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Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-
cancer, lipid-lowering and immune-improving effects by up-regulating or 
down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and 
immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic 
side effects. The application of lycopene in animal production has shown that 
it could improve livestock production performance, slaughter performance, 
immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, 
lycopene as a new type of feed additive, has broader application prospects in 
many antibiotic-forbidden environments. This article serves as a reference for 
the use of lycopene as a health feed additive in animal production by going 
over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-
cancer, and application in animal production.
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1 Introduction

Lycopene was an acyclic isomer of β-carotene and a natural, non-polluting, non-toxic 
pigment, which found primarily in red or orange fruits and vegetables, such as Solanum 
lycopersicum, Carica papaya, Psidium guajava, Citrullus lanatus, and Punica granatum (1) 
(Figure 1). Furthermore, lycopene also found in certain non-red and orange foods, such 
as Asparagus and Petroselinum crispum (2) and marine halophilic archaea can also produce 
lycopene (3). However, the human body cannot synthesize lycopene by itself, and 85% of 
the lycopene needed by the human body mostly comes from tomatoes or tomato-based 
products (4). The content of lycopene in fresh tomatoes and tomato products is shown in 
Table  1. The absorption efficiency of the human body for lycopene was 10–30%, and 
excessive intake will be excreted from the body (6–8). The current methods for extracting 
lycopene mainly include classic organic solvent extraction, pulsed electric field, enzyme-
assisted extraction, supercritical fluid extraction, ultrasonic-assisted extraction, 
microwave-assisted extraction, and Water-Induced hydro colloidal complexation (9). 
Lycopene had anti-cancer (10), antioxidant (11), anti-inflammatory (12), regulating body 
metabolism (13, 14), and immunity (15), and so on. Currently, reports about lycopene are 
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gradually increasing. Previous research has shown that lycopene 
improved animal production performance (16), maintained 
intestinal health (17), ameliorated meat quality (18), ameliorated 
immunity (19) and regulated body metabolism (20), and has good 
application prospects.

The importance of lycopene has been a research hotspot in recent 
decades. This article will focus on a more comprehensive review of the 
physiological functions, mechanisms of action, and application of 
lycopene in animal production. Therefore, this latest review will 
ultimately provide more useful information and the latest research 
perspectives for animal husbandry researchers for animal production, 
to provide the latest reference for the functional utilization of lycopene 
as a feed additive.

2 Physicochemical properties and 
safety of lycopene

2.1 Physicochemical properties of lycopene

Lycopene was an isoprenoid unsaturated olefin compound and a 
fat-soluble carotenoid. Lycopene consists of 40 carbon chains, including 
11 conjugated double bonds and 2 non-conjugated double bonds 
(Figure 2). Its molecular formula is C40H56, its relative molecular mass 
is 536.85, and its melting point ranges from 172 to 175°C. Lycopene has 
obvious lipophilicity and is easily soluble in organic solvents, such as 
Hexane (C6H14), chloroform (CHCl3), carbon disulfide (CS2), petroleum 
ether, acetone (C3H6O) and benzene (C6H6), and so on. However, 
Lycopene is insoluble in water, and methanol, ethanol, and is sensitive 
to light, acid, catalysts, high temperatures, and metal ions (22). In 
nature, lycopene has a high degree of unsaturation and mainly appears 
in the form of the all-trans isomer, which easily oxidatively degrades 
and undergoes an isomerization reaction under the influence of light, 
temperature, or chemical reactions, converting from all-trans isomers 
to mono-cis or poly-cis isomers (23). The most stable form of lycopene 
among all isomers is said to be 5-cis, which is followed by all-trans, 
9-cis, 13-cis, 15-cis, 7-cis, and 11-cis (24). Consequently, all-trans 
isomers comprise 90% of the lycopene found in tomatoes, whereas most 
of the processed tomato products exist in the form of the cis isomer.

2.2 Safety of lycopene

Lycopene is harmless to animals and humans and has certain 
benefits, which whether in the form of preparation or 

FIGURE 1

Sources of lycopene in food (1, 2).

TABLE 1 Lycopene content in common fresh tomatoes and tomato 
products (5).

Items
Lycopene (wet weight), mg/100  g

Range Mean ± SDa

Tomatoes (fresh) 1.82–11.19 5.26 ± 2.40

Tomato puree 5.56–16.94 10.21 ± 3.20

Ketchup (hot) 5.42–52.20 24.27 ± 16.70

Ketchup (mild) 4.84–41.39 14.25 ± 11.93

Ketchup (plain) 5.08–24.96 8.10 ± 5.79

Tomato paste (double cone) 3.80–49.46 25.22 ± 14.87

Tomato juice 6.93–42.74 20.10 ± 13.83

Whole canned tomatoes 5.87–42.14 16.98 ± 14.39

a“Mean ± SD” means Mean ± standard deviation.

https://doi.org/10.3389/fvets.2024.1364589
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Long et al. 10.3389/fvets.2024.1364589

Frontiers in Veterinary Science 03 frontiersin.org

crystallization, was not genotoxic under stable conditions (25), 
Lycopene were not toxic to rabbit lymphocytes and did not 
produce any mutagenic activity (26). Similar results have been 
obtained in subchronic and chronic safety studies in mice (27). 
Additionally, it was concluded by Rao et  al. (7) that healthy 
individuals who consume 5 to 75 mg of lycopene daily will not 
experience any negative effects. At the same time, Kong et al. (28) 
indicated that a daily intake of 3 g/kg of lycopene from food will 
not harm the human body. Therefore, lycopene is considered a safe 
Non-toxic substance.

3 Physiological functions and 
mechanisms of action of lycopene

3.1 Antioxidant function

Under normal physiological conditions, the generation and 
elimination of free radicals were always in a state of dynamic balance. 
When oxidative stress occurs, this dynamic balance will be broken, 
and fat, protein, and DNA in the body will be damaged, leading to a 
variety of diseases (29). The advancement of animal husbandry is 
gravely threatened by oxidative stress, which brings huge economic 
losses to the industry (30). Antibiotics were once useful antioxidant 
medications that might enhance animal immunity, growth 
performance, and disease prevention. However, animal production, 
human health, and environmental sustainability are threatened by 
antibiotic resistance and residues (31). Since the European Union 
(EU) banned the use of antibiotics in animal feed in 2006, and 
researchers have been trying to find plant-based feed supplements as 
safe antibiotic alternatives (32). In July 2020, China announced that 
livestock farming had officially entered a new era of banning the use 
of antibiotics in feed (33). Therefore, developing natural, healthy, and 
safe antibiotic alternatives for animal husbandry is one of the hot spots 
in modern feed research.

Relevant reports indicated that lycopene due to its polyunsaturated 
structure, not only directly scavenged free radicals, but also indirectly 
scavenged free radicals by regulating the enzymatic antioxidant 
defense system and enzymatic oxidative damage system (34). 
Therefore, lycopene protects proteins, DNA, and lipids in the body 
from oxidative damage, thereby reducing oxidative stress in the body 
and maintaining animal health.

3.1.1 Directly scavenge free radicals
The unique 11 conjugated double bonds in lycopene are highly 

reactive towards oxygen and free radicals (35). Furthermore, in 
different carotenoids, lycopene has an antioxidant capacity second 
only to astaxanthin and is an important inhibitor of reactive oxygen 
species (ROS). Its effectiveness in scavenging singlet oxygen is 100 
times greater than vitamin E, 10 times greater than that of α-tocopherol, 
and double that of β-carotene (36, 37). Lycopene scavenged hydroxyl 
radicals through an addition reaction (38) and could also react with 
peroxynitrite, thus effectively functioning as a nitrite scavenger (39, 
40). Moreover, lycopene also has the function of scavenging sulfuryl, 
nitrogen dioxide, and sulfuryl free radicals (41). Whether under polar 
or non-polar conditions, lycopene has a higher rate of scavenging 
hydrogen peroxide (H2O2) free radicals than β-carotene (42).

3.1.2 Lycopene antioxidant system activity
The antioxidant mechanism of lycopene is shown in Figure  3. 

Lycopene indirectly acts on free radicals by regulating the enzymatic 
antioxidant defense system and enzymatic oxidative damage system, 
protecting the body from oxidative damage (34, 44). Shen et al. (45) 
have shown that lycopene promoted mouse cardiac glutathione 
peroxidase (GSH-Px) activity and increased cardiac glutathione (GSH) 
levels; at the same time, cardiac myeloperoxidase (MPO), H2O2 levels 
and glutathione S-transferase (GST) activity shown a decreasing trend. 
Therefore, their experiment proved that lycopene inhibiting di 
(2-ethylhexyl) phthalate-induced oxidative stress response. On the 
other hand, lycopene promoted the activities of GST and catalase 

FIGURE 2

Chemical structure of lycopene (21).
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(CAT) in the liver of ducklings and increased the total antioxidant 
capacity (T-AOC) of the liver, which reduced the liver malondialdehyde 
(MDA) content and the residual aflatoxin in the liver of ducklings 
obviously of the body (46). Wen et  al. (47) indicated that the 
incorporation of 200 mg/kg lycopene in diets of swine diets increased 
antioxidant indices superoxide dismutase (SOD), T-AOC, GSH-Px, and 
CAT in serum, and reduced the levels of MDA. Relevant records have 
shown that lycopene increased the levels of peroxisome proliferator-
activated receptor γ (PPAR-γ) and typical antioxidant biomarkers in rats 
fed a high-fat diet (48). Similarly, Li et al. (49) obtained similar results 
in a study on a mouse model of ulcerative colitis induced by dextran 
sulfate sodium. Moreover, lycopene combined with metformin 
increased the activity of the antioxidant enzyme paraoxonase-1 (PON-
1), enhanced the endogenous oxidative defense ability of obese mice, 
and protected the health of the kidneys and liver (50). A previous study 
by Aboubakr et al. (51) indicated that lycopene effectively reduced 
cardiac antioxidant damage and apoptosis caused by methotrexate. Lee 
et al. (52) indicated that lycopene also reduced reactive ROS production 
by inhibiting nicotinamide adenine dinucleotide phosphate oxidase 
(NOX) activity, which in turn ameliorates oxidative damage to acinous 
cell induced by ethanol and the fatty palmitoleic acid.

The antioxidant mechanism of lycopene was shown in Figure 4. 
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important 
transcription factor that affects the activities of CAT, SOD, GST, and 
GSH-Px in the oxidative system, (58, 59). Normally, the cytoplasmic 

kelch-like ECH-associated protein 1 (Keap1) is bound by the Neh2 
(Nrf2-ECH homology) domain at the end of Nrf2, negatively 
regulating Nrf2 and usually preventing Nrf2 from translocating to the 
nucleus (60, 61). In responding to oxidative stress, the binding of 
Keap1 and Nrf2 will be rapidly dissociated, prompting Nrf2 to enter the 
nucleus and bind to the antioxidant response element (ARE) sequence 
in the nucleus (62). Consequently, this process transcriptionally 
upregulates the expression of ARE and Nrf2, stimulating the 
production of phase II detoxifying antioxidant enzymes and 
upregulating the expression of antioxidant-related stress genes (63). 
Keap1/Nrf2/ARE pathway regulates NAD (P)H: quinone receptor 
oxidoreductase 1 (NQO1) and heme oxidase 1 (HO-1), induces the 
expression of various antioxidant protection genes, reduces the damage 
of ROS to cells, and effectively reduces the occurrence of liver diseases 
caused by oxidative stress (64, 65). Relevant research has shown that 
lycopene could act on the Nrf2/HO-1 and protein kinase B(Akt)/Nrf2 
signaling pathway, induce Nrf2 gene transcription, upregulate the 
mRNA expression levels of NQO1 and HO-1, improve the activities of 
SOD, CAT, and GSH-Px, and reduce the accumulation of ROS and 
MDA oxidative stress end-products (66–70). Furthermore, it has been 
documented that lycopene inhibited β-secretase (BACE) activity by 
triggering the PI3K/Akt/Nrf2 signaling pathway, which then attenuates 
the damage of oxidative stress and apoptosis in M146L cells (43).

In conclusion, there are two basic ways that lycopene might 
increase the body’s antioxidant capacity. On the one hand, it can 

FIGURE 3

Lycopene antioxidant mechanism (10, 43). HNF1-α, Hepatocyte nuclear factor1-α; LDL-R, Hepatic LDL receptors.
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directly act on free radicals to achieve the scavenging effect. On the 
other hand, it can improve the mRNA expression level and activity of 
related antioxidant enzymes by activating the Nrf2 antioxidant 
signaling pathway to achieve the purpose of scavenging free radicals 
and maintaining the oxidation balance of cells or the body.

3.2 Lycopene’s lipid-lowering function

The lipid-lowering mechanism of lycopene was shown in Figure 4. 
Lycopene could inhibit lipid synthesis in the body through multiple 
pathways of action, and at the same time accelerate the rate of lipid 
transport and mobilization efficiency, thereby achieving lipid-lowering 
effects. Peroxisome proliferator-activated receptor α (PPARα), as the 
most important factor in the lipid-lowering mechanism of lycopene, 
plays a decisive role in the lipid-lowering function of lycopene. Relevant 
research has shown that PPARα could activate β-oxidation-related 
genes, thereby increasing the expression of mRNA of related genes, and 
promote the uptake of lipid mitochondria in body cells, accelerate 
lipolysis, and then play an important role in lipid metabolism in the 
body. PPARα not only orchestrates the coordination of lipoprotein 
metabolism but also directly or indirectly controls the lipogenesis 
pathway in the liver (71, 72). In another study, lycopene was found to 
possess another important mechanism of lipid metabolism. Lycopene 
increased the gene expression of PPARγ coactivator 1α (PGC1α), 
PPARα, retinoic X receptor α (RXRα) and retinoic acid receptor α 
(RARα) in the liver of breeding hens, which downregulated the 
expression of liver fatty acid binding protein 1 (FABP1), liver fatty acid 
binding protein 10 (FABP10) and jejunum fatty acid transporter 4 
(FATP4) genes. Moreover, lycopene also upregulated the expression of 
PPARγ, RXRγ, RXRα, and duodenal RXRα genes in the jejunum. 
Therefore, lycopene accelerates the fat metabolism rate in the body and 
reduces fat deposition through this pathway (55). Lycopene could 
activate the AMP-activated protein kinase/ Sirtuin 1/peroxisome 
proliferator-activated receptor-γ-coactivator 1α (AMPK/SIRT1/
PGC1α) or inhibit signal transducer and activator of transcription 3 
(STAT3) biosynthetic signaling pathway. and then lycopene upregulated 
the mRNA expression levels of SIRT1 and inhibited the mRNA 

expression levels of sterol regulatory element binding proteins 
(SREBPs), fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 
(ACC1) genes, thereby inhibiting the synthesis of lipids, and ultimately 
reducing the levels of total cholesterol (T-CHO), triglycerides (TG), and 
low-density lipoprotein (LDL-C) in the serum of mouse livers and 
broiler chickens (13, 14, 56). Moreover, lycopene reduced lipid synthesis 
and prevented mitochondrial dysfunction induced by palmitate, 
thereby reducing the risk of nonalcoholic fatty liver disease (NAFLD) 
in mice (13, 14, 56, 57). In addition, it was concluded by Huang et al. 
(73) and Albrahim et al. (48) that lycopene could improve liver damage 
caused by a high-fat diet in mice. Moreover, Lu et al. (74) also reported 
that lycopene reduced TG in HepG2 cells caused by oleic acid and 
palmitoleic acid. Alvi et al. (53) demonstrated that lycopene inhibits the 
activity of HMG-CoA reductase (HMGR) and proprotein convertase 
subtilisin / kexin type 9 (PCSK-9) transcription. Therefore, lycopene 
reduced the synthesis of T-CHO and the endocytosis of LDL-C by 
inhibiting the activity of HMGR and LDL-C receptors, thus achieving 
the purpose of lipid-lowering (54). Moreover, lycopene enhanced the 
activity of AMP-activated protein kinase (AMPK-P) and downregulating 
ATP citrate-raising lyase (ACLY). Ultimately, the levels of MDA, HMG-
CoA reductase, FAS, ACLY, and TNF-α were reduced and the levels of 
AMPK-P and GSH were increased in diabetic hyperlipidemia rats (75).

In conclusion, through a review of many existing studies, it was 
found that there are four main pathways for the lipid-lowering 
mechanism of lycopene. Lycopene activates the PPARα and AMPK/
SIRT1/PGC1α pathways, thereby downregulating the expressions of 
FABP1, FABP10, ACC1 and FAS. In addition, lycopene could also 
downregulate the expression of ACC1 and FAS and LDL-C endocytosis 
by inhibiting the STAT3 biosynthetic signaling pathway and the 
HMGR/PCSK-9 transcriptional activity pathway, ultimately achieving 
a lipid-lowering effect.

3.3 Lycopene anti-cancer function

The anti-cancer mechanism of lycopene was shown in Figure 5. 
There were in vitro and in vivo research has shown that lycopene has 
an important anticancer effect, which inhibited the proliferation of 

FIGURE 4

Lycopene lipid-lowering mechanism (13, 14, 53–57).
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cancer cells through antioxidant activity, regulation of anti-
inflammation, growth factor signaling, apoptosis induction, and cell 
arrest, such as anterior prostate cancer, cervical cancer, breast cancer, 
melanoma, ovarian cancer, oral cancer, hepatocellular carcinoma, lung 
cancer, and other cancer cells (13, 14, 80–88). The content of Serum 
lycopene and lycopene intake was inversely proportional to the 
probability of cancer (10). Inducing cancer cell apoptosis is one of the 
most important anti-cancer mechanisms of lycopene. The main 
pathway of apoptotic decomposition of cells is the activation of 
BH3-only protein (BH3) by DNA damage, which directly activated 
B⁃cell lymphoma, leukaemia⁃2⁃associated X protein (BAX), and B⁃cell 
lymphoma, leukaemia⁃2⁃associated K protein (BAK) and made them 
become homologous oligosaccharides. At this time, due to the 
penetration of outer mitochondrial members, mitochondrial 
intermembrane proteins are released in the cytoplasm and combine 
with Apaf-1 to form procaspase-9-activating a heptameric protein 
complex called the apoptosome, which ultimately activates caspase-3 
and caspase-7 cleaves the target protein, led to apoptotic breakdown 
(77). Moreover, in “type II” cells, such as hepatocytes, the 
mitochondrial amplifying loop activates the effector caspase and then 
releases SMAC to downregulate XIAP expression to mitigate its 
mediated caspase inhibition (77). Previous studies have shown that 
lycopene reduced carcinogenesis by inhibiting the phosphatidyl-
inositol 3-kinase/serine–threonine kinase (PI3K-AKT) signaling 
pathway, similarly, lycopene induced apoptosis by downregulating B, 
cell CLL/lymphoma-2 (BCL-2), and upregulating BAX (79, 89). 

Previous records have shown that lycopene might increase the levels 
of Bax and E-cadherin and downregulate the levels of N-cadherin, 
phosphatidylinositol 3-kinase (p-PI3K), protein Kinase B (p-AKT), 
BCL-2, and phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian 
target of rapamycin (p-m-TOR). The inactivation of PI3K/
AKT/m-TOR signaling inhibits epithelial-to-mesenchymal transition 
apoptosis in oral cancer cells (13, 14). Moreover, lycopene could 
inhibit the proliferation of human breast cancer MCF-7 cells and 
promote their apoptosis by upregulating the gene expression of p53 
protein (p53) and Bax (78).

It was concluded by Ozkan et al. (10) that that lycopene could play 
an anti-inflammatory and antioxidant role in ovarian cells by 
upregulating Nrf2 or downregulating nuclear factor-kB (NF-kB) and 
STAT3 signals, thus inhibiting the occurrence of spontaneous ovarian 
cancer in laying hens. Furthermore, lycopene also downregulated the 
mRNA expression of integrin β1 (ITGB1), integrin α5 (ITGA5), focal 
adhesion kinase (FAK), integrin-linked kinase (ILK), matrix 
metalloproteinase 9 (MMP9) and the expression of epithelial to 
mesenchymal transition (EMT) inhibits the activity of mitogen-
activated protein kinase (MAPK) and reduced the mRNA expression 
level of the ovarian cancer biomarker CA125, thereby inhibited the 
proliferation of primary ovarian cancer cells and metastatic cells in 
mice (76). Cheng et  al. (90) concluded that low-dose lycopene 
increased the expression level of 8-oxoguanine DNA glycosylase 
(OGG1), Nei-like DNA glycosylase (NEIL1, NEIL2, NEIL3), and 
connexin 43 (Cx43). Similarly, it also upregulated the expression level 

FIGURE 5

The main anti-cancer mechanism of lycopene (14, 46, 48, 76–79). MAO-A, Monoamine oxidase-A; ADA, Adenosine deaminase; NTPDase, Nucleotide 
triphosphatase; AchE, Acetylcholine esterase.
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of scavenger receptor (SRB) protein SR-B1, thereby inhibiting lung 
cancer by improving gene stability and inhibiting smoke-induced 
oxidative stress. Lycopene inhibited the proliferation of ferret liver 
cancer and lung cancer cells induced by tobacco carcinogens by 
inhibiting the protein expression levels of lung α7 nicotinic 
acetylcholine receptor or NF-kB and cytochrome P450E1 (80). 
Additionally, it was concluded by Jhou et al. (91) that 2.5 μM lycopene 
could significantly downregulate the activities of NADPH oxidase 4 
(NOX4), matrix metalloproteinase 2 (MMP-2) and matrix 
metalloproteinase 9 (MMP-9), and then inhibited the migration of 
human hepatic adenocarcinoma SK-Hep-1 cells. Moreover, inhibiting 
the migration of human umbilical vein endothelial cells and the 
activity of vascular endothelial growth factor are also two ways in 
which lycopene could effectively prevent cancer (92, 93).

In conclusion, Lycopene could induce mitochondrial apoptosis 
induced by the inactivation of the growth factor (FASR, VEGFR, IGF-
1R, and PDGFR), mainly inducing BH3 dependent and independent 
activation of BAX and BAK, Ras/RAF/MAPK, and PI3K/AKT/PKB 
signaling pathways to achieve anticancer effects. When these pathway 
pathways are activated. Many related anti-cancer factors will 
be activated, thereby regulating the cell cycle, inflammation, apoptosis, 
metastasis, angiogenesis, and so on, ultimately achieving the purpose 
of anti-cancer.

3.4 Anti-inflammatory and 
immunomodulatory functions of lycopene

The anti-inflammatory mechanism of lycopene was shown in 
Figure  6. Lycopene improved inflammation in the body by 
upregulating and downregulating many signaling channels and 
limited the transcription and expression of inflammatory mediator-
related factors (34). As a key transcription factor involved in body 
inflammation and cellular immunity, NF-kB will participate in the 
transcription and synthesis of inflammatory cytokines and 
chemokines in acute inflammatory responses after activation and 
has powerful anti-apoptotic and endothelial anti-inflammatory 
effects. Therefore, it plays an important role in the body’s 

anti-inflammatory and immune regulation (99, 100). A previous 
study by Ugbaja et  al. (101) indicated that lycopene reduced 
oxidative stress and downregulated the toll-like receptor-4 (TLR4) / 
NF-ĸB-p65 axis in female Wistar rats, thereby mitigating the 
neuroinflammation caused by palmitic acid (PA). Furthermore, the 
reduction of lipopolysaccharide (LPS) induced neuroinflammation 
in male C57BL/6 J mice is affected by lycopene through the 
regulation of MAPK, NF-κB, and Nrf2 signaling pathways (95). It 
was concluded by Zhao et al. (102) that lycopene mediated the Nrf2/
NF-ĸB pathway in CD-1 mice, which reduced neuroinflammation 
brought on by oxidative stress. Lycopene could activate the Nrf2/
HO-1 signaling pathway, thereby inhibited the activation of the NF-
κB and STAT3 pathways caused by interleukin-1β (IL-1β), limited 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 
cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase 
(iNOS) gene transcription, and then reduced TNF-α, IL-6 and 
prostaglandin content, and slow down arthritis in mice (98). 
Moreover, lycopene also reduced arthritis by activating the Kelch-
like epichlorohydrin-related protein-1 (Keap1)-Nrf2 signaling 
pathway (97). In improving cellular inflammation, lycopene has 
been reported to stimulate PPARγ gene transcription by inhibiting 
MAPK and NF-κB signaling, on the other hand, lycopene also 
activated the Nrf2/HO-1 pathway, enhanced autophagy in liver 
macrophages, inhibited the expression of nucleotide-binding 
oligomerization domain-like receptor protein 3 (NLRP3), and 
reduced the secretion of IL-1β, IL-6, interleukin-8 (IL-8), and TNF-α 
ultimately achieves the purpose of improving macrophage 
inflammation (94, 96). Previous research has shown that the 
combination of quercetin and lycopene reduced the expression levels 
of modulatory metalloproteinase 7 (MMP7), MDA, MPO, and 
hydroxyproline, while the expression levels of SOD and GSH was 
elevated and has the potential to resolve inflammation induced by 
ochratoxin A (OTA) in rats (103). Notably, lycopene inhibited 
monocyte adhesion and migration induced by high mobility group 
protein box 1 (HMGB1) produced by necrotic cells and immune 
cells exposed to pro-inflammatory signals by decreasing the gene 
expression of cell adhesion molecules. Consequently, it reduced 
LPS-induced HMGB1 release and HMGB1-mediated secretion of 

FIGURE 6

The main anti-inflammatory mechanism of lycopene (94–98).
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TNF-α and secretory phospholipase A2, and the body finally exerts 
its anti-inflammatory function (104, 105).

In addition to inhibiting inflammation in the body, lycopene also 
has the function of enhancing cellular immunity and humoral 
immunity. The immunomodulatory of lycopene was shown in 
Figure 7. Furthermore, lycopene also has the function of protecting 
lymphocytes, promoting the transformation of T lymphocytes, 
increasing the CD4+/CD8+ ratio, and enhancing the activity of 
natural killer cells (109–111). It was concluded by Sarker et al. (112, 
113) that lycopene reduced the damage aflatoxin B1 (AFB1) caused to 
broiler intestinal immune function by upregulating the production of 
claudin-1 (CLDN-1) mRNA and lowered the levels of the 
inflammatory cytokine interferon-γ (IFN-γ) and IL-1β. Similarly, 
Hidayat et al. (19) also obtained the same result. Lycopene might work 
by encouraging T-cell transition, raising the CD4+/CD8+ ratio, and 
concurrently lowering inflammatory cytokine levels, all of which 
would enhance rats’ immunity (106). Moreover, lycopene could also 
ensure the health of the sow placenta by reducing the expression level 
of placental inflammatory factors and improving immunoglobulin 
content, antioxidant capacity, placental lipid transport, and lipid 
metabolism (16). Other studies have found that lycopene could 
regulate the efficiency of IFN-γ and IL-2 production by mouse T 
lymphocytes or indirectly activate T cells (108). Furthermore, 
lycopene could increase the production of spleen B lymphocytes and 
serum immunoglobulin G content in mice, thereby improving the 
immune function of mice (107).

In conclusion, lycopene has potent anti-inflammatory and 
immunoregulatory properties. It could promote the development of 
B and T lymphocytes, stimulate the normal differentiation of T cells, 
along regulate the production and release of factors linked 
to inflammation.

4 Application of lycopene in poultry 
and ruminant production

As a new type of health additive and dietary supplement, 
lycopene has many functions in animal production, such as 
improving production performance, intestinal health, meat 
quality, and increasing animal reproduction rate, and has good 
application potential.

4.1 Application of lycopene in poultry 
production

Lycopene was widely used in poultry production because of its 
strong antioxidant, anti-inflammatory, and immune-regulating effects. 
In the current poultry research reports, lycopene was mainly used in 
poultry feed as a feed additive. It could be concluded from Table 2 that 
lycopene could reduce the feed conversion ratio (FCR), belly fat weight, 
and the levels of MDA, LDL-, TG, T-CHO, IFN-γ, IL-1β, ROS, and 
H2O2 in poultry. In addition, lycopene reduced the rate of drip loss, 
cooking loss, and pH drop in broilers. The incorporation of lycopene 
in poultry diets could improve the growth performance, feed intake, 
and meat quality of poultry. Moreover, lycopene could also improve the 
GSH-PX, GSH, GST, SOD, immune organ index, and HDL-C 
indicators of poultry. In gene expression, lycopene increased the 
mRNA expression levels of Nrf2, ABCG5, ABCG8, Cludin-1, PGC1α, 
PPARα, RXRα, RARα, and RXRγ. Furthermore, lycopene reduced the 
activity of acetyl-CoA carboxylase, sterol regulatory element binding 
protein 1 (SREBF1), fatty acid synthase, microsomal triglyceride 
transfer protein (MTP), Niemann-Pick C1Like1 (NPC1L1), cholesterol 
O-acyltransferase (ACAT) 2 (ACAT2), Which lycopene also reduced 
the mRNA expression levels of SREBP1c, LXRα, ACLY, FABP1, FABP10 
and FATP4. Lycopene increased the activity of intestinal digestive 
enzymes amylase, lipase, glutamine-cysteine ligase, mitochondrial 
glutathione, electron transport chain complex III, V, and manganese 
superoxide dismutase (MnSOD) in poultry. A previous study by Ayo 
et al. (116) indicated that lycopene could increase the concentration of 
plasma triiodothyronine concentration and the count of preovulatory 
follicles and white follicles. Furthermore, the temperature of the cloacal 
is reduced, thus increasing the reproductive rate of laying hens.

4.2 Application of lycopene in ruminant 
production

Lycopene has been widely used in animal production because of its 
special beneficial functions to animals. There are surprisingly few 
reported lycopene-related outcomes in ruminant production, according 
to the most recent published reports. It could be concluded from Table 3 
that supplementing lycopene to sheep and goat diets could improve 
T-AOC, CAT, GSH-Px, SOD, vitamin E, production performance, 

FIGURE 7

The main immunomodulatory mechanism of lycopene (16, 106–108).
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slaughter performance, and meat quality. Additionally, it was concluded 
by Fallah et  al. (15) that lycopene could enhance immunological 
markers, sex hormones, and milk quality, which promote the breast 
development of ewes. The incorporation of lycopene in diets reduced the 
levels of T-CHO, TG, LDL-C, and MDA, which reduced FCR, Muscle 
L* value, the content of muscle fat, lipid oxidation, and protein oxidation 
(including thiobarbituric acid-reactive substance and carbony l) in sheep 
and goats. In addition, in an experiment on the effect of lycopene on ram 
semen, it was concluded that supplementing lycopene improved the 
individual motility of goat sperm and reduced sperm mortality and 
abnormal sperm content. The application of lycopene in cattle diets 
production is rarely reported. Lycopene improved the milk quality, 
embryo development, and quantity of cattle, and reduced ROS levels and 
the expression of genes such as NF-kB, iNOS, BCL-2 and COX2.

In conclusion, we have reviewed many existing literature reports 
and found that the incorporation of lycopene in diets of poultry and 
ruminant feeding could improve growth performance, meat quality, 

and reproductive performance, but the optimal amount of lycopene 
has a large span. Existing reports have found that the optimal amount 
of lycopene added to poultry feed ranges from 30.00 mg/kg to 
400.00 mg/kg. Additionally, in the feeding of ruminants, the amount 
of lycopene added to the feed should not exceed 200.00 mg/kg. From 
the data obtained, it can be concluded that the study of the optimal 
addition amount of lycopene in poultry and ruminant feed is still a 
hot topic, which needs to be further verified in the future.

5 Conclusion

Lycopene is a new type of healthy feed additive and has been 
gradually applied in animal production because of its natural, 
pollution-free, non-toxic, and side effects, and its physiological 
functions such as anti-inflammatory, antioxidant, and immune 
regulation. Lycopene could be  regulated through many 

TABLE 2 Effect of supplement lycopene in feed in poultry.

Experimental 
animals

Optimal addition 
amount

Total 
experiment time

Effects on animal production (compared 
with the control group)

References

Japanese quail 300.00 mg/kg 28 d
↑ Growth performance and the levels of SOD. ↓ The levels of MDA 

and T-CHO in the muscle.
Amer et al. (68)

Male broilers 30.00 mg/kg 42 d
↑ The activity of Heme oxygenase 1, Nrf2, superoxide dismutase 2, 

and NAD(P)H quinone dehydrogenase 1.
Wang et al. (69)

Arbor Acres broilers 100.00 mg/kg 42 d

↑ The levels of GSH, GST, glutamine-cysteine ligase (GCL), CAT, 

and GSH-Px. ↓ The content of belly fat and the levels of LDL-C, 

ROS, MDA, TG, 8-OHdG, and T-CHO. ↓ The activity of SREBF1, 

acetyl-CoA carboxylase, and fatty acid synthase. ↓ The mRNA 

expression levels of CYP2A6 and CYP1A genes.

Wan et al. (56)

Male broilers 100.00 mg/kg 42 d

↑ Growth performance, and the levels of HDL-C, CAT, and GSH-

Px. ↓ FCR and the levels of T-CHO TG, LDL-C, and MDA. ↓ The 

activity of Alkaline phosphatase and alanine aminotransferase 

(ALT).

Mezbani et al. (114)

Arbor Acres broilers 200.00, 400.00 mg/kg 42 d

↑ Average daily gain (ADG), intestinal digestive enzyme amylase, 

and lipase activity. ↑ The concentration of mitochondrial 

glutathione (mGSH), GSH-Px, electron transport chain (ETC) 

complex III, V, and manganese superoxide dismutase (MnSOD), 

adenosine triphosphate. ↓ FCR. ↓ The levels of ROS, H2O2, and 

mitochondrial swelling.

Sarker et al. (112, 113)

Laying hens 200.00 mg/kg 84 d

↑ The mRNA expression levels of ABCG5 and ABCG8 genes. ↓The 

mRNA expression levels of NPC1L1, ACAT2, MTP, SREBP1c, 

ACLY, and LXRα genes.

Orhan et al. (115)

Xinghua breeding 

hens
40.00, 80.00 mg/kg 42 d

↑ The mRNA expression levels of PGC1α, PPARα, PPARγ, RXRα, 

RXRγ, and RARα genes. ↓ The mRNA expression levels of FABP1, 

FABP10, and FATP4 genes.

Tian et al. (55)

Laying hens 30.00 mg/kg 35 d

↑ Plasma triiodothyronine concentration, preovulatory follicles 

count, white follicles count, and egg production performance. ↓ 

Cloacal temperature.

Ayo et al. (116)

Japanese quail 100.00 mg/kg 49 d
↑ The levels of GSH-PX and SOD. ↓ The levels of serum T-CHO, 

TG, LDL-C, aspartate aminotransferase (AST), ALT, and MDA.
Abbas et al. (117)

Broilers 200.00 mg/kg 42 d
↑ ADG, immune organ index, and meat quality. ↓ The rate of drip 

loss, cooking loss, and pH drop.
Fu et al. (118)

Hyline brown hens 100.00 ng/mL 72 h
↓ D-galactose induced mitochondrial damage in living granulosa 

cells through the Nrf2/HO-1 pathway.
Liu et al. (119)

↑, increase; ↓, decrease; d, days; h, hours.
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TABLE 3 Effect of supplement lycopene in ruminant production.

Experimental 
animals

Optimal addition 
amount

Total experiment 
time

Effects on animal production (compared 
with the control group)

References

Bamei sheep 200.00 mg/kg 120 d

↑ ADG and meat quality. ↑ The levels of plasma antioxidant 

vitamin E, T-AOC, CAT, GSH-Px, and SOD. ↓ The levels of 

T-CHO, TG, LDL-C, lipid oxidation, muscle fat, therosclerosis 

index in plasma, and MDA in plasma and liver.

Jiang et al. (120, 121)

Hu sheep 200.00 mg/kg 90 d

↑ The levels of T-AOC, SOD、CAT, GSH-Px, Muscle a* value, 

vitamin A/ E, and FCR. ↓ The levels of drip loss, lipid, protein 

oxidation, thiobarbituric acid reactive substance (TBARS), and 

carbonyl.

Wang et al. (122) and 

Xu et al. (123)

Hu sheep 200.00 mg/kg 110 d

↑ ADG，chest width，body length, height at withers, chest 

circumferencepre-slaughter live weight, Longissimus dorsi 

muscle weight, kidney weight, GR value, and leather weight. ↑ 

The activities of serum catalase and glutathione peroxidase. ↓ 

MDA.

Qu et al. (124)

Single-bearing 

Lori-Bakhtiari ewes
100.00 mg/day 21 d

↑ Udder volume and the quantity of colostrum. ↑ The levels of 

protein in colostrum, circulating glucose, prolactin, estradiol, 

lymphocyte cells, and circulating IgG. ↓ The levels of urea, 

progesterone, and the ratio of progesterone to estradiol.

Fallah et al. (15)

Turkish Awassi ram 

semen
0.30% 95 d

↑ The levels of sperm’s individual motility. ↓ The levels of sperm 

mortality, abnormal sperm, and sperm acrosomal damage.
Al-Sarray et al. (125)

Merino Ram Semen 0.50, 2.00 mM 72 h
↑ Mitochondrial activity rate, sperm motility rate, and GSH 

levels. ↓ The levels of lipid peroxidation.
Akalin et al. (126)

Cashmere goat 

semen

1.00 mg/ mL+ 5.00 μg/mL 

(Lycopene+Alpha-lipoic 

acid)

21 d

↑ The levels of sperm motility, acrosome integrity, membrane 

integrity, pregnancy rates, mitochondrial activity, SOD, CAT, and 

GSH-Px.

Ren et al. (127)

Italian Friesian 

dairy cows
1.27 g/day/cow 21 d

↑ The levels of energy corrected milk, milk fat, and T-AOC. ↓ 

The levels of TBARS and log10 somatic cell count.
Garavaglia et al. (128)

Bovine cumulus-

oocyte

Bovine embryo

0.20 μM 22 h

↑ The number of blastocysts and BCL2. ↓ The levels of ROS and 

apoptosisc. ↓ The mRNA expression levels of NF-kB, COX2, 

iNOS, BAX genes.

Chowdhury et al. 

(129)

Bovine cumulus-

oocyte

Bovine embryo

0.20 μM 8 d
↑ The total cell, trophectoderm, inner cell mass numbers, and 

nuclear maturation rate. ↓ The oocyte ROS production.
Residiwati et al. (130)

↑, increase; ↓, decrease.

mechanisms to improve the antioxidant, immunity, meat  
quality, and reproductive rate of animals. However, the existing 
research reports found that lycopene is mainly used in poultry 
research in animal production research, while research reports on 
ruminants are relatively rare and many studies are still in 
their infancy.

In conclusion, the current research on lycopene in animal 
production is still relatively limited, not systematic and in-depth 
enough, and the amount of lycopene added to different types of 
animal feed is not clear enough, and its mechanism of action and 
targets need to be  further explored. Therefore, research on the 
application of lycopene in different physiological conditions and 
growth stages of animals can be strengthened in the future. Notably, 
explore the appropriate addition amount of lycopene in feed and 
reveal its specific mechanism of action. This is of great significance to 
promote the development of lycopene feed and the ecological and 
healthy breeding of livestock.
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