Check for updates

OPEN ACCESS

EDITED BY Micaela Sgorbini, University of Pisa, Italy

REVIEWED BY Davide Pravettoni, University of Milan, Italy Giulia Sala, University of Pisa, Italy

*CORRESPONDENCE Fei Zhao ⊠ runfor710@163.com Yan Bo ⊠ thoseformylovedpeople@outlook.com

RECEIVED 22 December 2023 ACCEPTED 29 February 2024 PUBLISHED 10 April 2024

CITATION

Ma Z-R, Ma L-L, Zhao F and Bo Y (2024) Effects of oral calcium on reproduction and postpartum health in cattle: a meta-analysis and quality assessment. *Front. Vet. Sci.* 11:1357640. doi: 10.3389/fvets.2024.1357640

COPYRIGHT

© 2024 Ma, Ma, Zhao and Bo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Effects of oral calcium on reproduction and postpartum health in cattle: a meta-analysis and quality assessment

Zheng-Ren Ma¹, Ling-Li Ma², Fei Zhao^{3*} and Yan Bo^{3*}

¹Linxia Animal Husbandry Technology Extension Station, Linxia, China, ²Linxia Animal Quarantine Station, Linxia, China, ³Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medicine of Northwest Minzu University, Lanzhou, China

Postpartum blood calcium (Ca) concentration is related to the reproduction and health of cattle. Oral calcium supplements were given to dairy cows after calving to increase blood Ca concentration and reduce the risk of hypocalcemia. However, studies have shown that oral Ca has different effects in preventing disease. The purposes of this study were (i) to conduct a meta-analysis to evaluate the expected effect of oral Ca on incidence of calving-related diseases, pregnancy risk and milk yield in dairy cows, and (ii) to make a quality assessment of these related studies. In total, 22 eligible studies were included in this review. Meta-analysis showed that oral Ca could significantly reduce the incidence of hypocalcemia (clinical hypocalcemia: relative risk (RR) = 0.67, 95% confidence interval (CI) = [0.52, 0.87]; subclinical hypocalcemia: RR = 0.81, CI = [0.72, 0.91]), and incidence of retained placenta (RR = 0.77, CI = [0.62, 0.95]), improved blood Ca concentrations: mean difference (MD) = 0.08; 95% CI = [0.04, 0.11]. For other results, the meta-analysis revealed a lack of evidence of the correlation between oral Ca and serum magnesium (Mg) / phosphorus (P) concentration (Mg: MD = -0.04; 95% CI = [-0.10, 0.02]; P: MD = 0.05; 95% CI = [-0.10, 0.21]) or incidence of other calving-related disorders (metritis: RR = 1.06, CI = [0.94, 1.19]; ketosis: RR = 1.04, CI = [0.91, 1.18]; mastitis: RR = 1.02, CI = [0.86, 1.21]; displacement of the abomasum: RR = 0.81, CI = [0.57, 1.16]) or pregnancy risk (pregnancy risk at first service: RR = 0.99, CI = [0.94, 1.05]; overall pregnancy rate: RR = 1.03, CI = [0.98, 1.08]) or milk yield (MD = 0.44; 95% CI = [-0.24, 1.13]). The distribution of the funnel plot formed by the included studies was symmetrical, and the Egger's test had a p > 0.05, indicating that there was no significant publication bias. Sensitivity analyses results suggested that the results of metaanalysis are robust. Quality assessment of the included studies revealed that the risk of bias was focused on selection bias, performance bias, detection bias and other sources of bias, and the future research should focus on these aspects.

KEYWORDS

oral calcium, cattle, clinical hypocalcemia, meta-analysis, quality assessment

Introduction

Clinical hypocalcemia (also known as milk fever or parturient paresis) and subclinical hypocalcemia are common perinatal health disorders in dairy cows, which can lead to other clinical diseases or death (1-3). Postpartum milk production of dairy cows will rapidly consume circulating calcium, leading to a decrease in blood calcium (Ca) concentration (4, 5). When the

total blood calcium <1.4 mmol/L, or serum total Ca <2.0 mmol/L with clinical signs, it is diagnosed clinical hypocalcemia (6, 7). There are no obvious clinical symptoms in subclinical hypocalcemia. In published studies, subclinical hypocalcemia was defined using thresholds that varied from 1.88 to 2.35 mmol/L (8).

Ca metabolism is interrelated with other minerals. When the blood calcium concentration decreases, the blood magnesium (Mg) concentration initially increases and then decreases until it stabilizes 3-4 weeks postpartum (9, 10). Some studies have determined that found that prenatal feeding with P-deficient diet had a positive effect on Ca homeostasis of perinatal dairy cows (11, 12). In feedstuffs, sodium (Na), potassium (K), chlorine (Cl) and sulfur (S) are ionic variables in the dietary cation-anion differences (DCAD) equation, and controlling their content in the diet is the key to reducing hypocalcemia in cows (13, 14). Milk fever have effects on decreased reproductive performance, and increased prevalence of other diseases during early lactation (6, 15, 16). Ducusin et al. pointed out that the hypocalcemic condition of parturient paretic cows in vivo causes decreased phagocytosis and resting [Ca2+]i in polymorphonuclear leukocytes, which may partly contribute to greater susceptibility to infection (17). Milk fever can reduce tension and contractility of the uterine muscles, leading to dystocia or retained fetal membranes (18). Although study have pointed out that the occurrence of displaced abomasum was 3.7 times more likely in cows that had subclinical hypocalcemia than in cows with normocalcemia (19), Zurr et al. have found that calcium has negative effects on abomasal motility only at extremely low levels (20). Research shows that postpartum cows will experience three different forms of subclinical hypocalcemia: transient, persistent or delayed, of which persistent and delayed hypocalcemia have harmful effects on health and milk production (5).

Postpartum Ca supplementation is performed by oral, intravenous injection and subcutaneous injection. Owing to convenience, Ca is often orally administered to dairy cows after calving to increase their postpartum blood calcium concentration and reduce the incidence of hypocalcemia (21-23). At present, most farms use the commercial product Ca bolus as a supplement, and its main components are CaCl₂ and CaSO₄. In addition, there are other forms of calcium supplements, such as Ca gel, Ca tubes and Ca fluid preparation (8, 24-31). Although Valldecabres et al. conducted a meta-analysis, it was revealed that oral Ca supplements were not associated with milk yield or pregnancy rate at first service (32). However, the meta-analysis included a small number of outcome indicators and did not evaluate the quality of the included studies (32). The purposes of this study were (i) to conduct a meta-analysis to evaluate the effectiveness of oral Ca on improving calving-related diseases (hypocalcemia, retained placenta, metritis, ketosis, mastitis, displacement of the abomasum), pregnancy risk and milk yield in dairy cows, and (ii) to make a quality assessment of these related studies, so as to provide references for scientific design and implementation of animal research in the future.

Materials and methods

Search strategies

Publications from its establishment to October 19, 2023 were searched in PubMed, Embase and Web of Science databases, and the search was not limited by language. In addition, reference tracks (Federal Bureau of Agriculture), abstracts,¹ and Google Scholar² were used to supplement the search. The search strategies used were: (hypocalcemia OR hypocalcemias OR parturient paresis OR parturient pareses OR animal milk fever) AND (cattle OR *Bos indicus* OR zebu OR zebus OR *Bos taurus* OR domestic cow OR domestic cows OR *Bos grunniens* OR yak OR yaks) AND (calcium OR calcium 40).

Study selection criteria

According to the PRISMA guidelines for Systematic Reviews and Meta-Analysis (33), following the principles of PICO (Problem/ Patient/Population, Intervention/Indicator, Comparison, Outcome), the inclusion standards are pre-defined as follows: (i) question: healthy postpartum cows; (ii) intervention: oral calcium; (iii) comparison: standard interventions except for oral calcium; (iv) results: production-related diseases and blood indicators, including clinical and subclinical hypocalcemia, and Ca, Mg, and P concentrations in the blood, pregnancy risk and milk yield; and (v) study design: control *in vivo* experiment. In contrast, the exclusion criteria were as follows: (i) there are no restrictions on specific cow breed, parity; (ii) no limit to the sources, doses, forms and frequency of oral calcium; (iii) case reports, review articles, and letters; (iv) unreliable or incomplete data.

Data extraction

Two authors collected the details of included studies independently, and a third person adjudicated when they disagreed. These details include: (i) first author name and year of publication; (ii) characteristics of animal models (breed, parity, milk production and feed); (iii) information on treatment/control group, including the treatment drug and control, sample size, calcium form, dosage, time, and number of administrations; and (iv) outcome indicators (incidence of clinical and subclinical hypocalcemia, blood Ca concentrations; Mg and P serum concentrations; the incidence of ketosis, mastitis, metritis, displacement of the abomasum, retained placenta; pregnancy risk at first service, overall pregnancy rate and milk yield). If there are multiple groups of experimental group data with the same intervention in the literature, each group will be considered independent data and included in the analysis. In addition, the data in the graph were measured by using a digital ruler software (Getdata Graph Digitizer, version 2.25, Russia).

Quality evaluation of included studies

The Cochrane Collaboration developed the RoB tool to assess the quality of Randomized Controlled Trial (RCT) to avoid the risk of bias in animal experiments, and the SYRCLE RoB tool is an adapted version of the Cochrane RoB tool. The SYstematic Review Center for Laboratory Animal Experimentation (SYRCLE) RoB tool was used to assess the risk of bias in animal studies by using the 10 items: sequence

¹ www.ebsco.com/

² www.scholar.google.com.cn

generation (selection bias), baseline characteristics (selection bias), allocation concealment (selection bias), random housing (performance bias), blinding (performance bias), random outcome assessment (detection bias), blinding (detection bias), incomplete outcome data (attrition bias), selective outcome reporting (reporting bias), other sources of bias (other). The evaluation results of each project classify the research into high risk, low risk or unclear risk according to PRISMA guidelines. In the result chart, red, green and yellow represent "high risk," "low risk" and "unclear risk" respectively (34).

Statistical analysis

This study, used RStudio software (version 5701.9.1.0) for data analysis. The mean difference (MD) with 95% confidence interval (CI) for continuous variables and relative risk (RR) with 95% CI for dichotomous variables were calculated. Heterogeneity was assessed using I² and Π^2 statistical tests, and heterogeneity was considered high, if I² was greater than 50%. Sensitivity analyses were performed for outcome measures with moderate heterogeneity (heterogeneity I² of nearly 50%) to assess the robustness of the results. Statistical significance was set at p < 0.05. Publication bias assessment was performed using Egger's test.

Results

Literature screening

A total of 2,110 potentially relevant studies were identified through a database searching and supplementary searches. 343 studies were considered duplicated, while 1,402 studies were excluded since they did not meet the inclusion criteria. Finally, 22 eligible studies were included, as shown in Figure 1 (English=21, German=1).

Characteristics of the included studies

Of the 22 eligible studies, 15 studies used Holstein cows, three studies used Jersey cows, and five studies adopted crossbred cows. One study did not report the breed used for their experiment. Regarding parity, 12 studies used multiparous cows, eight used primiparous and multiparous cows, and two did not report parity. Seventeen studies reported milk production in cows, and 18 reported DCAD. The major outcome indicators were the incidence of clinical and subclinical hypocalcemia. Secondary outcome indicators include the concentration of Ca, Mg, and P in the blood; incidence of ketosis, mastitis, metritis, displacement of the abomasum, retained placenta; pregnancy risk at first service, overall pregnancy rate and milk yield. The overall characteristics of the included studies are summarized in Table 1.

The definitions of clinical diseases in the included studies are not consistent. Clinical hypocalcemia is defined as lying flat within 24 h after delivery, corrected by intravenous injection of calcium, or as the symptoms of lying weak or cold limbs without signs of physical injury within 72 h after delivery (28, 29). Subclinical hypocalcemia is defined as serum Ca \leq 2.12 mmol/L, or blood total Ca < 2.125 mM, or \leq 1.00 mmol/L on calving day (23, 35, 38). Ketosis is defined as a sharp drop in milk production, with acetoacetic acid in urine, or

BHBA \geq 1.2 mmol/L on BHBA test (24, 25, 38). Metritis is defined as foul-smelling uterine secretions that are red to brown within 14 days after delivery, or body temperature \geq 39.5\u00b0C, lethargy, anorexia and vaginal discharge (29, 35). Displacement of the abomasum is defined as the decrease of milk production, and at the same time, when tapping and auscultating the left or right abdominal wall between the ninth and twelfth rib spaces, high-pitched tympanic resonance can be heard, with or without colic (24). Retained placenta is defined as the fetal membranes or placenta were not discharged within 24 h after delivery (28, 29, 35).

Characteristics of the treatment

The characteristics of the interventions are presented in Table 2. Table 2 is as simple as possible, but due to the characteristics of study design or intervention, some studies have extracted multiple sets of data. The sample sizes of the included studies varied widely, ranging from 10 to 3,999 animals, with only 10 studies having the same sample size for the experimental and control groups. Accurate data of cows assigned to each experimental group could not be obtained from one study after contacting the authors (46). The treatment group cows in the included studies used different forms of Ca, including Ca gel, Ca tube, Ca bolus or Ca liquid preparation, among which Ca bolus was the most commonly used (18 studies). Cows in the control group usually have no calcium supplement, and only one study used a placebo made of test tubes filled with gelatin. There are varying many sources of Ca, and in most studies, calcium chloride (CaCl₂) was used as the primary calcium source, one study did not report Ca sources. Eighteen studies used commercial brands of calcium. Moreover, the treatment times and frequencies in the included studies were inconsistent. In most studies, the time for oral calcium administration was 0-6, 12, and 24h after calving. The times for the treatment regimen was 1 to 3, only two articles administer oral calcium 5 times. The dose was also inconsistent (25-110g).

Quality evaluation of the included studies

The quality assessment of the included studies using SYRCLE's RoB tool is show in Figure 2, in which all 22 studies were considered as controlled studies. Sixteen studies used random methods to generate sequences (low risk, green), however in four studies, cows were alternately assigned to treatment and control groups, based on the calving date or lactation order (high risk, red). Two studies did not describe the grouping method (unclear risk, yellow). The number of animals in the experimental and control groups in the 12 studies was also inconsistent; therefore, the risk of bias assessment of their "baseline characteristics" was unclear (unclear risk, yellow), and 19 studies adjusted for confounders in the analysis (low risk, green). Eleven studies described the allocation concealment method (low risk, green), and during the experiment implementation stage, seven studies mentioned random housing of the animals (low risk, green), while, 15 studies did not describe them (unclear risk, yellow). Lighting, humidity, temperature and other housing conditions are known to affect the research results, so it is necessary to randomize the feeding of these animals to reduce the performance bias (48). Only seven studies mentioned blinding measures used to blind trial

investigators, study designers, and the outcome assessors from avoiding know which intervention each cow had received (low risk, green). Moreover, nine studies mentioned random selection of animals for assessment (low risk, green). Twenty-two studies described complete data for each primary outcome (low risk, green). In the assessment of "Is the study report irrelevant to selective outcome reporting," all studies were considered low risk of bias (low risk, green). Eight studies mentioned other problems that could have resulted in an unclear risk of bias (low risk, green).

Incidence of clinical and subclinical hypocalcemia

A meta-analysis of the five studies showed that oral Ca significantly reduced the incidence of clinical hypocalcemia, compared to the control (n = 1,629; RR = 0.67; 95% CI = [0.52, 0.87], p = 0.003; heterogeneity I² = 49%; Figure 3A), and the difference between the two groups was statistically significant. The meta-analysis of six studies shown that oral Ca significantly reduced the incidence of subclinical hypocalcemia (n = 4,903; RR = 0.81; 95% CI = [0.72, 0.91], p = 0.0005; heterogeneity I² = 66%; Figure 3B). The difference between the two groups was statistically significant.

Blood indicators

A meta-analysis of 14 studies showed that oral Ca significantly improves Ca concentration in blood compared to the control (n = 1797; MD = 0.08; 95% CI = [0.04, 0.11]; p < 0.0001;heterogeneity I² = 73%; Figure 4A), the difference between the two groups was statistically significant. The meta-analysis of serum Mg and P concentrations illustrated in Figures 4B,C, the MD of serum Mg concentrations was -0.04 (95% CI = [-0.10, 0.02]; p = 0.2068;heterogeneity I² = 87%), the result was not statistically significant; the MD of serum P concentrations was 0.05 (95% CI = [-0.10, 0.21]; p = 0.4944; heterogeneity I² = 79%), this result was not statistically significant.

Incidence of calving-related clinical disorders

In this study, other calving-related clinical disorders including: retained placenta, metritis, ketosis, mastitis, displacement of the abomasum were included. The results of meta-analysis are shown in Figures 5, 6. A meta-analysis of the six studies showed that oral Ca significantly reduced the incidence of retained placenta,

Study		Animal		Fe	eed	Outcome
	Breed	Parity	Milk production (kg/cow/ year)	Prepartum DCAD ² (mEq/kg DM)	Postpartum DCAD ² (mEq/kg DM)	
Melendez et al. (24)	Holstein	PP and MP	10,500	-80	NR	a, f, h, i, k, l, m
Goff et al. (25)	Holstein, Jersey	MP	NR	NR	NR	b, c, f, g, i, j
Valldecabres et al. (26)	Jersey, Jersey × Holstein	MP	Herd A:8748, Herd B:9697	Herd A: -176.1 Herd B: -145.5	Herd A: 145.5 Herd B: 294	k, l, m
Kurek et al. (27)	Holstein × Friesian	3–6 years old	9,000	NR	NR	c, d, e
Hajikolaei et al. (28)	Holstein	MP	12,047	-126	339	a, g, j, l
Leno et al. (29)	Holstein	PP and MP	13,486	Herd A: –69, Herd B: –28, Herd C: –55, Herd D: –4, Herd E: 73;141, Herd F: –28	Herd A: 209, Herd B: 193, Herd C: 320, Herd D: 254, Herd E: 237, Herd F: 244	b, c, g, h, i, j, k, m
Jahani-Moghadam et al. (30)	Holstein	MP	12,993	89	373	a, b, c, d, e, f, j, k, l, m
Melendez et al. (31)	Holstein	MP	7,500	-86	196	c, d, e, m
Ramella et al. (35)	Holstein	PP and MP	9,150	33.3	188.6	b, c, d, e, h, j, m
Stevenson et al. (36)	NR	МР	NR	NR	NR	c, d, e, k, l, m
Braun et al. (37)	Swiss Brown Swiss, Simmental, Holstein × Friesian	NR	NR	NR	NR	c, d
Oetzel et al. (38)	Holstein	PP and MP	NR	Herd A: –109 Herd B: –18	Herd A: 283 Herd B: 285	f, g, h, i, k, l, m
Reitsma et al. (39)	Jersey \times Holstein	PP and MP	NR	-182	262	c, g, h, l, m
Farnia et al. (40)	Holstein	MP	12,407	-113	263	c, d, e, l
Valldecabres et al. (23)	Jersey	MP	7,259	-176.1	145.5	b, c, d, e, h
Martinez et al. (41)	Holstein	PP and MP	13,635	PP: 6±37 MP: -153±96	PP: 394±66 MP: 442±38	k, l, m
Martinez et al. (42)	Holstein	PP and MP	13,635	PP: 6±37 MP: -153±96	PP: 394±66 MP: 442±38	b, c, d, h
Domino et al. (43)	Holstein	MP	12,200	-100	200	a, g, h, j, k, m
Blanc et al. (44)	Jersey × Holstein crossbreed	МР	8,235	-174	188.4	c
Jahani-Moghadam et al. (45)	Holstein	MP	10,980	-94	265	b, c, d, e
Pinedo et al. (46)	Holstein	PP and MP	9,150	-100	NR	a, c
Mahjoubi et al. (47)	Holstein	MP	12,505	-93	252	k

TABLE 1 Characteristics of 23 included studies.

NR, Not reported; DCAD, Dietary cation-anion difference, DCAD (mEq/kg) = [(Na+K) - (Cl+S)]; PP, primiparous cows; MP, multiparous cows; T, Treatment; C, Control; a: Incidence of Clinical hypocalcemia; b: Incidence of Subclinical hypocalcemia; c: Ca concentrations of plasma/serum; d: Mg concentrations of serum; e: P concentrations of serum; f: Incidence of Ketosis; g: Incidence of Mastitis; h: Incidence of Metritis; i: Incidence of Displacement of the abomasum; j: Incidence of Retained placenta; k: Pregnancy risk at first service; l: Overall pregnancy rate; m, Milk yield.

compared to the control (n = 4,523; RR = 0.77; 95% CI = [0.62, 0.95], p = 0.0151; heterogeneity I² = 23%; Figure 5A), the difference between the two groups was statistically significant. The RR of incidence of metritis was 1.06 (n = 6,112; 95% CI = [0.94, 1.19]; p = 0.3567; heterogeneity I² = 36%; Figure 5B); the RR of incidence of ketosis was 1.04 (n = 1,053, 95% CI = [0.91, 1.18]; p = 0.5933; heterogeneity I² = 0%; Figure 6A); the RR of incidence of mastitis was 1.02 (n = 5,854; 95% CI = [0.86, 1.21]; p = 0.8436; heterogeneity I² = 1%; Figure 6B); the RR of incidence of displacement of the abomasum was 0.81 (n = 3,357; RR = 0.81; 95% CI = [0.57, 1.16];

p > 0.2573; heterogeneity I²=28%; Figure 6C); however, these results are not statistically significant (incidence of metritis, ketosis, mastitis and displacement of the abomasum).

Pregnancy risks and milk yield

In addition, we performed a meta-analysis of the number of pregnancies and milk yield, the RR of pregnancy risk at first service was 0.99 (n = 7,481; 95% CI=[0.94, 1.05]; p = 0.8309; heterogeneity

TABLE 2 Characteristics of treatment.

Study					Interve	ntion			
	Treatment (Ca forms)	Control	Sample size(T)	Sample size(C)	Ca sources	Ca brand	Postpartum treatment time(hours)	Dose (g/ Time)	Frequency of oral administration
Melendez et al. (24)	Ca gel	no oral	158	160	CaCl ₂	Super Calcium Gel [*] , RX Veterinary Products, Deramus, Kansas City, MO	6	60	1
	Ca tubes	placebo ¹	25	21	Ca-propionate	calcium propionate powder, Kemin Industries, Inc., Des Moines, IA	2, 12	74	2
Goff et al. (25)	Ca tubes	no oral	21	24	Ca-propionate	calcium propionate powder, Kemin Industries, Inc., Des Moines, IA	2, 12	74	2
	Ca tubes	no oral	29	28	Ca-propionate	calcium propionate powder, Kemin Industries, Inc., Des Moines, IA	2, 12	111	2
Valldecabres	Ca bolus ¹	no oral	364	344	CaCl ₂ , Ca- propionate, Ca-lactate, CaSO ₄	QuadriCalMINI, Bio-Vet Inc., Barneveld, WI	2 h 55 min ± 2 h 10 min, 29 h 36 min ± 5 h 54 min	50~60	2
et al. (26)	Ca bolus ¹	no oral	230	237	CaCl ₂ , Ca- propionate, Ca-lactate, CaSO ₄	QuadriCalMINI, Bio-Vet Inc., Barneveld, WI	3h 26 min ± 2h 24 min, 26 h 9 min ± 2h 12 min	50~60	2
Kurek et al.	Ca fluid preparation	no oral	20	20	CaCl ₂	Ionized Ca	directly before parturition, 24, 48	62.5	3
(27)	Ca bolus ²	no oral	20	20	CaCl ₂ , CaSO ₄	pure Ca	0	43	1
Hajikolaei et al. (28)	Ca bolus	no oral	79	80	CaCl ₂	NR	0, 12	50	2
Leno et al. (29)	Cal bolus ¹	no oral	2001	1998	CaCl ₂ , CaSO ₄ , Ca- propionate, Ca-lactate	Quadrical, Bio-Vet Inc., Barneveld, WI	24	54~64	3
Jahani- Moghadam et al. (30)	Ca bolus	no oral	33	33	CaCl ₂ , Ca- propionate, Ca-fomate	CalciZA, Pazhuhesh Parvar Zayand Co., Isfahan, Iran	0, 24	45	2

(Continued)

TABLE 2 (Continued)

Study					Interve	ntion			
	Treatment (Ca forms)	Control	Sample size(T)	Sample size(C)	Ca sources	Ca brand	Postpartum treatment time(hours)	Dose (g/ Time)	Frequency of oral administration
Melendez et al. (31)	Ca bolus	no oral	30	30	CaCl ₂	CalMate*, Drench-Mate, B & B Manufacturing, Sumas, WA, USA	0, 24	44	2
Ramella et al. (35)	Ca fluid preparation	no oral	60	60	Ca-formate	Calfon® oral; Bayer Saúde Animal; Brazil	5, 24	50	2
Stevenson et al. (36)	Ca fluid preparation	placebo	179	177	CaCl ₂	CaCl ₂ in oil	6~24, 19~36	49	2
Braun et al. (37)	Ca bolus	no oral	5	5	Ca-lactate	Propeller Calcium Drink*, Provet AG, 3421 Lyssach	1	80	1
Oetzel et al. (38)	Ca bolus	no oral	431	496	CaCl ₂ , CaSO ₄	Bovikalc, Boehringer Ingelheim, St. Joseph, MO	0, 8 ~ 35	43	2
	Ca bolus	no oral	41	42	CaCl ₂ , CaSO ₄ , Ca-propionate	MB Nutritional Sciences in Lubbock, Texas	24, after 24	50	2
Reitsma et al. (39)	Ca bolus	no oral	21	22	CaCl₂, CaSO₄, Ca-propionate	MB Nutritional Sciences in Lubbock, Texas	24, after 24	25	2
	Ca bolus	no oral	21	22	CaCl ₂ , CaSO ₄ , Ca-propionate	MB Nutritional Sciences in Lubbock, Texas	24, after 24	50	2
Farnia et al. (40)	Ca fluid preparation	no oral	14	14	CaCl ₂	CaCl2 diluted in a minimal amount of water	1, 12	50	2
Valldecabres et al. (23)	Ca bolus	no oral	100	105	CaCl ₂ , Ca propionate, Ca lactate, CaSO ₄	QuadriCalMINI, Bio-Vet Inc., Barneveld, WI	2h 50 min ±2h 01 min, 18h 37 min ±6h 8 min	50-60	2
Martinez	Ca bolus	no oral	150	150	CaCl ₂ , CaSO ₄ ·0.5H ₂ O, CaSO ₄ ·2H ₂ O	Bovikalc; Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO	d 0 and 1	86	2
et al. (41)	Ca bolus	no oral	150	150	CaCl ₂ , CaSO ₄ ·0.5H ₂ O, CaSO ₄ ·2H ₂ O	Bovikalc; Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO	d 0 and 1 (86 g/d), d 2, 3 and 4 (43 g/d)	86,43	5

(Continued)

TABLE 2 (Continued)

Study					Interve	ntion			
	Treatment (Ca forms)	Control	Sample size(T)	Sample size(C)	Ca sources	Ca brand	Postpartum treatment time(hours)	Dose (g/ Time)	Frequency of oral administration
	Ca bolus	no oral	6	6	CaCl ₂ , CaSO ₄ •0.5H ₂ O, CaSO ₄ •2H ₂ O	Bovikalc; Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO	d 0	43	1
Martinez et al. (42)	Ca bolus	no oral	6	6	CaCl ₂ , CaSO ₄ •0.5H ₂ O, CaSO ₄ •2H ₂ O	Bovikalc; Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO	d 0	86	1
	Ca bolus	no oral	150	150	CaCl ₂ , CaSO ₄ •0.5H ₂ O, CaSO ₄ •2H ₂ O	Bovikalc; Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO	0,24	86	2
	Ca bolus	no oral	150	150	CaCl ₂ , CaSO ₄ •0.5H ₂ O, CaSO ₄ •2H ₂ O	Bovikalc; Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO	d 0 and 1 (86 g/d), d 2, 3 and 4 (43 g/d)	86,43	5
Domino et al. (43)	Ca bolus	no oral	475	523	NR	Bovikalc, Boehringer Ingelheim, St. Joseph, MO	0.5, 7 ~ 32	43	2
Blanc et al. (44)	Ca bolus	no oral	11	11	CaCl ₂ , CaSO ₄	Bovikalc bolus, Boehringer Ingelheim, St. Joseph, MO	1~5, 13~17	43	2
Jahani- Moghadam et al. (45)	Ca bolus	no oral	2	24	CaCl ₂ , Ca propionate, Ca fumarate	Pajohesh Parvare Zayand Company, Isfahan, Iran	0, 24	45	2
Pinedo et al. (46)	Ca bolus	no oral	45	43	CaCl ₂ , CaSO ₄	Bovikalc bolus, Boehringer Ingelheim, St. Joseph, MO	d 0,1 and 2	43	3
Mahjoubi	Ca bolus	no oral	115	109	CaCl ₂ , CaSO ₄ , calcium propionate	CALCI-UP; Ati Saman Fidar Parsa Company, Qom, Iran	3h, 24h±1h	43	2
et al. (47)	Ca bolus	no oral	113	109	CaCl ₂ , CaSO ₄ , calcium propionate	CALCI-UP; Ati Saman Fidar Parsa Company, Qom, Iran	24h±1h,48h±1h	43	2

Some studies have yielded multiple sets of data due to the nature of the study design or intervention. T, Treatment; C, Control; d, day; NR, Not reported; Ca tubes, The tube is filled with a paste of calcium propionate mixed with distilled water; Ca bolus¹, Boluses also contained an undisclosed amount of niacin and vitamin D3 except Ca; Ca bolus², An intraruminal bolus containing 43 g of pure calcium; Placebo¹, A test tube filled with gelatin (Knox Gelatine, Inc., Englewood Cliffs, NJ) is made into a placebo.

I²=42%; Figure 7A), the result was not statistically significant; the RR of overall pregnancy rate was 1.03 (n=3,411; 95% CI=[0.98, 1.08]; p>0.2030; heterogeneity I²=7%; Figure 7B), this result was not

statistically significant; the MD of milk yield was 0.44 (95% CI = [-0.24, 1.13]; p = 0.2022; heterogeneity $I^2 = 99\%$; Figure 7C), the result was still not statistically significant.

Study	Total	Ca Mean SD		Control Mean SD		MD	95%-CI	Weigh
Goff et al. 1996©	25	1 90 0 2000	21	1 71 0 2400	-1 ÷	0.00	[-0.07: 0.25]	2.40
Goff et al., 1996©	25	1.80 0.3000 1.80 0.4200		1.71 0.2400 1.50 0.3300			[-0.07, 0.25]	
Goff et al., 1996®	29			1.83 0.2400			[0.02; 0.30]	
Leno et al.,2018	25			1.97 0.2000			[-0.15; 0.07]	
Melendez et al.,20210	10						[-0.13; 0.21]	
Melendez et al.,2021©	10							
Melendez et al.,2021©	10						[0.10; 0.24]	
				1.89 0.2500				
Kurek et al.,2016	20			1.83 0.1900			[0.14; 0.34]	
Kurek et al.,2016@	20			1.83 0.1900			[0.12; 0.32]	
Jahani-Moghadam et al.,2018				1.54 0.5000			[0.01; 0.45]	
Ramella et al.,2020	60			2.13 0.2200			[-0.09; 0.05]	
Stevenson et al., 1999		2.13 0.2800					[-0.07; 0.05]	
Braun et al.,2012	5			1.64 0.2200			[-0.55; 0.37]	
Farnia et al.,2018	14						[0.02; 0.16]	
Valldecabres et al.,2018	34			2.27 0.3700			[-0.32; 0.04]	
Reitsma et al.,2020	21						[-0.04; 0.06]	
Reitsma et al.,2020@	21						[-0.05; 0.05]	
Martinez et al.,2016B®	6			2.09 0.0500			[-0.02; 0.10]	
Martinez et al.,2016Bo	6			2.09 0.0500			[0.05; 0.17]	
Martinez et al.,2016B®	148						[0.02; 0.08]	
Martinez et al.,2016B@	148						[0.07; 0.13]	
Blanc et al.,2014	11			1.85 0.3300			[-0.13; 0.43]	
Pinedo et al.,2021	45	2.14 0.0700	43	2.08 0.0700	1	0.06	[0.03; 0.09]	6.7
Random effects model	898		899			0.09	[0.04; 0.11]	100.00
Heterogeneity: $I^2 = 73\%$, $\tau^2 = 0.0$			035			0.00	[0.04, 0.11]	100.0
	, p	0.01			-0.4 -0.2 0 0.2 0.4			
	[~ .		-	tiona	Favors control Favors suppl	ementa	tion	
B Serum M	lg (ua					
Study	Total	Ca Mean SD	Total	Control Mean SD	Mean Difference	MD	95%-CI	Weigh
Kurek et al.,20160	20	0.89 0.0800	20	1.27 0.2200	il	-0.38	[-0.48; -0.28]	7.19
Kurek et al.,2016o	20	1.07 0.1300	20	1.27 0.2200			[-0.31; -0.09]	6.9
					<u>, 1</u>			7.79
Jahani-Moghadam et al. 2018	33	1.02 0.1700	33	1.03 0.1700		-0.01	[-0.09; 0.07]	
Jahani-Moghadam et al.,2018 Stevenson et al.,1999	33 176	1.02 0.1700 0.75 0.2800	33 174	1.03 0.1700 0.72 0.1300			[-0.09; 0.07] [-0.02; 0.08]	
Stevenson et al., 1999		0.75 0.2800				0.03	[-0.02; 0.08]	8.5
Stevenson et al.,1999 Braun et al.,2012	176	0.75 0.2800 1.13 0.3300	174	0.72 0.1300 1.17 0.0700		0.03 -0.04	[-0.02; 0.08] [-0.34; 0.26]	8.5 2.9
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2018	176 5	0.75 0.2800 1.13 0.3300 0.80 0.0100	174 5	0.72 0.1300 1.17 0.0700 0.84 0.0200		0.03 -0.04 -0.04	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03]	8.5 2.9 8.9
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020	176 5 14	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900	174 5 14	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400		0.03 -0.04 -0.04 -0.03	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05]	8.5 2.9 8.9 7.8
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018	176 5 14 60 34	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300	174 5 14 60	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900		0.03 -0.04 -0.04 -0.03 0.07	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17]	8.5 2.9 8.9 7.8 7.3
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2021	176 5 14 60 34 30	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500	174 5 14 60 39 30	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500		0.03 -0.04 -0.03 0.07 0.02	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05]	8.5 2.9 8.9 7.8 7.3 8.8
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2021 Martinez et al.,2016Bo	176 5 14 60 34 30 6	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500	174 5 14 60 39	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500		0.03 -0.04 -0.03 0.07 0.02 0.00	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06]	8.5 [°] 2.9 [°] 8.9 [°] 7.8 [°] 7.3 [°] 8.8 [°] 8.3 [°]
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2021 Martinez et al.,2016B⊙ Martinez et al.,2016B⊙	176 5 14 60 34 30	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500	174 5 14 60 39 30 6	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500		0.03 -0.04 -0.03 0.07 0.02 0.00 0.01	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07]	8.5 2.9 8.9 7.8 7.3 8.3 8.3
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2021 Martinez et al.,2016B©	176 5 14 60 34 30 6 6	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500	174 5 14 60 39 30 6 6	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.94 0.0500		0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01]	8.5° 2.9° 7.8° 7.3° 8.8° 8.3° 8.3° 8.3°
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2021 Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B	176 5 14 60 34 30 6 148 148	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.91 0.1200	174 5 14 60 39 30 6 6 148 148	$\begin{array}{cccc} 0.72 & 0.1300 \\ 1.17 & 0.0700 \\ 0.84 & 0.0200 \\ 1.05 & 0.2400 \\ 0.93 & 0.1900 \\ 1.01 & 0.0500 \\ 0.94 & 0.0500 \\ 0.94 & 0.0500 \\ 0.93 & 0.1200 \end{array}$		0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.01]	8.5' 2.9' 8.9' 7.8' 7.3' 8.8' 8.3' 8.3' 8.3' 8.3' 8.8' 8.8'
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Martinez et al., 2016B Martinez et al., 2016B	176 5 14 60 34 30 6 6 148 148 700	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.91 0.1200 0.94 0.1200	174 5 14 60 39 30 6 6 148	$\begin{array}{cccc} 0.72 & 0.1300 \\ 1.17 & 0.0700 \\ 0.84 & 0.0200 \\ 1.05 & 0.2400 \\ 0.93 & 0.1900 \\ 1.01 & 0.0500 \\ 0.94 & 0.0500 \\ 0.94 & 0.0500 \\ 0.93 & 0.1200 \end{array}$		0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01]	8.5' 2.9' 8.9' 7.8' 7.3' 8.8' 8.3' 8.3' 8.3' 8.3' 8.8' 8.8'
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2021 Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B	176 5 14 60 34 30 6 6 148 148 700	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.91 0.1200 0.94 0.1200	174 5 14 60 39 30 6 6 148 148	0.72 0.1300 1.17 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200	-0.4 -0.2 0 0 0.2 0.4	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04	[-0.02; 0.08] [-0.34; 0.26] [-0.34; 0.26] [-0.03; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02]	8.5 ⁶ 2.9 ⁶ 8.9 ⁶ 7.3 ⁶ 8.8 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2020 Waltiecabres et al.,2010 Martinez et al.,2016B Martinez et al.,2016B	176 5 14 60 34 30 6 148 148 148 700	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.91 0.1200 0.94 0.1200 < 0.01	174 5 14 60 39 30 6 6 148 148 148 703	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.94 0.0500 0.93 0.1200	-0.4 -0.2 0 0.2 0.4 Favors control 0 Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04	[-0.02; 0.08] [-0.34; 0.26] [-0.34; 0.26] [-0.03; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02]	8.5 ⁶ 2.9 ⁶ 8.9 ⁶ 7.3 ⁶ 8.8 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Martinez et al., 2021 Martinez et al., 2016B \odot Martinez et al., 2016B \odot	176 5 14 60 34 30 6 148 148 148 700	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.94 0.1200 < 0.01 Centin Ca	174 5 14 60 39 30 6 6 148 148 148 703	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04	[-0.02; 0.08] [-0.34; 0.26] [-0.34; 0.26] [-0.03; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02]	8.5 ⁶ 2.9 ⁶ 8.9 ⁶ 7.3 ⁶ 8.8 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶ 8.3 ⁶
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2020 Waltdecabres et al.,2021 Martinez et al.,2016B Martinez et al.,2016B	176 5 14 60 34 30 6 148 148 148 148 700 109, <i>p</i>	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.94 0.1200 < 0.01 Centin Ca	174 5 14 60 39 30 6 6 148 148 148 703	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04	[-0.02; 0.08] [-0.34; 0.26] [-0.34; 0.26] [-0.03; -0.03] [-0.11; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02]	8.5 [°] 2.9 [°] 8.9 [°] 7.8 [°] 7.3 [°] 8.8 [°] 8.3 [°] 8.3 [°] 8.3 [°] 8.3 [°] 8.3 [°] 8.3 [°] 8.3 [°] 8.3 [°]
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2010 Martinez et al.,2016B \odot Martinez et al.,2016B \odot Random effects model Heterogeneity: $I^2 = 87\%$, $\tau^2 = 0.0^\circ$ C Serum P Study Kurek et al.,2016 \odot	176 5 14 60 34 30 6 148 148 148 700 109, <i>p</i> CO Total 20	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.94 0.1200 0.94 0.1200 < 0.01 Ca Mean SD 1.84 0.4600	174 5 14 60 39 30 6 148 148 703 703 Total 20	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.04 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control Mean SD 1.54 0.3900	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 mentati	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.01] [-0.10; 0.02] [-0.10; 0.02] ion 95%-Cl [0.04; 0.56]	8.5 2.9 8.9 7.8 7.8 8.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 100.0 9 100.0 9
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2010 Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016 Kurek et al.,2016 Kurek et al.,2016 Kurek et al.,2016	176 5 14 60 34 30 6 6 148 148 109, <i>p</i> - CO Total 20 20	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.94 0.1200 < 0.01 Cambra SD 1.84 0.4600 1.97 0.2800	174 5 14 60 39 30 6 6 148 148 148 703 703 Total 20 20	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control Mean SD 1.54 0.3900 1.54 0.3900	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 mentati MD -0.30 - 0.43	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.07] [-0.02; 0.04] [-0.10; 0.02] [0.10; 0.02] [0.10; 0.02]	8.5 2.9 8.9 7.8 7.8 8.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 9.0 9 100.0 9 100.0 9 10.7 12.2
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Melendez et al.,2018 Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Martinez et al.,2016B Random effects model Heterogeneity: $J^2 = 87\%$, $\tau^2 = 0.0^{\circ}$ C Serum P Study Kurek et al.,2016 Kurek et al.,2016 Jahani-Moghadam et al.,2018	176 5 14 60 34 30 6 6 6 148 148 148 148 700 109, <i>p</i> · CO Total 20 20 33	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.0500 0.94 0.1200 < 0.01 Ca Mean SD 1.84 0.4600 1.97 0.2800 1.69 0.3400	174 5 14 60 39 30 6 6 148 148 703 703 Total 20 20 33	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control Mean SD 1.54 0.3900 1.54 0.3900 1.54 0.3900 1.51 0.2900	Favors control Favors supple	0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 mentati MD - 0.30 - 0.43 0.08	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.11; 0.05] [-0.01; 0.05] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.07] [-0.02; 0.04] [-0.02; 0.04] [-0.10; 0.02] ion 95%-Cl [0.22; 0.64] [-0.27; 0.23]	8.5' 2.9' 8.9' 7.3' 8.8' 8.3' 8.8' 100.0' 100.0' 10.0' 12.2 13.7'
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramelia et al.,2020 Valldecabres et al.,2018 Martinez et al.,2016B \odot Martinez et al.,2016B \odot Martinez et al.,2016B \odot Martinez et al.,2016B \odot Martinez et al.,2016B \odot Random effects model Heterogeneity: $J^2 = 87\%$, $\tau^2 = 0.0^\circ$ C Serum P Study Kurek et al.,2016 \odot Kurek et al.,2016 \odot Jahani-Moghadam et al.,2018 Stevenson et al.,1999	176 5 14 60 34 30 6 6 148 148 109, <i>p</i> - CO Total 20 20	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.94 0.0500 0.94 0.1200 <<0.01 Ca Mean SD 1.84 0.4600 1.97 0.2800 1.69 0.3400 1.56 0.5300	174 5 14 60 39 30 6 6 148 148 148 703 703 Total 20 20	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.05 0.2400 0.94 0.0500 0.94 0.0500 0.93 0.1200 ONS Control Mean SD 1.54 0.3900 1.54 0.3900 1.61 0.2900 1.61 0.2900	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 mentati 0.30 - 0.43 0.03 - 0.43 0.05	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.03; 0.17] [-0.03; 0.17] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01] [-0.05; 0.01] [-0.10; 0.02] [-0.10; 0.02] [0.04; 0.56] [0.22; 0.64] [-0.07; 0.23] [-0.16; 0.06]	8.5 2.9 7.8 8.9 7.3 8.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2021 Martinez et al.,2018 Martinez et al.,2016B Martinez et al.,2016 Kurek et al.,2016 Kurek et al.,2016 Stevenson et al.,2018	176 5 14 60 34 30 6 6 6 148 148 148 109, <i>p</i> CO Total 20 20 20 33 3176 14	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.94 0.1200 0.94 0.1200 <<0.01 Cambra SD 1.84 0.4600 1.97 0.2800 1.69 0.3400 1.56 0.5300 1.76 0.3100	174 5 14 60 39 30 6 6 6 8 4 8 703 703 703 703 704 705 705 705 705 705 705 705 705 705 705	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.04 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control Mean SD 1.54 0.3900 1.54 0.3900 1.61 0.2500	Favors control Favors supple	0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 mentati MD - 0.30 - 0.43 0.08 -0.08 -0.06	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.05; -0.03] [-0.03; 0.17] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02] [-0.10; 0.02] [-0.10; 0.05] [-0.22; 0.64] [-0.22; 0.64] [-0.05; 0.37]	8.5' 2.9' 8.9' 7.8' 7.3' 8.8' 8.3' 8.3' 8.3' 8.3' 8.3' 100.0' 100
Stevenson et al.,1999 Braun et al.,2012 Farnia et al.,2012 Farnia et al.,2018 Ramella et al.,2020 Valldecabres et al.,2018 Martinez et al.,2016B Martinez et al.,2016 Martinez et al.,2016 Kurek et al.,2016 Kurek et al.,2016 Kurek et al.,2016 Kurek et al.,2016 Stevenson et al.,1999 Farnia et al.,2018 Ramella et al.,2020	176 5 14 60 34 30 6 6 6 148 148 148 700 109, <i>p</i> CO Total 20 20 33 3 176 6 4 4 6 0 14 4 8 4 14 6 0 14 6 0 14 14 14 14 14 14 14 14 14 14 14 14 14	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.91 0.1200 0.94 0.1200 < 0.01 Cambra SD 1.84 0.4600 1.97 0.2800 1.69 0.3400 1.76 0.3100 1.71 0.4400	174 5 14 60 39 30 6 6 6 148 148 148 703 Total 20 20 33 174 14 60	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control Mean SD 1.54 0.3900 1.61 0.2900 1.61 0.2500 2.10 0.4600	Favors control Favors supple	0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 MD -0.05 0.08 0.08 0.016 -0.19	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.05; -0.03] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02] [0.10; 0.02] [0.10; 0.56] [0.22; 0.64] [-0.25; 0.37] [-0.16; 0.06] [-0.05; 0.37] [-0.35; -0.03]	8.5' 2.9' 8.9' 7.8' 7.3' 8.8' 8.3' 8.3' 8.3' 8.3' 8.3' 8.3' 8
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2012 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Melendez et al., 2018 Martinez et al., 2016B Martinez et al., 2016B Kurek et al., 2016 Kurek et al., 2016 Kurek et al., 2016 Stevenson et al., 1999 Farnia et al., 2020 Valldecabres et al., 2018	176 5 14 60 34 30 6 6 6 8 148 148 700 109, <i>p</i> CO Total 20 20 33 176 14 6 6 34 34 5 700 109, <i>p</i>	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.500 0.94 0.1200 << 0.01 Ca Mean SD 1.84 0.4600 1.97 0.2800 1.97 0.2800 1.96 0.3100 1.96 0.3100 1.96 0.3100 1.96 0.3100 1.96 0.3100 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.91 0.4400 1.91 0.440	174 5 14 6 00 39 30 6 6 148 148 703 703 Total 20 20 33 174 14 0 39 30 6 6 6 7 33	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 0.94 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 0.15 0.03000 1.54 0.03900 1.54 0.03900 1.55 0.04600 1.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.01 -0.02 0.01 -0.04 mentati MD -0.30 -0.43 0.08 -0.43 0.08 -0.19 -0.19 -0.25	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.05; -0.03] [-0.01; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.05; 0.07] [-0.05; 0.07] [-0.02; 0.04] [-0.02; 0.04] [-0.10; 0.02] on 95%-Cl [0.22; 0.64] [-0.25; 0.64] [-0.35; -0.03] [-0.35; -0.05]	8.5 2.9 8.9 7.8 7.3 8.8 8.3 8.8 8.3 8.8 8.8 100.0 9 9 9 9 9 9 9 9 9
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2012 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Martinez et al., 2016B Martinez et al., 2016B Random effects model Heterogeneity: $I^2 = 87\%$, $\tau^2 = 0.0^{\circ}$ C Serum P Study Kurek et al., 2016 Kurek et al., 2016 Jahani-Moghadam et al., 2018 Stevenson et al., 1999 Farnia et al., 2018 Ramella et al., 2020	176 5 14 60 34 30 6 6 6 148 148 148 700 109, <i>p</i> CO Total 20 20 33 3 176 6 4 4 6 0 14 4 8 4 14 6 0 14 6 0 14 14 14 14 14 14 14 14 14 14 14 14 14	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.00 0.2300 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.91 0.1200 0.94 0.1200 < 0.01 Cambra SD 1.84 0.4600 1.97 0.2800 1.69 0.3400 1.76 0.3100 1.71 0.4400	174 5 14 60 39 30 6 6 6 148 148 148 703 Total 20 20 33 174 14 60	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 ONS Control Mean SD 1.54 0.3900 1.61 0.2900 1.61 0.2500 2.10 0.4600	Favors control Favors supple	0.03 -0.04 -0.04 -0.03 0.07 0.02 0.01 -0.02 0.01 -0.04 mentati MD -0.30 -0.43 0.08 -0.43 0.08 -0.19 -0.19 -0.25	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.05; -0.03] [-0.01; 0.05] [-0.06; 0.06] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.01] [-0.02; 0.04] [-0.10; 0.02] [0.10; 0.02] [0.10; 0.56] [0.22; 0.64] [-0.25; 0.37] [-0.16; 0.06] [-0.05; 0.37] [-0.35; -0.03]	8.5' 2.9' 8.9' 7.8' 7.3' 8.8' 8.3' 8.8' 100.0' 1000
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Martinez et al., 2016B $_{\odot}$ Martinez et al., 2016B $_{\odot}$ Kurek et al., 2016 $_{\odot}$ Kurek et al., 2016 $_{\odot}$ Kurek et al., 2016 $_{\odot}$ Jahani-Moghadam et al., 2018 Stevenson et al., 1999 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Melendez et al., 2021	176 5 14 60 34 30 6 6 6 8 148 148 700 109, <i>p</i> CO Total 20 20 33 176 14 6 6 34 34 5 700 109, <i>p</i>	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.500 0.94 0.1200 << 0.01 Ca Mean SD 1.84 0.4600 1.97 0.2800 1.97 0.2800 1.96 0.3100 1.96 0.3100 1.96 0.3100 1.96 0.3100 1.96 0.3100 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.96 0.3200 1.91 0.4400 1.91 0.440	174 5 14 6 00 39 30 6 6 148 148 703 703 Total 20 20 33 174 14 0 39 30 6 6 6 7 33	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.01 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 0.94 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 0.15 0.03000 1.54 0.03900 1.54 0.03900 1.55 0.04600 1.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	Favors control Favors supple	0.03 -0.04 -0.03 0.07 0.02 0.00 0.01 -0.02 0.01 -0.04 mentati MD -0.30 -0.43 0.08 0.016 -0.19 -0.25 -0.03	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.05; -0.03] [-0.03; 0.17] [-0.01; 0.05] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.07] [-0.05; 0.07] [-0.10; 0.02] [-0.10; 0.02] [-0.10; 0.02] [-0.22; 0.64] [-0.25; 0.03] [-0.35; -0.03] [-0.35; -0.03] [-0.55; 0.05] [-0.20; 0.14]	8.5 ⁴ 2.9 ⁹ 7.8 ⁸ 7.3 ⁸ 8.8 ⁸ 8.3 ³ 8.8 ⁸ 8.3 ³ 8.8 ⁸ 100.0 ⁹ 100.0 ⁹ 100.0 ⁹ 100.0 ⁹ 102.2 13.7 14.6 12.2 13.4 9.9 9.13.3
Stevenson et al., 1999 Braun et al., 2012 Farnia et al., 2012 Farnia et al., 2018 Ramella et al., 2020 Valldecabres et al., 2018 Melendez et al., 2018 Martinez et al., 2016B Martinez et al., 2016B Martinez et al., 2016B Martinez et al., 2016B Random effects model Heterogeneity: $J^2 = 87\%$, $\tau^2 = 0.0$ C Serum P Study Kurek et al., 2016 Kurek et al., 2016 Kurek et al., 2016 Stevenson et al., 1999 Farnia et al., 2020 Valldecabres et al., 2018	176 5 14 60 34 30 6 6 148 148 148 700 109, <i>p</i> • CO Total 20 20 33 176 14 60 34 33 176 34 30 33 776 14 8 700 33 33 776 14 8 14 8 700 33 33 776 14 8 76 76 76 76 76 76 76 76 76 76 76 76 76	0.75 0.2800 1.13 0.3300 0.80 0.0100 1.02 0.1900 1.03 0.0500 0.94 0.0500 0.95 0.0500 0.94 0.1200 < 0.01 Camera SD 1.84 0.4600 1.97 0.2800 1.96 0.3400 1.96 0.3400 1.96 0.3400 1.97 0.2800 1.96 0.3300 1.91 0.4400 1.95 0.3300	174 5 14 60 39 30 6 6 148 148 703 *atic Total 20 20 33 3 174 4 60 39 30	0.72 0.1300 1.77 0.0700 0.84 0.0200 1.05 0.2400 0.93 0.1900 1.05 0.2400 0.94 0.0500 0.94 0.0500 0.93 0.1200 0.93 0.1200 0.93 0.1200 0.93 0.1200 0.93 0.1200 0.14 0.3900 1.61 0.2900 1.61 0.2900 1.61 0.2500 2.10 0.4600 0.14 0.3400 1.98 0.3300	Favors control Favors supple	0.03 -0.04 -0.03 0.07 0.02 0.01 -0.02 0.01 -0.04 mentati MD 0.30 -0.43 0.08 -0.45 -0.03	[-0.02; 0.08] [-0.34; 0.26] [-0.05; -0.03] [-0.05; -0.03] [-0.01; 0.05] [-0.03; 0.17] [-0.01; 0.05] [-0.05; 0.07] [-0.05; 0.07] [-0.02; 0.04] [-0.02; 0.04] [-0.10; 0.02] on 95%-Cl [0.22; 0.64] [-0.25; 0.64] [-0.35; -0.03] [-0.35; -0.05]	8.5 ⁴ 2.9 ⁹ 7.8 ⁸ 7.3 ⁸ 8.8 ⁸ 8.3 ³ 8.8 ⁸ 8.3 ³ 8.8 ⁸ 100.0 ⁹ 100.0 ⁹ 100.0 ⁹ 100.0 ⁹ 102.2 13.7 14.6 12.2 13.4 9.9 9.13.3

Meta-analysis of blood Ca concentrations, serum Mg and P concentrations. Ca Oral calcium supplements.

Publication bias and sensitivity analyses

Publication bias was analyzed using funnel plots and Egger's test. The distribution of the funnel plot was symmetrical (Supplementary Figure S1) the *p*-values of incidence of subclinical hypocalcemia, Ca concentration in blood, incidence of metritis, and number of pregnant cows at first service in Egger's test were 0.8667, 0.5329, 0.7050, and 0.8959 respectively, and the results suggested that there was no publication bias between oral Ca and the incidence of these diseases. Sensitivity analyses were performed for meta-analysis

FIGURE 4

of the incidence of clinical hypocalcemia, subclinical hypocalcemia and number of pregnant cows at first service to assess the robustness of the results, and the results suggested that the results of metaanalysis are robust (Supplementary Figures S2–S6).

Discussion

Due to the increase in the cost of veterinary services and medicines and the decline in milk production, postpartum diseases of dairy cows have affected the profitability of farms (49–51). Farmers pay more and more attention to reducing the incidence of postpartum diseases in dairy cows. This meta-analysis aimed to evaluate the expected effect of oral Ca on postpartum hypocalcemia, calving-related diseases, fertility and milk yield in dairy cows. In this meta-analysis, the incidence of some calving-related diseases was significantly reduced after oral calcium administration, which include clinical hypocalcemia, subclinical hypocalcemia and retained placenta. The Ca concentrations of blood also significantly improved after Ca treatment. Clinical hypocalcemia, subclinical hypocalcemia and retained placenta are common postpartum reproductive disease. In addition, cows suffering from metabolic disorders in the early lactation period usually suffer from impaired fertility later, and may incur additional treatment costs due to delayed conception (51). Reducing the incidence of these diseases has important economic implications. Valldecabres et al. conducted a meta-analysis of the relationship between oral calcium supplements and milk production or first pregnancy rate, and found no evidence of the relationship between these outcome indicators and oral calcium (32). Our meta-analysis obtained similar results. In order to ensure the authenticity of the research evidence, we added the outcome indicators of other clinical diseases related to calving, which is more meaningful to clinical practice. However, these results were not statistically significant. Therefore, there is no evidence that oral calcium can reduce the incidence of metritis, ketosis, mastitis and abomasum displacement, or improve serum Mg and P concentrations and milk yield. According to our study selection criteria, the sources, forms or doses of oral Ca are not limited. Due to the limited number of clinical studies, it is impossible to find the relationship between various factors (Ca sources, doses and forms) and oral Ca by meta-regression, and it is also impossible to explain the influence of different calcium forms on the outcome index.

In addition, the long-term effects of oral calcium may be underestimated because cows that became sick immediately after calving (before the intervention) were removed from the herd, which may explain why some studies did not report the effect of oral calcium Α

Incidence of ketosis

			Ca	0	ontrol				
	Study	Even	ts Total	Events	Total	Risk Ratio	RF	R 95%-	CI Weight
	Melendez et al., 2003	1	2 158	14	160		0.8	7 [0.41; 1.8	2] 7.1%
	Goff et al., 1996		0 21	1	24	< +	→ 0.3	8 [0.02; 8.8	4] 0.7%
	Jahani-Moghadam et al.,201	18	3 33	2	2 33		→ 1.5	0 [0.27; 8.4	0] 1.0%
	Oetzel et al.,2021	17				÷		5 [0.92; 1.2	
	Common effect model		502	1	551		1.04	4 [0.91; 1.1	8] 100.0%
	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, <i>p</i> = 0.85			0	25 0.5 1 2	4		
				F		upplementation Favors co	4 Introl		
В	Incidence	of m	astit		41013 5		huoi		
			Ca	Con	trol				
	Study	Events	Total E	vents To	otal	Risk Ratio	RR	95%-CI	Weight
	Leno et al.,20180	11	238	4	248	+	→ 2.87 [0.93; 8.87]	1.7%
	Leno et al.,2018@	4	245	9	238 ←		0.43	0.13; 1.38]	4.0%
	Leno et al. 2018@	72	1410	76 1	422	<u> </u>	0.96	0.70; 1.31]	33.4%
	Oetzel et al.,2012	56	431		496	- 		0.85; 1.73]	21.7%
	Reitsma et al.,20200	1	21	2	22 ←			0.05; 5.36]	0.9%
	Reitsma et al.,20200	8	20	8	20			0.47; 2.14]	3.5%
	Domino et al.,2017	68	475	-	523			0.69; 1.26]	33.6%
	Goff et al., 1996	3	21	3	24 -			0.26; 5.07]	1.2%
	Common effect model Heterogeneity: $I^2 = 1\%$, $\tau^2 =$		2861	2	993		_ 1.02 [(0.86; 1.21] ·	100.0%
	Helefogeneity. 7 - 1%, t -	-0, p - 0.	42		0.25	0.5 1 2	4		
				Favo		elementation Favors contr	ol		
с	Incidence	of di	spla	cem	ent	of the abomasi	ım		
			Ca	Con	trol				
	Study E	Events 1	fotal Ev	ents To	otal	Risk Ratio	RR	95%-CI	Weight
	Melendez et al.,2003	4	158	10	160			0.13; 1.26]	15.2%
	Goff et al., 1996	2	21	1	24			.22; 23.44]	1.4%
	Leno et al.,20180	15	668	13 (665			0.55; 2.40]	19.9%
	Leno et al.,2018@	12	368		366		0.52	0.26; 1.03]	35.2%
	Oetzel et al.,2012	19	431	20	496		1.09 [0.59; 2.02]	28.4%
	Common effect model		1646	17	711		0.81 [0).57; 1.16]	100.0%
	Heterogeneity: $I^2 = 28\%$, τ^2	= 0.0772,	p = 0.23	3					
				Farra		0.1 0.5 1 2 10 lementation Favors contro	1		
				ravo	is supp	rememation ravors contro	51		
FIGURE 6									
	sidence of ketosis mastitis	and disr	laceme	ent of the	a ahom	nasum. Ca: Oral calcium su	nnlemen	tc	
	המכווכב טו תכנטאא, וומאנונוא,				c aboli	iusuini. Ca. Orai caicium su	ppternen		

on the incidence of clinical hypocalcemia and its effects on blood Ca, Mg, and P concentrations. However, meta-analyses of serum Ca, Mg, P, the incidence of subclinical hypocalcemia, and milk yield were highly heterogeneous (> 50%) and remained high after sensitivity analyses. The results indicated that heterogeneity was clinical; hence we analyzed the possible sources of heterogeneity: (i) the cattle used in the included studies varied in breed, parity, and sample size. For example, some studies used Holstein cows, whereas others used crossbred cows. It is well known that the biological characteristics of dairy cows of different ages and parities (primiparous and multiparous cows) differ, inevitably affecting the experimental results; (ii) feed: prepartum and postpartum DCAD. In a meta-analysis, Santos et al., concluded that prepartum DCAD increased the Ca and P concentrations on the day of calving, as well as Ca concentrations after calving, and reduced the risk of perinatal clinical hypocalcemia, retained placenta, and metritis after calving (10, 24), therefore, diet differences could be a reason for the high heterogeneity observed in the meta-analysis results; (iii) different calcium forms, sources and brand may affect the absorption rate of animals, and thus the experimental effect; (iv) specific interventions (including interventions time, dose, and number of oral interventions) in the experimental and control groups were also not uniform; (v) the effect of confounders, such as inconsistent baselines between experimental and control groups. These differences directly affected the observed results.

The quality assessment of the results of the included studies is shown in Figure 2, the risk of bias in most animal experiments was mainly concentrated in the following aspects: (i) selection bias: cows were alternately assigned to treatment and control groups based on calving date or lactation order in four studies; (ii) performance biases: most studies did not report the random placement of cattle in the free-stall barn, and it is uncertain whether farm personnel and investigators were unaware of the interventions that each animal received during the experiment; (iii) detection biases: random selection of animals during the result evaluation process was not clearly stated; (iv) other sources of bias, inappropriate research influence by funders. Finally, the following factors should be considered in future research to avoid bias: (i) the study design should be more standardized, such as the grouping method of animals (random average grouping); (ii) the animals used in the experiments should have consistent baseline characteristics, including breed and parity; (iii) the details of the experimental method should also

be consistent, including the Ca form, Ca sources, the intervention time, dose, and oral frequency; (iv) blind method is applicable to researchers, farm workers, data collectors and statistical analysts to ensure the authenticity and reliability of the results; (iv) research reports should be more detailed and provide complete data reports.

Conclusion

This study used meta-analysis to evaluate the efficacy of oral Ca in preventing hypocalcemia or calving-related diseases, and improving pregnancy risk or milk yield in dairy cows. All analyses showed that compared with the control treatments, oral Ca administration significantly reduced the incidence of postpartum hypocalcemia (include clinical and subclinical hypocalcemia) and retained placenta, and increased blood Ca concentrations of dairy cows. However, there is no evidence that oral Ca can reduce the incidence of postpartum metritis, ketosis, mastitis and abomasum displacement, or improve serum Mg/P concentrations, pregnancy risk and milk yield. The quality evaluation of the included studies shows that the risk of bias in most animal experiments mainly center on the selection bias, performance bias, detection bias and other sources of bias. We suggest that future research should focus on these aspects and follow standardized research designs.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

ZR-M: Conceptualization, Data curation, Methodology, Writing – original draft. L-LM: Data curation, Formal analysis, Writing – original draft. FZ: Conceptualization, Funding acquisition, Supervision, Writing – review & editing. YB: Writing – review & editing, Data curation, Methodology, Supervision, Conceptualization, Funding acquisition.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by the National Natural Science Foundation (NSFC) of China (81860716) and the Gansu Province Natural Science Fund Project (22JR11RA237).

References

1. Roberts K, Bennison J, Mcdougall S. Effect of treatment with oral ca boluses following calving on concentrations of ca in serum in pasture-based dairy cows. NZ Vet J. (2018) 67:20–6. doi: 10.1080/00480169.2018.1520654

2. Roche JR. Hypocalcaemia and DCAD for the pasture-based transition cow - a review. Acta Vet Scand Suppl. (2003) 97:65–74. doi: 10.1186/1751-0147-44-203

3. Martín-Tereso Javier Martens H. Calcium and magnesium physiology and nutrition in relation to the prevention of Milk fever and tetany (dietary Management of Macrominerals in preventing disease). *Vet Clin N Am Food Anim Pract.* (2014) 30:643–70. doi: 10.1016/j.cvfa.2014.07.007

4. Goff JP, Hohman A, Timms LL. Effect of subclinical and clinical hypocalcemia and dietary cation-anion difference on rumination activity in periparturient dairy cows. J Dairy Sci. (2020) 103:2591–601. doi: 10.3168/jds.2019-17581

5. McArt JAA, Neves RC. Association of transient, persistent, or delayed subclinical hypocalcemia with early lactation disease, removal, and milk yield in Holstein cows. J Dairy Sci. (2020) 103:690–701. doi: 10.3168/jds.2019-17191

6. Degaris PJ, Lean IJ. Milk fever in dairy cows: a review of pathophysiology and control principles. *Vet J.* (2008) 176:58–69. doi: 10.1016/j.tvjl.2007.12.029

7. Venjakob PL, Pieper L, Heuwieser W, Borchardt S. Ssociation of postpartum hypocalcemia with early-lactation milk yield, reproductive performance, and culling in dairy cows. *J Dairy Sci.* (2018) 101:9396–405. doi: 10.3168/jds.2017-14202

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fvets.2024.1357640/ full#supplementary-material

SUPPLEMENTARY FIGURE S1

Funnel plot of incidence of subclinical hypocalcemia, Ca concentration in plasma/serum, incidence of metritis, and number of pregnant cows at first service.

SUPPLEMENTARY FIGURE S2

Sensitivity analyses of incidence of clinical hypocalcemia, incidence of subclinical hypocalcemia.

SUPPLEMENTARY FIGURE S3

Sensitivity analyses of blood Ca concentrations, serum Mg and ${\sf P}$ concentrations.

SUPPLEMENTARY FIGURE S4

Sensitivity analyses of incidence of retained placenta, metritis.

SUPPLEMENTARY FIGURE S5

Sensitivity analyses of incidence of ketosis, mastitis, and displacement of the abomasum.

SUPPLEMENTARY FIGURE S6

Sensitivity analyses of pregnancy risk at first service, overall pregnancy rate and milk yield.

 Serrenho RC, DeVries TJ, Duffield TF, LeBlanc SJ. Graduate student literature review: what do we know about the effects of clinical and subclinical hypocalcemia on health and performance of dairy cows? J Dairy Sci. (2021) 104:6304–26. doi: 10.3168/jds.2020-19371

9. Rodney RM, Martinez N, Block E, Hernandez LL, Celi P, Nelson CD, et al. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: vitamin D, mineral, and bone metabolism. *J Dairy Sci.* (2018) 101:2519–43. doi: 10.3168/jds.2017-13737

10. Santos JEP, Lean IJ, Golder H, Block E. Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows. *J Dairy Sci.* (2019) 102:2134–54. doi: 10.3168/jds.2018-14628

11. Cohrs I, Wilkens MR, Grünberg W. Short communication: effect of dietary phosphorus deprivation in late gestation and early lactation on the calcium homeostasis of periparturient dairy cows. J Dairy Sci. (2018) 101:9591–8. doi: 10.3168/jds.2018-14642

12. Wächter S, Cohrs I, Golbeck L, Scheu T, Eder K, Grünberg W. Effects of restricted dietary phosphorus supply during the dry period on productivity and metabolism in dairy cows. J Dairy Sci. (2022) 105:4370–92. doi: 10.3168/jds.2021-21246

13. Melendez P, Poock S. A dairy herd case investigation with very low dietary cationanion difference in prepartum dairy cows. *Front Nutrition*. (2017) 4:26. doi: 10.3389/ fnut.2017.00026

14. Goff JP. Calcium and magnesium disorders. Vet Clin North Am Food Anim Pract. (2014) 30:359-81. doi: 10.1016/j.cvfa.2014.04.003

15. Chapinal N, LeBlanc SJ, Carson ME, Leslie KE, Godden S, Capel M, et al. Herd-level association of serum metabolites in the transition period with disease, milk production, and early lactation reproductive performance. *J Dairy Sci.* (2012) 95:5676–82. doi: 10.3168/jds.2011-5132

16. Martinez N, Sinedino L, Bisinotto RS, Ribeiro ES, Gomes GC, Lima FS. Effect of induced subclinical hypocalcemia on physiological responses and neutrophil function in dairy cows. *J Dairy Sci.* (2014) 97:874–87. doi: 10.3168/jds.2013-7408

17. Ducusin R, Uzuka Y, Satoh E, Otani M, Nishimura M, Tanabe S. Effects of extracellular Ca²⁺ on phagocytosis and intracellular Ca²⁺ concentrations in polymorphonuclear leukocytes of postpartum dairy cows. *Res Vet Sci.* (2003) 75:27–32. doi: 10.1016/s0034-5288(03)00038-9

18. Borsberry S, Dobson H. Periparturient diseases and their effect on reproductive performance in five dairy herds. *Vet Rec.* (1989) 124:217–9. doi: 10.1136/vr.124.9.217

19. Rodríguez EM, Arís A, Bach A. Associations between subclinical hypocalcemia and postparturient diseases in dairy cows. *J Dairy Sci.* (2017) 100:7427–34. doi: 10.3168/jds.2016-12210

20. Zurr L, Leonhard-Marek S. Effects of β -hydroxybutyrate and different calcium and potassium concentrations on the membrane potential and motility of abomasal smooth muscle cells in cattle. *J Dairy Sci.* (2012) 95:5750–9. doi: 10.3168/jds.2012-5479

21. Goff JP, Koszewski NJ. Comparison of 0.46% calcium diets with and without added anions with a 0.7% calcium anionic diet as a means to reduce periparturient hypocalcemia. *J Dairy Sci.* (2018) 101:5033–45. doi: 10.3168/jds.2017-13832

22. Dhiman TR, Sasidharan V. Effectiveness of calcium chloride in increasing blood calcium concentrations of periparturient dairy cows. *J Anim Sci.* (1999) 77:1597–605. doi: 10.2527/1999.7761597x

23. Valldecabres A, Pires J, Silva-Del-Río N. Effect of prophylactic oral calcium supplementation on postpartum mineral status and markers of energy balance of multiparous Jersey cows. J Dairy Sci. (2018) 101:4460–72. doi: 10.3168/jds.2017-12917

24. Melendez P, Donovana GA, Riscoa CA, Littellb R, Goff JP. Effect of calcium-energy supplements on calving-related disorders, fertility and milk yield during the transition period in cows fed anionic diets. *Theriogenology*. (2003) 60:843–54. doi: 10.1016/s0093-691x(03)00103-1

25. Goff JP, Horst RL, Jardon PW, Borelli C, Wedam J. Field trials of an oral calcium propionate paste as an aid to prevent milk fever in periparturient dairy cows. *J Dairy Sci.* (1996) 79:378–83. doi: 10.3168/jds.S0022-0302(96)76375-0

26. Valldecabres A, Silva-Del-Río N. Effects of postpartum oral calcium supplementation on milk yield, milk composition, and reproduction in multiparous Jersey and Jersey × Holstein crossbreed cows. J Dairy Sci. (2021) 104:795–805. doi: 10.3168/jds.2020-19079

27. Kurek L., Lutnicki K., Olech M., Brodzki P., Golynski M. J Elem. (2016) 21, 77–87. doi: 10.5601/jelem.2015.20.2.870

28. Hajikolaei MRH, Nouri M, Amirabadi SH, Shariari A, Constable PD. Effect of antepartum vitamin D3 (cholecalciferol) and postpartum oral calcium administration on serum total calcium concentration in Holstein cows fed an acidogenic diet in late gestation. *Res Vet Sci.* (2021) 136:239–46. doi: 10.1016/j.rvsc.2021.02.017

29. Leno BM, Neves RC, Louge IM, Curler MD, Thomas MJ, Overton TR, et al. Differential effects of a single dose of oral calcium based on postpartum plasma calcium concentration in Holstein cows. J Dairy Sci. (2018) 101:3285–302. doi: 10.3168/jds.2017-13164

30. Jahani-Moghadam M, Chashnidel Y, Teimouri-Yansari A, Mahjoubi E, Dirandeh E. Effect of oral calcium bolus administration on milk production, concentrations of minerals and metabolites in serum, early-lactation health status, and reproductive performance of Holstein dairy cows. *N Z Vet J.* (2018) 66:132–7. doi: 10.1080/00480169.2018.1432427

31. Melendez P, Roeschmann C, Arevalo A, Moller J. The effect of oral calcium boluses at parturition on blood metabolites and milk yield in grazing Holstein cattle. *Livest Sci.* (2021) 248:104510. doi: 10.1016/j.livsci.2021.104510

32. Valldecabres A, Branco-Lopes R, Bernal-Córdoba C, Silva-Del-Río N. Production and reproduction responses for dairy cattle supplemented with oral calcium bolus after calving: systematic review and meta-analysis. *JDS Commun.* (2022) 4:9–13. doi: 10.3168/jdsc.2022-0235

33. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *British Medical J.* (2009) 339:b2700. doi: 10.1136/bmj.b2700 34. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. *BMC Med Res Methodol.* (2014) 14:43. doi: 10.1186/1471-2288-14-43

35. Ramella KDCL, Santos LGC, Patelli THC, Flaiban KKMC, Lisboa JAN. Effects of postpartum treatment with oral calcium formate on serum calcium, serum metabolites, and the occurrence of diseases at the beginning of lactation of high-producing dairy cows. *Preventive Vet Med.* (2020) 185:105180. doi: 10.1016/j.prevetmed.2020.105180

36. Stevenson MA, Williamson NB, Hanlon DW. The effects of calcium supplementation of dairy cattle after calving on milk, milk fat and protein production, and fertility. *N Z Vet J.* (1999) 47:53–60. doi: 10.1080/00480169.1999.36111

37. Braun U, Blatter M, Hässig M. Untersuchungen zur Wirkung von Kalziumlaktatbei Kühen postpartum. *Schweiz Arch Tierheilkd.* (2012) 154:233–8. doi: 10.1024/0036-7281/ a000338

38. Oetzel GR, Miller BE. Effect of oral calcium bolus supplementation on earlylactation health and milk yield in commercial dairy herds. J Dairy Sci. (2012) 95:7051–65. doi: 10.3168/jds.2012-5510

39. Reitsma LM, Batchelder TA, Davis EM, Machado VS, Ballou MA. Effects of oral calcium bolus supplementation on intracellular polymorphonuclear leukocyte calcium levels and functionality in primiparous and multiparous dairy cows. *J Dairy Sci.* (2020) 103:11876–88. doi: 10.3168/jds.2020-18835

40. Farnia SA, Rasoolia A, Nouria M, Shahryaric A, Khosravi Bakhtiaryd M, Constable PD. Effect of postparturient oral calcium administration on serum total calcium concentration in Holstein cows fed diets of different dietary cation-anion difference in late gestation. *Res Vet Sci.* (2018) 117:118–24. doi: 10.1016/j. rvsc.2017.11.017

41. Martinez N, Sinedino LD, Bisinotto RS, Daetz R, Risco CA, Galvão KN, et al. Effects of oral calcium supplementation on productive and reproductive performance in Holstein cows. *J Dairy Sci.* (2016) 99:8417–30. doi: 10.3168/jds.2015-10529

42. Martinez N, Sinedino LD, Bisinotto RS, Daetz R, Lopera C, Risco CA, et al. Effects of oral calcium supplementation on mineral and acid-base status, energy metabolites, and health of postpartum dairy cows. *J Dairy Sci.* (2016) 99:8397–416. doi: 10.3168/jds.2015-10527

43. Domino AR, Korzec HC, McArt JAA. Field trial of 2 calcium supplements on early lactation health and production in multiparous Holstein cows. *J Dairy Sci.* (2017) 100:9681–90. doi: 10.3168/jds.2017-12885

44. Blanc CD, Van M, der List Aly SS, Rossow HA, Silva-del-Río N. Blood calcium dynamics after prophylactic treatment of subclinical hypocalcemia with oral or intravenous calcium. *J Dairy Sci.* (2014) 97:6901–6. doi: 10.3168/jds.2014-7927

45. Jahani-Moghadam M, Teimouri-Yansari A, Chashnidel Y, Dirandeh E, Mahjoubi E. Short- and long-term effects of postpartum oral bolus v. subcutaneous ca supplements on blood metabolites and productivity of Holstein cows fed a prepartum anionic diet. *Animal.* (2020) 14:983–90. doi: 10.1017/S175173111900257X

46. Pinedo P, Manríquez D, Marota N, Mongiello G, Velez J. Effect of oral calcium administration on metabolic status and uterine health of dairy cows with reduced postpartum rumination and eating time. *BMC Vet Res.* (2021) 17:178. doi: 10.1186/ s12917-021-02881-2

47. Mahjoubi E, Mousaviara SA, Hossein Yazdi M, Hosseinzadehakandi M, McArt JAA. A randomized field trial assessing the timing of postpartum calcium bolus administration on milk yield of multiparous Holstein cows. *J Dairy Sci.* (2023) 106:7320–8. doi: 10.3168/jds.2022-22671

48. Beynen ACGK, van Zutphen LFM. Standardization of the animal and its environment. In principles of laboratory animal science. Revised Edition. Eds. van Zutphen LFMB V, Beynen AC. Amsterdam and New York: Elsevier BV (2001).

49. Hazel AR, Heins BJ, Hansen LB. Health treatment cost, stillbirth, survival, and conformation of Viking red-, Montbéliarde-, and Holstein-sired crossbred cows compared with pure Holstein cows during their first 3 lactations. *J Dairy Sci.* (2020) 103:10917–39. doi: 10.3168/jds.2020-18604

50. Hardie LC, Heins BJ, Dechow CD. Genetic parameters for Stayability of Holsteins in US organic herds. J Dairy Sci. (2021) 104:4507–15. doi: 10.3168/jds.2020-19399

51. Donnelly MR, Hazel AR, Hansen LB, Heins BJ. Health treatment cost of Holsteins in eight high-performance herds. *Animals (Basel).* (2023) 13:2061. doi: 10.3390/ani13132061