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Omics methodologies, such as genomics, transcriptomics, proteomics, metabolomics, 
lipidomics and microbiomics, have revolutionized biological research by allowing 
comprehensive molecular analysis in livestock animals. However, despite being 
widely used in various animal species, research on donkeys has been notably 
scarce. China, renowned for its rich history in donkey husbandry, plays a pivotal 
role in their conservation and utilization. China boasts 24 distinct donkey breeds, 
necessitating conservation efforts, especially for smaller breeds facing extinction 
threats. So far, omics approaches have been employed in studies of donkey 
milk and meat, shedding light on their composition and quality. Similarly, omics 
methods have been utilized to explore the molecular basis associated with 
donkey growth, meat production, and quality traits. Omics analysis has also 
unraveled the critical role of donkey microbiota in health and nutrition, with gut 
microbiome studies revealing associations with factors such as pregnancy, age, 
transportation stress, and altitude. Furthermore, omics applications have addressed 
donkey health issues, including infectious diseases and reproductive problems. 
In addition, these applications have also provided insights into the improvement 
of donkey reproductive efficiency research. In conclusion, omics methodologies 
are essential for advancing knowledge about donkeys, their genetic diversity, and 
their applications across various domains. However, omics research in donkeys is 
still in its infancy, and there is a need for continued research to enhance donkey 
breeding, production, and welfare in China and beyond.
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1 Introduction

In the field of biology, the term “omics” is commonly used to denote scientific disciplines 
focused on the comprehensive characterization of molecular components originating from 
various biological layers within living organisms. These layers encompass DNA, RNA, proteins, 
and metabolites, and their analysis is facilitated by high-throughput technologies (1–4). Recent 
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advancements in both computational and experimental methodologies 
have substantially enhanced our capacity to profile multiple levels of 
cellular regulation, including the genome, transcriptome, epigenome, 
chromatin conformation, and metabolome, among other well-
established “omics” (5–13). Consequently, these omics analyses have 
found widespread application in animal research in recent years (14, 
15), as evidenced by the studies in cattle examining their role in 
production (16, 17), reproduction (18, 19), and metabolism/
microbiome (20–22). Similarly, the contributions of omics techniques 
to understanding various traits in pigs (23–28), sheep, and goats (29) 
as well as chickens (30–32) have been comprehensively explored.

Furthermore, the utility of omics approaches extends to the 
authentication and assessment of various animal-derived products, 
including meat (33–40) and milk (41, 42). Surprisingly, despite these 
extensive investigations in multiple animal species, there is a notable 
absence of comprehensive reviews addressing the application of omics 
methodologies in donkey research. Therefore, this present review 
article aims to fill this gap by providing an overview of the genetic 
resources available for donkeys and examining the utilization of omics 
techniques in enhancing the productive and reproductive traits of 
donkeys in China. Additionally, this review delves into the role of 
omics applications in evaluating donkey-derived products, such as 
milk and meat.

2 Methodology for literature search

The central objective of this review article was to comprehensively 
investigate the evolving landscape of Omics applications within the 
domain of donkey research, with a particular emphasis on the Chinese 
context. This entailed conducting a systematic literature search to 
identify and assess pertinent studies, focusing exclusively on Chinese 
local donkey breeds. To ensure the selection of the most relevant 
literature, we devised stringent inclusion and exclusion criteria. The 
articles considered for inclusion were those published in recent years, 
which explored the utilization of Omics methodologies in livestock 
research, including pigs, cattle, sheep, goats, and poultry. Our review, 
however, honed in exclusively on studies related to donkeys, with a 
specific geographical focus on China. We meticulously chose a set of 
keywords that encapsulated the core themes of our review, including 
“donkey milk,” “donkey meat,” “donkey microbiome,” “donkey health,” 
“donkey reproduction,” and the overarching category of “omics.” 
Within the Omics umbrella, we  included subdisciplines such as 
“genomics,” “transcriptomics,” “proteomics,” “metabolomics,” 
“microbiomics,” and “lipidomics.” Utilizing these keywords, 
we  conducted an exhaustive search across reputable academic 
databases, including but not limited to PubMed, Scopus, Web of 
Science, and relevant academic journals. Following the initial search, 
the identified articles were subject to a rigorous screening process. 
Each article was assessed for relevance based on its title, abstract, and 
keywords. Only those articles meeting the criteria of investigating 
Omics applications in donkey research, particularly within the 
Chinese context, were retained. Relevant data from the selected 
articles were meticulously extracted and cataloged for subsequent 
analysis. This included information on the research objectives, 
methodologies employed, key findings, and any notable insights 
regarding the application of omics techniques in donkey research. The 
extracted data were synthesized, and patterns, trends, and 

advancements in the field of Omics applications in Chinese donkey 
research were critically evaluated. These insights were then organized 
and presented in a coherent manner within the review article.

3 Assessing the donkey welfare, 
distribution, and genetic resources in 
China

Donkey as a livestock animal has been ignored due to increased 
industrialization and mechanization because communities which 
previously relied on donkey traction now use motorized vehicles and 
machinery (43). In contrast, considerable attention has been given to 
the management and welfare and improvement of genetic resources 
and production of donkeys in China (44–49). According to our recent 
survey in different areas of China, we identified that there are well 
established and well-equipped donkey farms are existing in China 
(44). China realizes the importance of donkey as other livestock 
animals and still has reported 24 donkey breeds and number one in 
conservation of local donkey breeds [(48), https://zypc.nahs.org.cn/
pzml/classify.html]. As per Food and Agricultural Organization report 
in 2020, the global donkey population was 50.45 million, of which 
2.68 million are raised in China (47, 50). In China, donkeys are raised 
for milk, meat and hide production which might be another reason 
for the growing attention (44, 51–53).

The donkey is believed to have undergone a process of 
domestication approximately 5,000 years ago in Egypt, stemming from 
the African wild ass (54). This domestication event May have been 
prompted by environmental changes leading to a drier climate in the 
region. Previous research has suggested the possibility of dual 
domestication events, likely originating from the Nubian and Somali 
wild ass subspecies. These proposals are supported by patterns of 
mitochondrial DNA variation identified in both ancient and 
contemporary donkey populations (54–59). It is noteworthy that some 
extant subspecies of wild asses, as well as specific donkey breeds, face 
critical endangerment, leading to substantial conservation efforts (60). 
The pivotal contribution of genomics to the elucidation of the 
evolutionary history of equids has been comprehensively documented 
in a recently published studies (61–67). Consequently, researchers 
utilized the Chicago HiRise assembly technology to create a high-
quality donkey genome assembly with sub-chromosomal scaffolds 
(60). This newly developed assembly has the potential to facilitate 
accurate assessments of heterozygosity in equine species beyond the 
horse, both at the genome-wide and local levels. Additionally, it aids 
in the detection of runs of homozygosity, which could be indicative of 
positive selection in domestic donkeys. Moreover, this advanced 
genome assembly enabled the identification of fine-scale chromosomal 
rearrangements between horses and donkeys, likely contributing to 
their divergence and eventual speciation (60). Recently, Liu et  al. 
conducted genome-wide analyses using a novel donkey 40 K liquid 
SNP chip to study coat color diversity in the Chinese Dezhou donkey. 
However, SNP-Chip based for diversity purposes in donkey research 
is still in infancy (68).

China boasts a 4,000-year history of donkey husbandry and 
possesses abundant genetic resources in this domain (69–71). Animal 
genetic resources represent an indispensable facet of our genetic, 
economic, and cultural legacy, serving as a pivotal driver within the 
spheres of the economy, food production, regional identity, and 
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ecosystem services (48, 72). Within this framework, it is crucial to 
recognize that local breeds, including those of donkeys, which May 
have lost their original purpose, are frequently confronting a dire 
existential threat. Consequently, there is an imperative need for 
concerted efforts aimed at their rehabilitation and reintegration into 
alternative economic utilization programs. Previous research has 
categorized Chinese donkey breeds into three regional branches: 
North China Plain, Loess Plateau, and Southwest China Plateau (73). 
The geographical distribution of these donkey breeds in China is 
primarily concentrated in Liaoning, Shanxi, Xinjiang, Inner Mongolia, 
Gansu, and Shandong Provinces (44, 48).

Recent research has identified a diverse array of donkey breeds 
within China’s genetic resources. These breeds encompass the Huaibei 
grey, Liangzhou, Qingyang, Changyuan, Biyang, Gunsha, Jiami, 
Guangzhong, Kulun, Xiji, Qinghai, Dezhou, Xinjiang, Hetian Grey, 
Turpan, Yangyuan, Taihang, Guangling, Jinnan, Linxian, Chuan, 
Xizang, Yunnan and Subei donkeys [(44, 74, 75), https://zypc.nahs.
org.cn/pzml/classify.html]. These donkey breeds exhibit substantial 
variations in terms of body weight and size, with weight ranging from 
130 to 260 kg and a height measuring between 110 cm to 130 cm. 
Morphologically, donkeys can be categorized into three main size 
groups: large-sized (Guanzhong, Hetian, Turpan, Changyuan, Jinnan, 
Guangling, and Dezhou donkeys), medium-sized (Jiami, Linxian, 
Biyang, Yangyuan and Qingyang donkeys), and small-sized (Kulun, 
Tibetan, Chuan, Subei, Huaibei, Xinjiang, Qinghai, Jiami Liangzhou, 
Taihang, Gunsha and Yunnan donkeys).1 These categories correspond 
to heights above 130 cm, between 115 cm and 125 cm, and below 
110 cm, respectively (48). Among all donkey breeds, Dezhou donkey 
located in Shandong has extensively studied because of its heavy body, 
body height and length, predominantly black hair with a straight back 
and waist, arch of chest rib and round, firm hooves (44).

In China, traditional donkey breeding farms historically focused 
on a single local donkey breed. However, in a recent survey, 16 
different local donkey breeds were identified. Notably, the Dezhou 
donkey currently dominates the Chinese donkey population, 
constituting over 57% of the total donkey population (44). This finding 
aligns with the findings of a prior study (48). In contrast, smaller-sized 
breeds such as Kulun, Qingyang, Xiji and Huaibei Grey donkeys 
constitute a significantly smaller proportion (44). This discrepancy is 
likely due to the relatively lower production value of meat and hide 
associated with these smaller breeds. Unfortunately, these smaller 
donkey breeds have faced indiscriminate slaughter in recent years, 
raising concerns about their potential extinction (57, 76). The details 
of donkey breeds and their location in China has been provided in 
Table 1. To preserve the genetic diversity of these smaller donkey 
breeds, it is crucial to establish dedicated breeding farms that are 
specifically designed for their conservation.

The breeds and their location information were obtained from 
following published sources [(44, 48, 49, 58, 73–82), https://zypc.nahs.
org.cn/pzml/classify.html].

1 https://zypc.nahs.org.cn/pzml/classify.html

4 Utilization of omics approaches in 
donkey milk production research

The research development on omics application in donkey milk 
research has been summarized in Table 2. New analytical technologies, 
with mass spectrometry being at the forefront, facilitate the generation 
of improved and innovative milk products based on the growing 
knowledge and understanding of milk bioactive compounds such as 
proteins, carbohydrates, lipids, and minerals, at global scale. The 
molecular understanding of biological milk function has emerged as 
a central theme in nutritional research (83–85). Mass spectrometry-
based techniques enable the characterization of human and animal 
milk components not only in native fresh but also in processed milk. 
In recent years, the application of omics technologies has gained 
prominence in the field of donkey milk production research (86–92). 
Particularly, metabolomics, lipidomics, transcriptomics, and 
proteomics have played significant roles in advancing our 
understanding of various aspects of donkey milk and its potential 
applications. This paper provides a comprehensive overview of key 
findings and studies conducted in these areas.

Metabolomic research in donkey milk has primarily focused on 
comparing and characterizing metabolite profiles. Significant studies 
have been conducted in the field of metabolomics, including notable 
investigations such as the examination of metabolite profiles in both 
donkey milk and human milk through GC–MS analysis (93). 
Additionally, Li et  al. (94) conducted a metabolomic comparison 
involving two distinct Dezhou donkey strains, SanFen and WuTou, 
employing LC–MS methodology. Furthermore, an extensive analysis 
of metabolites within donkey milk throughout various stages of 
lactation was performed using un-targeted metabolomics coupled 
with ultra-high-performance liquid tandem chromatography 
quadrupole time-of-flight mass spectrometry (95). These studies shed 
light on the chemical composition of donkey milk, which is essential 
for assessing its nutritional value, bioactive compounds, technical 
properties, and potential diagnostic applications (96). Accordingly, a 
study employed a metabolomic approach to identify differentially free 
fatty acids and related signaling pathways in donkey milk across 
various lactational stages (97). Moreover, mass spectroscopy (MS) 
coupled with Ultrahigh-performance liquid chromatography 
(UHPLC) technique has been utilized to screen the metabolites in 
bovine, goat and donkey milk to assess the anti-inflammatory and 
immunoregulatory properties of milk extracellular vesicles (98). 
Consistently, a study found lipids and metabolites in milk and 
colostrum through metabolomics analysis by using UHPLC and 
MS (99).

Lipidomics, a vital field within metabolomics, aims to elucidate 
the structures of lipid molecules. Several studies have examined 
various lipid subgroups in donkey milk using liquid chromatography–
tandem mass spectrometry, including fatty acids, polar lipids, and 
glycolipids (100, 101). Moreover, investigations into the differences in 
lipid composition of donkey milk at different lactation stages have 
been conducted (97, 99, 102). Notably, a study has compared the lipid 
profiles of donkey milk with those of cow and human milk (102). 
These studies have contributed valuable insights into the lipid contents 
of donkey milk.

The proteomics applications have been extensively discussed in 
donkey milk research (103–105). Furthermore, proteomic analysis 
has been employed to study differentially expressed whey proteins 

https://doi.org/10.3389/fvets.2024.1366128
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://zypc.nahs.org.cn/pzml/classify.html
https://zypc.nahs.org.cn/pzml/classify.html
https://zypc.nahs.org.cn/pzml/classify.html
https://zypc.nahs.org.cn/pzml/classify.html
https://zypc.nahs.org.cn/pzml/classify.html


Khan et al. 10.3389/fvets.2024.1366128

Frontiers in Veterinary Science 04 frontiersin.org

TABLE 1 Summary of donkey breeds and their location in China.

Breeds Size [Height (cm)] Location

Huaibei grey donkey
Male:116.12 ± 3.45

Anhui Province
Female: 109.30 ± 4.89

Liangzhou and Qingyang donkeys

Liangzhou donkey:

Gansu Province

Male:108.90 ± 6.39

Female: 109.93 ± 8.63

Qingyang donkey:

Male:129.41 ± 2.52

Female: 124.93 ± 2.78

Changyuan and Biyang donkeys

Changyuan donkey:

Henan Province

Male:136.00 ± 3.40

Female: 129.40 ± 4.70

Biyang donkey:

Male:138.70 ± 5.40

Female: 131.40 ± 5.20

Gunsha (Shanbei), Jiami and Guangzhong donkey

Gunsha donkey:

Shaanxi Province

Male:115.65 ± 5.40

Female: 110.81 ± 5.69

Jiami donkey:

Male:126.80 ± 3.70

Female: 124.10 ± 3.70

Guangzhong donkey:

Male:133.45 ± 2.11

Female: 128.12 ± 4.82

Kulun
Male:121.20 ± 1.93

Inner Mongolia
Female: 110.12 ± 2.36

Xiji donkey
Male:124.30 ± 4.60

Ningxia Province
Female: 123.30 ± 6.10

Qinghai donkey
Male:101.90 ± 9.34

Qinghai Province
Female: 99.76 ± 7.51

Dezhou donkey
Male:140.22 ± 3.80

Shandong Province
Female: 135.03 ± 4.76

Xinjiang, Hetian grey, and Turpan donkeys

Xinjiang donkey:

Xinjiang Province

Male:181.30 ± 36.00

Female: 156.00 ± 31.10

Hetian grey donkey:

Male:132.00 ± 1.70

Female: 130.10 ± 3.33

Turpan donkey:

Male:141.20 ± 5.65

Female: 135.54 ± 4.82

Yangyuan and Taihang Donkey

Yangyuan Donkey:

Hebei Province

Male:133.60 ± 5.05

Female: 123.10 ± 8.44

Taihang Donkey:

Male:114.70 ± 8.64

Female: 104.22 ± 7.26

(Continued)
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in donkey milk (106). These proteins have been linked to processes 
such as protein processing in the endoplasmic reticulum, estrogen 
signaling, progesterone-mediated oocyte maturation, and the 
PI3K-Akt signaling pathway (107). Studies have also reported 
differentially expressed whey proteins in donkey colostrum and 
mature milk, with implications for signaling and antigen processing 
pathways (95, 107). In a study utilizing the Equine 670 k Chip, a 
study successfully identified genes (NUMB, ADCY8, and CA8) 
associated with milk production traits in Xinjiang Donkeys (108). 
Consistently, proteomic analysis revealed some key differentially 
expressed proteins that were involved in regulation of complement 
and coagulation cascades, staphylococcus aureus infection and 
AGE-RAGE signaling pathways in diabetic complications (51). In 
addition, these proteins have key role in promoting cell 
proliferation, enhancing antioxidant, immunoregulation, anti-
inflammatory, and antibacterial effects, and enhancing skin 
moisture (51). In addition a study emphasized the significance of 
proteomics and peptidomics in comparing proteins and endogenous 
peptides in human, cow, and donkey milk (109). Additionally, 
transcriptomic screening of donkey mammary glands has been 
used to identify molecular factors associated with reduced 
susceptibility to mastitis (110). Another study has investigated 
molecular mechanisms regulating bioactive milk components in 
mammary glands through transcriptomic profiling (111). In 
summary, the utilization of omics methodologies, encompassing 
metabolomics, lipidomics, transcriptomics, and proteomics, has 
made substantial contributions to our comprehension of donkey 
milk’s characteristics. These applications have enabled us to gain 
insights into the composition of donkey milk, its alterations in 
composition throughout the lactation period, and the ability to 
distinguish donkey milk from other sources. Furthermore, omics 

techniques have furnished us with invaluable insights into the 
constituent components and inherent qualities of donkey milk, thus 
establishing a solid groundwork for further scientific exploration 
and the potential for groundbreaking advancements in this 
particular field.

5 Utilization of omics approaches in 
donkey growth, meat production, and 
quality traits research

Recently a study conducted by Yu et al. (112) reported through 
transcriptomic screening several candidates Long non-coding RNAs 
(lncRNAs) that were involved in regulation of genes (DCN, ITM2A, 
MUSTN1, ARRDC2) associated with skeletal muscle development in 
donkeys (113). Consistently studies utilized genomic screening for 
polymorphisms and their genes that were associated with body size 
traits in Yangyuan donkeys (79) and chest circumference in Xinjiang 
Donkeys (114). In line with these studies, another study reported 
LCORL/NCAPG, FAM184B, TBX3, and IHH via Genomic screening 
which were associated with body height in Chinese 11 indigenous 
donkeys breeds (Biyang, Dezhou, Guangling, Hetian, Jiami, Kulun, 
Qingyang, Turpan, Tibetan, Xinjiang, and Yunnan) (115). While 
another study found eca-miR-1 regulated TMP3 gene via 
transcriptomic study, which is associated with skeletal muscle 
development (116). Besides, the omics methods have also been 
utilized to judge the quality of meat and changes in meat obtained 
from different sources of animals. The utilization of different omics 
techniques utilization in donkey growth and meat production and 
quality research have been summarized in Table 3.

TABLE 1 (Continued)

Breeds Size [Height (cm)] Location

Guangling, Jinnan and Linxian Donkeys

Guangling Donkey:

Shanxi province

Male:141.40 ± 2.50

Female: 139.30 ± 3.80

Linxian Donkey:

Male:133.22 ± 3.73

Female: 133.16 ± 3.50

Linxian Donkey:

Male:124.00

Female: 123.60 ± 3.00

Tibetan donkey
Male:102.86 ± 4.50

Tibet
Female: 106.13 ± 8.50

Chuan donkey
Male:98.73 ± 5.32

Sichuan province
Female: 95.44 ± 4.28

Yunnan donkey
Male:102.30 ± 5.72

Yunnan province
Female: 98.89 ± 4.42

Subei donkey
Male:122.60 ± 7.10

Jiangsu province
Female: 118.40 ± 6.00
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TABLE 2 Summary of omics application in donkey milk research.

Omics techniques Biological outcomes Purpose Reference

Metabolomics Identification of metabolites and lipids in Chinese Liaoxi 

jennies colostrum and mature milk

Assessment of changes in milk composition during 

lactation

(100)

Metabolomics Identification of differentially expressed metabolites in 

milk of two Dezhou donkey strains (SanFen and WuTou)

Exploration of difference in milk composition of two 

donkeys’ strains

(94)

Metabolomics Metabolites profiling of bovine, goat and donkey milk 

extracellular vesicles

Composition and health benefit assessment of milk (98)

Metabolomics Screening of metabolites in donkey colostrum and mature 

milk

Evaluatation of changes in milk composition during 

lactation

(95)

Metabolomics Screening of changes in free fatty acids profile in donkey 

colostrum and mature milk

For judgement of changes in milk composition during 

lactation

(97)

Metabolomics Profiling metabolites in donkeys and human milk Investigation of the suitability of donkey milk for human 

infant use

(93)

Proteomics Differentially expressed proteins in donkey milk Composition and functional exploration donkey milk (148)

Proteomics Differentially expressed amino acids in donkey colostrum 

and donkey mature milk associated with flavor and taste

The functionality and quality judgement of donkey milk (149)

Proteomics Screening whey proteins in donkey colostrum and mature 

milk

Evaluation of changes in milk composition with lactation (107)

Proteomics Milk fat globule membrane proteins in donkey milk To examine the milk composition and its therapeutic 

efficacy assessment

(150)

LC–MS and GC–MS 

based Lipidomics

Lipids profiling of donkey milk in response to roughages 

feeding

Measurement of the changes in milk composition in 

response to roughages feeding

(151)

TABLE 3 Summary of omics application in donkey meat production and growth traits research.

Omics techniques Biological outcomes Purpose Reference

Genomics Screening of SNPs associated with chest 

circumference

Improvement of meat production (114)

Genomics Identification polymorphisms and their genes 

associated with number of thoracic and lumber 

vertebrae

Enhancement of body size, carcass weight and meat 

quantity and quality

(152)

Genomics Screening of genes associated body size traits Acceleration the breeding potential of donkeys for meat 

production

(80, 115)

Transcriptomics Identification differentially expressed Genes and 

miRNAs associated with Skeletal muscle development

Meat production improvement (116)

Transcriptomics and Proteomics Differentially expressed genes and proteins in 

longissimus dorsi muscles of donkey, cow, and goat

For assessing differences in meat of donkey, cow, and 

goat

(113)

UHPLC–ESI–MS and SPME–GC–

MS based lipidomics

Lipid profiling of donkey, bovine, and sheep meat Differentiating meat from different sources (153)

Lipidomics Lipid profiling of intramuscular fat in donkey Assessing and enhancement of meat quality (154)

Transcriptomics Screening of genes associated with development of 

muscle fibre and tenderness

Improvement of meat quality (155)

Proteomics Screening of differentially expressed proteins in 

emitendinosus, longissimus thoracis and gluteus 

maximus muscles

Assessing and enhancement of meat quality (156)

Transcriptomics Screening of genes associated with skin thickness and 

muscle development

Improvement of Ejiao and meat production (157)

Genomics Screening of genes associated with body size To enhance the adoptability and productive efficiency (78)

Transcriptomics Identification of miRNA regulated genes and their 

association with muscle fibre development

Enhancement of meat quality (158)

(Continued)
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6 Role of omics in donkey microbiota 
research

The gut microbiome of donkeys has garnered significant attention 
due to its pivotal role in donkey nutrition, as evidenced by recent 
studies (117, 118). A comparative investigation was conducted to 
assess the microbiota composition in Qinghai and Dezhou donkeys, 
revealing notable disparities. Specifically, it was observed that Qinghai 
Donkeys exhibited substantially higher flora diversity and richness in 
comparison to their Dezhou counterparts (119). While another study 
indicated that wild asses exhibit advantages over domestic donkeys in 
terms of dry matter digestion, gut microbial community composition, 
and function, it was also observed that wild asses possess a distinct 
intestinal flora adaptation for high altitudes on the Qinghai-Tibet 
plateau (120). This observation underscores the profound impact of 
gut microbiota on the adaptive evolution of donkeys. Utilizing 
advanced Omics techniques, multiple studies have consistently 
demonstrated a strong correlation between physiological variations 
and environmental changes with alterations in the gut microbiota of 
donkeys. These variations encompass diverse aspects such as 
pregnancy (121), age (122), transportation stress (122, 123) and 
altitude (118, 124, 125). Furthermore, these changes in gut microbiota 
composition and metabolite profiles have been shown to exert 
significant influence on maternal health, as well as the growth and 
development of the fetus (126–128). The relationship between feeding 
method and type of feed and the gut microbiota of weaned donkeys 
has been discussed in a recent study (129). Furthermore, the study by 
Huang et  al. (130) found that supplementing donkeys with yeast 
polysaccharides significantly improved their gut microbiota and 
metabolites, which in turn were linked to enhanced immunity, better 

feed digestion, and improved growth in donkeys. Similarly, another 
study reported that high concentrate diet significantly improved the 
gut microbiota and metabolites following by enhanced of average daily 
gain and feed efficiency (131). By utilizing omics method, Zhang et al. 
(132) explored the differences in microbial diversity in small and large 
intestine and their impact on overall performance of donkeys (132). 
Recently our research team documented the dynamic changes in skin 
microbiota diversity and composition in donkeys of different ages and 
at different sites of the body (133). Collectively, these findings 
emphasize the imperative necessity of maintaining meticulous 
nutritional care and management practices for donkeys. Such 
measures are crucial not only for ensuring successful lactation but also 
for fostering optimal growth and health outcomes for both the 
donkeys and their foals. This scientific understanding underscores the 
significance of a comprehensive approach to donkey husbandry and 
underscores the importance of fostering a well-balanced gut 
microbiota for these animals’ overall well-being.

7 Omics application in donkey health 
research

Omics applications have gained prominence in the field of animal 
health (134), with recent attention being directed towards their 
utilization in donkey health research (135). Additionally, proteomic 
profiling in both neonatal and adult donkeys’ urine has proven 
valuable in assessing their health status (135). A multiomic approach 
has been employed to investigate the microbiota in the donkey 
hindgut, shedding light on its association with immunity and 
metabolism (117). Notably, whole genome sequencing has enabled the 

TABLE 3 (Continued)

Omics techniques Biological outcomes Purpose Reference

Transcriptomics Screening of genes associated intramuscular fat 

deposition

Improvement of meat quality (81)

Proteomics Proteins associated with intramuscular fat deposition To enhance the quality of meat (159)

Metabolomics and lipidomics Screening of differentially expressed Lipids and 

metabolites in donkeys raw and cooked meat

For meat quality improvement (160)

Transcriptomics and Lipidomics Detection of differentially expressed genes and lipids 

in intramuscular fat and adipose tissue

Meat quality enhancement (161)

LC–MS-Based Lipidomics Lipid profiling of intramuscular fat in donkey Assessing and enhancing the meat quality (162)

Lipidomics Screening of Differentially expressed Volatile 

compounds in various parts of Donkey meat and 

boiled meat

For assessing the quality of meat (163)

lipidomics Screening of Differentially expressed Volatile 

compounds and lipids in boiled meat of Donkey

For assessing the quality of meat (164)

Transcriptomics Identification of lysozyme gene in donkey breast and 

milk

Exploration of molecular mechanisms underlying 

phenotype traits.

(165)

Transcriptomics Screening of candidate circular RNAs associated 

intramuscular fat contents development

Upgrading the meat quality (166)

Transcriptomics Screening of Long non-coding RNA (lncRNA) and 

their regulated genes associated with muscle 

development

Improvement of meat quality and quantity (167)

Metabolomics Changes in metabolites during the early postmortem 

aging in donkey meat

Exploring the quality of meat (168)
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characterization of equine coronavirus obtained from donkeys with 
diarrhea in Shandong Province, China (136). In a study comparing 
jennies with and without reproductive issues, it was found that 
Streptococcus zooepidemicus isolates in jennies with reproductive 
problems exhibited a higher number of genes encoding virulence 
factors (137). Furthermore, a recent publication highlighted 
differentially expressed proteins in the serum of jennies with 
endometritis caused by E. coli, suggesting their potential as biomarkers 
for diagnosis (138). Despite these promising findings, it is evident that 
research in the realm of omics applications in donkey health remains 
limited, leaving ample room for further exploration and discovery in 
this domain.

8 Omics applications in donkey 
reproductive research

Genetic selection and breeding are crucial tools for livestock 
improvement (139). Consistently, the prospective utilization of 
genomics, with particular emphasis on its applicability to equine 
diseases and fertility, has been comprehensively documented (140). 

The transcriptomic screening of granulosa cells in response to heat 
stress has been reported in our previous study (141, 142). Consistently, 
a study reported differentially expressed genes in Donkeys granulosa 
cells in response to vitamins A, D and E and micronutrients (143, 
144). Furthermore, they observed that most of the differentially 
expressed genes were associated with steroidogenesis and follicular 
development (143). A study utilized transcriptomic approach and 
documented differentially expressed genes in donkey oocyte that were 
majorly associated with RNA metabolism and apoptosis (145). These 
findings revealed the uniqueness of donkey conclude that, compared 
to other species, donkey oocytes express a large number of genes 
related to RNA metabolism to maintain normal oocyte development 
during the period from germinal vesicle to metaphase II. Consistently, 
a study through integrative screening of miRNA and mRNA and 
found several genes and microRNAs associated with spermatogenesis 
(146). Deoxynivalenol and zearalenone, which are commonly found 
in feed products, exhibit serious negative effects on the reproductive 
systems of domestic animals. A recent study utilized transcriptomic 
approach to explore their negative effect on donkey endometrial cells 
by down regulating the androgen and estrogen secretion-linked genes 
and upregulating the cancer-promoting genes (147). These genes 

TABLE 4 Summary of omics applications in donkey reproduction.

Omics techniques Biological outcomes Purpose Reference

Transcriptomics Identification of genes associated with oocyte 

development

Physiology of oocyte across various animal species (145)

Transcriptomics Screening of genes associated with male reproductive 

cells development and sperm physiology

Genetic markers for molecular breeding (146)

Transcriptomics Screening of genes regulated in response to 

deoxynivalenol and zearalenone and their effect on 

reproductive cells function

Genetic response of reproductive cells to deoxynivalenol and 

zearalenone

(147)

Transcriptomics Identification of genes and lncRNAs associated with 

testicular development and spermatogenesis

Improvement of donkey production via molecular breeding (169)

Transcriptomics Profiling of genes and miRNAs associated with 

development of testicular tissue and male 

reproductive traits

Genetic markers identification for enhancement of donkey 

breeding efficiency

(170)

Transcriptomics Identification of Circular RNAs (circRNAs) and their 

genes associated with spermatogenesis and testes 

development

Genetic markers for molecular breeding (171)

Transcriptomics Screening of differentially genes associated with 

development and maturation of oocytes

Improvement of donkey production through molecular 

breeding

(172)

Proteomics Seminal plasma proteins are essential for sperm 

function and also related to individual differences in 

sperm freezability.

Tandem Mass Tag (TMT) proteomics screening of 

differentially expressed proteins profile was reported 

in response to various freezing methods in seminal 

plasma

Investigate the molecular mechanisms of donkey sperm 

cryotolerance

(173)

Proteomics Profiling of differentially expressed proteins in fresh 

and frozen–thawed spermatozoa

The sperm viability enhancement and prevention the possible 

injuries exploration during cryopreservation

(174)

Proteomics Differentially expressed proteins profile was reported 

in response to various freezing methods in seminal 

plasma

The evaluation of molecular mechanisms of donkey sperm 

cryotolerance

(175)

Metabolomics Profiling of differentially expressed metabolites in 

fresh and frozen–thawed spermatozoa

To enhance the viability of sperm and prevent the possible 

injuries during cryopreservation

(176)
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could be utilized for improvement of donkey breeding in future. For 
ease of reviewing, we have summarized the research development on 
omics application in donkey reproduction in Table 4.

9 Conclusion

Various omics technologies such as genomics, transcriptomics, 
metabolomics, lipidomics, and proteomics, have been used in different 
areas of donkey research. These include genetic resources, milk 
production, growth, meat quality, microbiota, health, and 
reproduction. However, it is important to note that the application of 
omics methods in donkey research is still in its early stages. There is 
significant potential for further exploration and discoveries in this 
field. Therefore, future research should concentrate on harnessing the 
potential of omics technologies to improve donkey health, 
productivity, and genetic conservation.
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