083603

 48. Briefer EF. Coding for ‘dynamic’ information: vocal expression of emotional 
arousal and valence in non-human animals In: T Aubin and N Mathevon, editors. 
Animal signals and communication: coding strategies in vertebrate acoustic 
communication. Springer, Cham. (2020) 7:137–62. doi: 10.1007/978-3-030-39200-0_6

https://doi.org/10.3389/fvets.2024.1357109
https://www.frontiersin.org
https://doi.org/10.3390/ani6060035
https://doi.org/10.1111/nyas.13983
https://doi.org/10.1016/j.neubiorev.2020.01.028
https://doi.org/10.1016/j.applanim.2021.105264
https://doi.org/10.3390/ani6100062
https://doi.org/10.1016/j.tvjl.2016.09.005
https://doi.org/10.1016/j.compag.2008.05.024
https://doi.org/10.1371/journal.pone.0071841
https://doi.org/10.1371/journal.pone.0071841
https://doi.org/10.1016/j.anbehav.2014.11.002
https://doi.org/10.1371/journal.pone.0135414
https://doi.org/10.1371/journal.pone.0135414
https://doi.org/10.1186/s12983-017-0193-1
https://doi.org/10.1016/j.anbehav.2017.05.025
https://doi.org/10.3390/ani8060085
https://doi.org/10.1038/s41598-022-07174-8
https://doi.org/10.3168/jds.2019-16325
https://doi.org/10.3168/jds.2020-18891
https://doi.org/10.1098/rsif.2019.0225
https://doi.org/10.1016/S0168-1591(01)00163-0
https://doi.org/10.1016/j.applanim.2013.03.008
https://doi.org/10.1016/j.applanim.2014.11.017
https://doi.org/10.1038/s41598-019-54968-4
https://doi.org/10.1016/S0031-9384(96)00521-5
https://doi.org/10.1016/S0031-9384(96)00521-5
https://doi.org/10.1016/S0168-1591(02)00137-5
https://doi.org/10.1163/156853905774539346
https://doi.org/10.1016/j.physbeh.2005.06.015
https://doi.org/10.1038/s41598-018-34281-2
https://doi.org/10.3390/ani10081440
https://doi.org/10.3390/ani10081440
https://doi.org/10.1111/j.1469-7998.2012.00920.x
https://doi.org/10.1111/j.1439-0310.2011.01874.x
https://doi.org/10.1080/09524622.2017.1357146
https://doi.org/10.1007/978-3-319-27721-9_8
https://doi.org/10.1016/j.compag.2023.107760
https://doi.org/10.3390/ani11020357
https://doi.org/10.3390/s21155231
https://doi.org/10.18388/abp.2020_5080
https://doi.org/10.1016/j.jveb.2021.05.010
http://www.praat.org/
https://doi.org/10.1006/anbe.2003.2078
https://gbeckers.nl/pages/phonetics.html
https://doi.org/10.1121/1.5100612
https://doi.org/10.1093/bioinformatics/btz470
https://doi.org/10.48550/arXiv.2007.04074
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.3390/app11083603
https://doi.org/10.1007/978-3-030-39200-0_6


Gavojdian et al. 10.3389/fvets.2024.1357109

Frontiers in Veterinary Science 10 frontiersin.org

 49. Moreira SM, Barbosa Silveira ID, da Cruz LAX, Minello LF, Pinheiro CL, 
Schwengber EB, et al. Auditory sensitivity in beef cattle of different genetic origins. 
J Vet Behav. (2023) 59:67–72. doi: 10.1016/j.jveb.2022.10.004

 50. Schnaider MA, Heidemann MS, Silva AHP, Taconeli CA, Molento CFM. 
Vocalization and other behaviors as indicators of emotional valence: the case of 
cow-calf separation and Reunion in beef cattle. J Vet Behav. (2022) 49:28–35. doi: 
10.1016/j.jveb.2021.11.011

 51. Grandin T. The feasibility of using vocalization scoring as an indicator of poor 
welfare during cattle slaughter. Appl Anim Behav Sci. (1998) 56:121–8. doi: 10.1016/
S0168-1591(97)00102-0

 52. Hemsworth PH, Rice M, Karlen MG, Calleja L, Barnett JL, Nash J, et al. Human–
animal interactions at abattoirs: relationships between handling and animal stress in sheep 
and cattle. Appl Anim Behav Sci. (2011) 135:24–33. doi: 10.1016/j.applanim.2011.09.007

 53. Collier K, Townsend SW, Manser MB. Call concatenation in wild meerkats. 
Anim Behav. (2017) 134:257–69. doi: 10.1016/j.anbehav.2016.12.014

 54. Kershenbaum A, Blumstein DT, Roch MA, Akçay Ç, Backus G, Bee MA, et al. 
Acoustic sequences in non-human animals: a tutorial review and prospectus. Biol 
Rev. (2016) 91:13–52. doi: 10.1111/brv.12160

 55. Rhim SJ. Vocalization and behavior of Holstein cows and calves after partial 
and complete separation. Rev Colomb Cienc Pecuarias. (2013) 26:24–9.

https://doi.org/10.3389/fvets.2024.1357109
https://www.frontiersin.org
https://doi.org/10.1016/j.jveb.2022.10.004
https://doi.org/10.1016/j.jveb.2021.11.011
https://doi.org/10.1016/S0168-1591(97)00102-0
https://doi.org/10.1016/S0168-1591(97)00102-0
https://doi.org/10.1016/j.applanim.2011.09.007
https://doi.org/10.1016/j.anbehav.2016.12.014
https://doi.org/10.1111/brv.12160

	BovineTalk: machine learning for vocalization analysis of dairy cattle under the negative affective state of isolation
	Introduction
	Materials and methods
	Ethical statement
	Subjects and experimental approach
	Vocalization recordings
	Classification models

	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

