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Background: Cryptosporidiosis is an opportunistic parasitic disease widely 
distributed worldwide. Although Cryptosporidium sp. causes asymptomatic 
infection in healthy people, it may lead to severe illness in immunocompromised 
individuals. Limited effective therapeutic alternatives are available against 
cryptosporidiosis in this category of patients. So, there is an urgent need for 
therapeutic alternatives for cryptosporidiosis. Recently, the potential uses of 
Eugenol (EUG) have been considered a promising novel treatment for bacterial 
and parasitic infections. Consequently, it is suggested to investigate the effect of 
EUG as an option for the treatment of cryptosporidiosis.

Materials and methods: The in silico bioinformatics analysis was used to predict 
and determine the binding affinities and intermolecular interactions of EUG and 
Nitazoxanide (NTZ) toward several Cryptosporidium parvum (C. parvum) lowa 
II target proteins. For animal study, five groups of immunosuppressed Swiss 
albino mice (10 mice each) were used. Group I was left uninfected (control), and 
four groups were infected with 1,000 oocysts of Cryptosporidium sp. The first 
infected group was left untreated. The remaining three infected groups received 
NTZ, EUG, and EUG  +  NTZ, respectively, on the 6th day post-infection (dpi). All 
mice were sacrificed 30 dpi. The efficacy of the used formulas was assessed by 
counting the number of C. parvum oocysts excreted in stool of infected mice, 
histopathological examination of the ileum and liver tissues and determination 
of the expression of iNOS in the ileum of mice in different animal groups.

Results: treatment with EUG resulted in a significant reduction in the number 
of oocysts secreted in stool when compared to infected untreated mice. 
In addition, oocyst excretion was significantly reduced in mice received a 
combination therapy of EUG and NTZ when compared with those received NTZ 
alone. EUG succeeded in reverting the histopathological alterations induced by 
Cryptosporidium infection either alone or in combination with NTZ. Moreover, 
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mice received EUG showed marked reduction of the expression of iNOS in ileal 
tissues.

Conclusion: Based on the results, the present study signified a basis for utilizing 
EUG as an affordable, safe, and alternative therapy combined with NTZ in the 
management of cryptosporidiosis.
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Introduction

Cryptosporidiosis is a global opportunistic parasitic disease 
caused by the protozoan Cryptosporidium species (1). These parasites 
can infect mainly the epithelial cells of the jejunum and ileum of 
vertebrates after direct contact with the excreted oocysts in fecal 
materials or in the contaminated food, water, or drinks. Although, 
parasite development is relatively confined to the terminal jejunum 
and ileum, in immunosuppressed hosts the entire gastrointestinal 
tract as well as the biliary and pancreatic ducts may be infected and 
less frequently the respiratory tract (2).

Cryptosporidiosis may be  self-limiting, or severe life-
threatening condition depending on the immune status of the host 
(3–5). in immunocompetent individuals, Cryptosporidium infection 
may be a symptomatic or typically results in an episode of watery 
diarrhea (6). On the contrary, those with impaired immune systems 
such as infants, elderly and immunocompromised patients due to 
organ transplantation, AIDS and cancer therapy are more prone to 
infection with chronic, prolonged illness that is challenging to cure 
and may even be  fatal (5, 7). In immunocompromised 
patients, cryptosporidiosis may cause severe life-threatening 
diarrhea and extra-intestinal disseminations resulting in bile duct 
obstruction, pancreatitis, papillary stenosis, and sclerosing 
cholangitis (5, 7, 8). Therefore, cryptosporidiosis is among the most 
serious opportunistic infections in immunocompromised 
patients (7).

Treatment options for cryptosporidiosis are extremely limited; 
there is no available vaccine is for this parasite, and nitazoxanide 
(NTZ) is the only FDA-approved drug for cryptosporidiosis. It 
promotes recovery in immunocompetent individuals but 
unfortunately has a very poor efficacy in children and in patients with 
acquired immunodeficiency syndrome (AIDS) (9). Treatment of the 
cause of immunosuppression has been found to reduce the severity of 
cryptosporidiosis in patients with Human immunodeficiency virus 
(HIV) and is not an option in immunocompromised patients without 
HIV infection (10, 11). Moreover, HIV patients in developing 
countries cannot afford anti-retrovirals, which results in the 
re-emergence of cryptosporidiosis (12).

Eugenol (EUG) (derived from the clove name, Eugenia 
caryophyllata) is the major phenolic constituent in several essential 
oils in clove, nutmeg, cinnamon, and basil (13). Due to its medicinal 
significance, EUG attracted the attention of researchers and created a 
vast field of study for its potential use as a medicine to treat a variety 
of disorders. Several pharmacological properties have been reported 
for EUG such as anesthetic, antioxidant, antibacterial, anti-helminthic, 

anti-inflammatory, anti-carcinogenic, schistosomicidal, anti-
leishmanial, and anti-giardial properties (14–21).

Molecular docking is considered an important method that 
analyzes orientation of ligands into the binding sites of their targets. 
Searching algorithms generate poses that are ranked according to their 
scoring functions (22). For Cryptosporidium, the parasite depends 
mainly on glycolysis as a source of energy using LDH as a key for this 
process. So, this enzyme was used in many studies for assessment as a 
target protein for new therapeutics. In the present study we aim to 
assess the therapeutic potential of EUG in the treatment of 
cryptosporidiosis in immunocompromised mice and to use the 
in-silico bioinformatics analysis to predict and determine the binding 
affinities and many non-covalent intermolecular interactions of EUG 
and NTZ toward several C. parvum lowa II target proteins, including 
LDH, SerRS, TryptoRS, and MAPK1.

Materials and methods

In silico bioinformatics analysis

For ligands preparation, the PubChem database1 was used to 
obtain the canonical smiles of EUG (EUG, 2-methoxy-4-prop-2-
enylphenol, MF:C10H12O2, MW:164.201 g/mol, CID: 3314) and NTZ 
[2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl] acetate, MF: 
C12H9N3O5S, MW: 307.28 g/mol, CID: 41684. Furthermore, ACD/
ChemSketch program was used to generate, clean, and optimize the 
chemical structures of EUG and NTZ that were saved as MDL 
MOL-file formats. Moreover, OpenBabel GUI v2.3.2 software was 
used to minimize energy of the selected ligand compounds that 
converted from MDL MOL to PDB-file formats. For target proteins 
preparation, the crystal x-ray structures of C. parvum lowa II lactate 
dehydrogenase (LDH, PDB ID: 4ND1, 2.15 Å) (23, 24), cytoplasmic 
seryl-tRNA synthetase (SerRS, PDB ID: 6OTE, 2.95 Å), tryptophanyl-
tRNA synthetase (TrpRS, PDB ID: 3HV0, 2.42 Å) (25), and mitogen-
activated protein kinase1 (MAPK1, PDB ID: 3OZ6, 2.37 Å) were 
retrieved from the RCSB-PDB database2 as PDB-file formats. For 
energy minimization, the target proteins were processed using Swiss-
PdbViewer v4.1.0 program.

1 https://pubchem.ncbi.nlm.nih.gov/

2 http://www.rcsb.org/
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Molecular docking was performed using Autodock v4.2.6 software 
that utilizes the estimated free energy of binding (kcal/mol) and 
inhibition constant (Ki) of EUG and NTZ toward their target proteins. 
For optimization, the structures of ligands were detected and chosen 
roots, which were saved as PDBQT-file formats. For protein 
optimization, water molecules, hetero atoms, and complex moieties 
were removed as well as polar hydrogen and Kollman and Gasteiger 
charges were added as PDBQT-file formats. For definition of the 
binding sites, the grid boxes were centered on macromolecules with 
0.375 Å spacing, 18.017 X-, 2.772 Y-, and 28.774 Z-center, and 175 as 
several points in X-, Y-, and Z-dimensions. For the best docking 
conformation, Lamarckian Genetic Algorithm (GA) was applied in 
the drug-ligand interactions and 10 GA runs were performed with the 
following factors: 150 as population size, 250,000 as number of energy 
evaluations, and 27,000 as number of generations. The 10 
conformations were clustered using a root-mean square deviation 
(RMSD) of 2.0 A. The least energy conformation was saved as a 
PDB-file format. If the binding energy is <−5 kJ/mol, it represents that 
the target protein has certain binding affinity toward the ligand (26–
29). For the docked ligands, the elevated negative values of the 
estimated free energy of binding are positively correlated with their 
binding affinities and docking properties. For a better binding affinity, 
the binding energy should be  lower (30). The pose with the best 
binding affinity was visualized using BIOVIA Discovery Studio 
Visualizer software.

Animals and infection

The present study was carried out in the Parasitology department, 
Faculty of Medicine, South Valley University, Qena, Egypt. Fifty 
laboratory bred male Swiss albino mice weighing approximately 20 g 
were used. The mice had a 10-day acclimatization period before being 
infected with Cryptosporidium oocyst. All mice were kept in cages 
with proper ventilation, free supplies of water, and standard pellet 
food at a maintained temperature of 25°C with 12 h of light and 12 h 
of darkness. To exclude parasitic infections, stools were examined 
daily for 3 days.

All the experimental animals were subjected to immune 
suppression using dexamethasone orally at a dose of 0.25 mg/g/day for 
14 successive days prior to inoculation with Cryptosporidium oocysts 
(31). The mice continued to receive dexamethasone at the same dose 
throughout the experiment (32–34).

Animals were divided into five groups, each with ten mice, as 
following: GI: immunocompromised non-infected mice; GII: 
immunocompromised Cryptosporidium-infected untreated; GIII: 
immunocompromised, Cryptosporidium infected and treated with 
NTZ; GIV: immunocompromised, Cryptosporidium infected and 
treated with EUG; GV: immunocompromised, Cryptosporidium 
infected and treated with NTZ + EUG. Cryptosporidium oocysts were 
kindly supplied by Theodor Belharz Institute, Cairo, EGYPT and were 
genetically identified by Dr. Eman El-Wakil as C. parvum (35). Mice 
in groups GII to GV were orally infected with 1,000 oocysts of 
C. parvum resuspended in 200 μL PBS for each mouse (36–38).

NTZ (Sigma Pharma, Egypt), was administered in a daily dose of 
200 mg/kg (39, 40), while EUG, (Geno Technology Inco India, CAT 
#P8776-54), was administered at a dose of 500 μg/kg/day (20). All 
drugs were administered orally to the mice starting from the 6th dpi 
for five consecutive days. To confirm the establishment of infection, 

fresh fecal pellets were collected from each mouse on the 2nd dpi and 
examined using the modified Ziehl-Neelsen (mZN) staining method. 
All mice were euthanized on the 30th dpi and tissues (ileum and 
livers) were collected for evaluation of the efficacy of drugs.

Assessment of infection and the drug 
efficacy

Stool examination
For evaluation of the efficacy of treatment, fresh fecal pellets were 

examined for each mouse on the 30th dpi and examined using the 
mZN staining to determine the amount of C. parvum oocysts excreted 
on the last day of the experiment. Each sample was emulsified in 10% 
formal saline and 1 mg was smeared, fixed and stained with mZN, 
C. parvum oocysts were counted microscopically in 10 fields under 
100x objective lens. The following formula was used to determine the 
percent reduction (PR), which represented the decline in the number 
of oocysts in the treated group compared to the infected 
untreated group.

 
Efficacy

mean oocysts count in control group

mean oocysts
% =

−
  count in treated group

mean oocyst count in control group
××100

Histopathological examination

The last 2 cm of the ileum in addition to the liver were extracted 
from each euthanized animal, fixed in 10% formal saline, and 
processed into paraffin blocks. From each paraffin block, 3-mm thick 
portions were removed and stained with Hematoxylin & Eosin (H&E) 
by an independent pathologist (41). Intestinal tissue sections were 
examined for pathological findings and scored for the following: 
inflammation with villous atrophy (none = 0, slight = 1, moderate = 2, 
severe = 3); inflamed area/extent (mucosa = 1, mucosa and 
submucosa = 2, transmural = 3); surface ulceration (none = 0, focal = 1, 
diffuse = 2, complete loss of surface epithelium = 3, entire surface 
epithelium and crypt epithelium are lost = 4); percent involvement 
(1–25% = 1, 26–50% = 2, 51–75% = 3, 76–100% = 4) (42). Liver lesions 
were staged and graded according to the degree of periportal, 
periseptal interface hepatitis (piecemeal necrosis) (absent = 0, mild = 1, 
moderate = 2, severe = 3); confluent necrosis (absent = 0, focal = 1, zone 
3  in some areas = 2, zone 3  in most areas = 3, zone 3 + occasional 
portal-central (P-C) bridging = 4, zone 3 + multiple P-C bridging = 5, 
panacinar or multiacinar = 6); focal (spotty) lytic necrosis, apoptosis 
and lobulitis per 10x objective (absent = 0, 1 focus = 1, 2–4 foci = 2, 
5–10 foci = 3, > 10 foci = 4); portal lymphocytic inflammation 
(absent = 0, mild = 1, moderate = 2, marked = 3, strongly marked = 4).

Immunohistochemical staining

The terminal 2 cm of the ileum were sectioned into 4-micron 
sections, incubated overnight, then deparaffinized, rehydrated in 
alcohol, and rinsed with dH2O. Endogenous peroxidase activity was 
blocked using 0.6% hydrogen peroxide (H2O2), then rinsed twice in 
PBS and boiled twice in Tris/EDTA buffer (pH 9.0). The rabbit 
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recombinant monoclonal inducible nitric oxide synthase (iNOS) 
antibody was then applied to tissue sections and incubated for an 
additional overnight period at room temperature (Clone No., Abcam, 
Cambridge, MA, United States). After washing excess reagent in PBS 
containing 0.05% Tween-20 (PBS-T), tissue sections were incubated 
with HRP-conjugated goat anti-rabbit secondary antibody (1:5,000) 
(Vivantis Technologies, Selangor Darul Ehsan, Malaysia) at 4°C. After 
1 h, slides were washed with PBS-T, and then incubated with 0.05% 
diaminobenzidine (DAB) and 0.01% H2O2 for 3 min to enhance the 
peroxidase reaction color. The smears were counterstained with 
hematoxylin for 1 min, then dehydrated, mounted, and then examined 
microscopically at different magnifications.

Data analysis

The obtained data were analyzed using the Statistical Package for 
Social Sciences (SPSS) version 20 for Windows. All values were 
presented as mean ± standard deviation (SD). Analysis of Variance 
(ANOVA) followed by LSD post hoc analysis test was used for 
statistical comparison of different groups. p-value of < 0.05 was 
considered statistically significant.

Results

Evaluation of in silico bioinformatics 
findings

As reported in Table 1, the estimated free energy of binding of EUG 
toward C. parvum lowa II LDH, SerRS, TrpRS, and MAPK1 targets were 
−6.95, −6.51, −5.93, and −6.02 kcal/mol, respectively. While the 
estimated free energy of binding of NTZ toward C. parvum lowa II 
LDH, SerRS, TrpRS, and MAPK1 targets were −9.56, −7.41, −9.54, and 
−8.75 kcal/mol, respectively. Furthermore, the estimated inhibition 
constant values (Ki) of EUG toward LDH, SerRS, TrpRS, and MAPK1 
targets were 8.08, 17.32, 44.64, and 39.51 μM, respectively. While the 
estimated Ki of NTZ toward LDH, SerRS, TrpRS, and MAPK1 targets 
were 97.69 nM, 3.71 μM, 102.43 nM, and 386.87 nM, respectively. Based 
on scoring functions, the strength of ligand-interacted forms is greatly 
associated to intermolecular binding and the interactions of the ligands 
and their target proteins such as classical/non-classical H-bond 
interaction, electrostatic interaction, and hydrophobic interaction (24), 
which confirmed our findings. As shown in Figures 1–4 and Table 1, the 
EUG and NTZ docked forms clearly demonstrated the different types, 
strength, and bond lengths of the intermolecular binding and 
interactions of EUG and NTZ toward their key amino acid residues of 
LDH, SerRS, TrpRS, and MAPK1 targets. Moreover, the NTZ-TrpRS 
docked form included an unfavorable acceptor-acceptor (Gly280B) 
interaction that could be  reduced its stability compared to the 
EUG-TrpRS docked form (Figure 3; Table 1).

Cryptosporidium oocysts count in different 
animal groups

The mean number of oocysts excreted in stool in all treated animals 
decreased significantly after treatment with EUG, NTZ, or EUG + NTZ 
when compared to the infected non-treated group shown in Table 2 and 

Figure  5 (p < 0.05). Additionally, when compared to NTZ alone, 
treatment with EUG and NTZ significantly reduced the amount of fecal 
oocyst (p = 0.02). animal groups treated with the combination of EUG 
and NTZ showed the highest percent reduction in the number of fecal 
oocyst (93.44%), followed by NTZ (82.56%) and EUG alone (62.5%; 
Table 2).

Histopathology of the small intestine

In contrast to uninfected mice, sections of ileum of infected 
untreated group (GI) showed villous blunting with moderate 
transmural inflammatory cellular infiltration (mainly lymphocytes) 
involving more than 75% of the intestinal wall with marked reduction 
of goblet cells. Treatment of mice caused significant restoration of 
normal epithelial structure, restoration of goblet cells and lowered the 
inflammatory infiltration of the intestinal wall. EUG alone resulted in 
marked reduction of cellular infiltration, which was restricted to the 
mucosa only in less than 30% of the intestinal wall. Similar results 
were recognized in mice treated with NTZ where there was almost 
restoration of intestinal tissue, with mild chronic inflammatory cells 
infiltrate in the lamina propria with some dilated blood vessels. The 
best degree of improvement was recognized in the mice group treated 
with NTZ and EUG combination (Figure 6).

Histopathology of the liver

H&E-stained liver sections were used to examine the therapeutic 
effect of EUG in the alleviation of pathological changes in the liver of 
immunocompromised mice with cryptosporidiosis. Liver tissues of 
uninfected mice showed normal uniform plates of hepatocytes (Black 
arrows) with no evidence of injury. Liver tissues of infected untreated 
mice showed significant hydropic degeneration of hepatocytes (Black 
arrows), lytic necrosis (Black arrowheads) and confluent necrosis (Red 
arrow). Treated groups showed marked improvement in comparison 
to uninfected ones. In EUG treated mice, hepatocytes showed mild 
lobulitis (Red arrow) with no evidence of hydropic degeneration 
(Black arrows). On the other hand, mice treated with NTZ showed 
restoration of hepatocytes integrity with no evidence of injury. 
Combination of NTZ and EUG showed restoration of hepatocytes 
integrity with no evidence of injury (Figure 7).

Immunohistochemistry

Strong cytoplasmic expression of iNOS were detected in the 
intestinal epithelium of the infected untreated mice, while the treated 
groups revealed weaker expression with significant reduction of the 
mean percent of positive expression (p = 0.002). Mice that received 
combined treatment (NTZ + EUG) showed the lowest mean 
percentage of iNOS positive cells (Table 3 and Figure 8).

Discussion

Bioinformatics is a potent biological area that uses computational-
based methods to evaluate the biological systems and provide some 
accurate predictions for several in vitro and in vivo studies and clinical 
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trials (24, 43). The molecular docking method determines ligand 
conformation and orientation within a targeted binding site. Searching 
through algorithms generates conformations that are ranked 
according to their scoring functions (22, 24). Plant essential oils 
potentially have ecotoxicological activities against several parasites 
and insects (44). EUG (4-allyl-2-methoxyphenol) is considered as a 
phenylpropanoid compound that represents a major component of 
plant essential oils and has an allyl chain-substituted guaiacol. 
Naturally, EUG is present in many plant families and several aromatic 

plants (45, 46). Previous studies reported that EUG has potent 
medicinal therapeutic applications including antimicrobial, antiviral, 
antiparasitic, anti-inflammatory, neuroprotective, antioxidant, anti-
diabetic, anti-obesity, hypolipidemic, and anticancer potentials (47–
49). In the present study, we targeted molecular docking simulation 
analysis to visualize, determine, and evaluate the binding affinities and 
inhibition potentials of EUG and NTZ against some C. parvum lowa 
II target proteins including LDH, SerRS, TrpRS, and MAPK1. In this 
study, the lower docking scores of the EUG- and NTZ-interacted 

TABLE 1 The ligand-target protein binding properties.

Ligand-interacted properties LDH (4ND1) SerRS (6OTE) TrpRS (3HV0) MAPK1 (3OZ6)

EUG Estimated free energy of binding (kcal/mol) −6.95 −6.51 −5.93 −6.02

Estimated inhibition constant (Ki) 8.08 μM 17.32 μM 44.64 μM 39.51 μM

H-bonds Amino Acids (Donor. 

Acceptor)

4 Conventional H-bonds 

(2 Asp143A (N…O), 

Val144A (N…O), 

Pro141A (O…O)); 2 

carbon H-bonds 

(Asn140A (C…OD1), 

His195A (C…O))

2 Conventional H-bonds 

(Val114A (N…O), 

Asn113A (O…OD1)); 

carbon H-bonds (Asp377A 

(C…OD1))

2 Conventional H-bonds 

(Thr279B (OG1…O), 

Tyr278B (O…O)); 2 carbon 

H-bonds (Thr279B 

(CA…O), Gly280B (C…O)); 

Pi-Donor H-bond (Tyr278B 

(O-Pi))

Carbon H-bond 

(Asp4A (C…OD2)); 

Pi-Donor H-bond 

(Trp26A (O-Pi))

Bond lengths (Å) 3.27, 3.21, 2.81, 2.81, 

3.68, 2.67 Å

2.97, 3.22, 3.29 Å 2.65, 3.07, 2.97, 3.46, 4.18 Å 3.04, 3.83 Å

Hydrophobic, miscellaneous, and 

electrostatic interactions

Alkyl hydrophobic 

Ile325A, Val322A

Pi-sigma, Pi-Pi stacked, 

and Pi-alkyl hydrophobic 

(Tyr378A, Trp108A)

Pi-Pi T-shaped hydrophobic 

(Tyr278B)

Pi-Pi Stacked, alkyl, and 

Pi-alkyl hydrophobic 

(Val7A, Val39A, Leu8A, 

Leu13A, Trp26A); 

electrostatic Pi-anion 

(Asp4A)

Van der Waal’s reactions Arg109A, Leu142A, 

Gly194A, Gly196A, 

Gly198A, Met199A, 

Ser318A, Glu321A

Thr376A, Arg381A, 

Gly112A, Ile111A

Pro425B, Val424B, His426B, 

Gln430B, Arg281B, Gly282B, 

Thr315B, Gln318B, 

Gln401B, Phe434B

Tyr87A, Tyr11A, 

Lys41A, Ser28A

NTZ Estimated free energy of binding (kcal/mol) −9.56 −7.41 −9.54 −8.75

Estimated inhibition constant (Ki) 97.69 nM 3.71 μM 102.43 nM 386.87 nM

H-bonds Amino Acids (Donor. 

Acceptor)

6 Conventional H-bonds 

(Arg109A (NH2…O), 2 

Asn140A (ND2…O), 2 

Arg171A (NH1/

NH2…O), Thr245A 

(OG1…O)); Pi-Donor 

H-bond (Asn140A (N…

Pi orbitals))

2 Conventional H-bonds 

(Asp290A (N…O), 

Trp292A (N…O)); carbon 

H-bonds (Asp290A 

(CA…O)); 2 Pi-Donor 

H-bonds (Lys289A (NZ…

Pi), Thr291A (N…Pi))

2 conventional H-bonds 

(Gly282B (N…O), Ala427B 

(N…O)); Pi-Donor H-bond 

(Gln430B (NE2…Pi))

3 Conventional 

H-bonds (Arg163A 

(NH1…O), Tyr208A 

(N…O), Arg163A 

(N…O)); carbon 

H-bond (Arg157A 

(CD…O))

Bond lengths (Å) 3.08, 2.73, 2.87, 3.18, 

2.85, 3.24, 3.65 Å

2.95, 2.64, 3.07, 3.53, 3.93 Å 2.92, 3.19, 3.88 Å 2.87, 2.83, 2.84, 2.97 Å

Hydrophobic, miscellaneous, and 

electrostatic interactions

Miscellaneous Pi-sulfur 

(His195A); amide-Pi-

stacked hydrophobic 

(Ile136A); Pi-alkyl 

hydrophobic (Pro250A, 

Ala246A)

Pi-Pi T-shaped and Pi-alkyl 

hydrophobic (Trp292A); 

electrostatic Pi-cation 

(Lys289A)

Unfavorable acceptor-

acceptor (Gly280B)

Pi-Pi T-shaped and 

Pi-alkyl hydrophobic 

(Val165A, Tyr208A, 

Arg163A, Arg157A)

Van der Waal’s reactions Pro105A, Leu112A, 

Ser99A, Thr139A, 

Thr97A, Leu167A, 

Ile32A, Trp236A

Gly288A, Arg367A, 

Tyr363A

Pro295B, His426B, Pro425B, 

Thr279B, Val424b, Phe434B, 

Tyr278B, Gln401B, Arg281B, 

His292B, Glu318B, Lys319B

Arg164A, Arg57A, 

Ser158A, Asn161A, 

Phe159A, Thr206A, 

Gln259A, Lys207A
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forms represented strength of the ligand-target protein binding 
activities, stability of the binding conformation, and variety of the 
intermolecular binding and interactions (Figures 1–4; Table 1), which 
confirmed recent findings (50).

Cryptosporidium is a protozoan parasite that potentially causes 
waterborne diseases. The parasite depends on glycolysis for energy 
production and cellular metabolism. C. parvum LDH is an essential 
regulator of glycolysis. The anti-cryptosporidial drugs aim to target 
and inhibit the biochemical and metabolic pathways of C. parvum 
(23). As critical substrate-binding sites, Arg171, Asn140, His195, 
Arg109, and Trp236 represent the catalytic amino acid residues of 
C. parvum LDH (23), which clearly presented in the EUG-LDH and 
NTZ-LDH docked forms (Figure 1).

C. parvum lowa II SerRS and TrpRS are considered as 
important protozoan enzymes that widely regulate protein 
biosynthesis (25). As shown in Figures 2, 3 and Table 1, the EUG 
and NTZ docked forms potentially demonstrated the binding 
affinities, inhibition potentials, and the intermolecular 
interactions of EUG and NTZ toward amino acid residues of 
C. parvum lowa II SerRS and TrpRS targets, which greatly 
predicted inhibition of differentiation, growth, and survival of 
C. parvum cells. Merritt et al. study reported that Glu318, Gln401, 
Gly280, Thr279, and Tyr278 as key amino acid residues 
represented the active site of C. parvum TrpRS (25), which clearly 
demonstrated in the EUG- and NTZ-interacted forms (Figure 3; 
Table  1). Moreover, the NTZ-TrpRS docked form had an 
unfavorable acceptor-acceptor (Gly280B) interaction that have 
reduced its stability compared to the EUG-TrpRS docked form.

MAPK is a serine/threonine protein kinase that regulates cellular 
growth, development, differentiation, survival, and interaction 
interactions between host and various pathogens, including parasites 
(51–53). In lung injury, inhibition of the MAPK3/MAPK1 signaling 
process highly reduces cellular inflammation, oxidative stress response, 
pro-inflammatory cytokines, and apoptotic signaling (50, 54, 55). This 
study reported that EUG and NTZ were introduced as C. parvum 
MAPK1 inhibitors that greatly confirmed findings of previous studies.

Immunosuppression may arise as a side effect of cancer treatment, 
in HIV-positive people, or following organ donation. Consequently, this 
category of patients are more prone to opportunistic infection including 
Cryptosporidium species with high probability of severe life-threatening 
illnesses especially with limited treatment options (56, 57). Some efforts 
have been focused on evaluating natural compounds, particularly 
essential oils against C. parvum (58). Therefore, the purpose of the 
present study was to assess the effectiveness of EUG in treating 
immunosuppressed mice infected with C. parvum. For the induction of 
a mouse model of immunosuppression, dexamethasone was used. 
Dexamethasone was used in the present study for induction of immune 
suppression following previous studies (31, 33, 34, 59, 60). Convincing 
evidence shows that EUG possesses potent antimicrobial, antifungal, 
antibacterial, and anti-parasitic properties (14–21), however, 
information about its anti-cryptosporidial properties is limited. So, 
we aimed to evaluate the efficacy of EUG against C. parvum in vivo. Our 
research revealed that EUG effectively combats C. parvum in 
immunocompromised mice. To the best of our knowledge, this is the 
first study that evaluates Euogenol anti-cryptosporidial activity in vivo 
in an immunocompromised mice model. Our findings show that EUG 

FIGURE 1

3D (upper panel) and 2D (lower panel) ligand-interacted forms show key amino acid residues of LDH using BIOVIA drug discovery studio visualizer. 
EUG, eugenol; NTZ, nitazoxanide; LDH, lactate dehydrogenase.
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has considerable anti-cryptosporidial action and a significant synergistic 
effect when combined with NTZ. Comparing treated and untreated 
mice, the current study found that EUG considerably reduced the 
degree of oocyst shedding. Additionally, when combined with NTZ, 
EUG significantly reduced the number of oocysts that were shed, as 
opposed to NTZ alone, which, according to earlier studies, was unable 
to entirely remove the oocysts (34).

Tasdemir et  al. conducted an in vitro analysis of EUG’s 
effectiveness against Cryptosporidium oocysts (61). According to their 
findings, thyme, oregano, and clove essential oils can significantly 
reduce the quantity of Cryptosporidium oocysts.

To further evaluate the effect of EUG on C. parvum induced 
pathological changes in the intestine and liver tissues, H & E-stained 
sections of both tissues were examined. Small intestine sections of 
animals infected with the C. parvum and subsequently treated with 
EUG either alone or in combination with NTZ showed a normal 
villous pattern with a mild lymphocytic inflammatory response noted 
in the villi and lamina propria. In the same line, EUG treatment-either 
alone or in combination with NTZ-restored normal liver histological 
structures and alleviated Cryptosporidium induced alterations.

Furthermore, immunohistochemical screening of iNOS antibody 
revealed strong cytoplasmic expression in the intestinal epithelium of 
infected untreated mice. In contrast, weak expression was observed in 
mice treated with EUG alone or in combination with NTZ. This 
confirmed the strong oxidative stress strived by the parasite and 
confirmed the effect of drugs in reducing oxidative stress in tissue. This 

result agrees with previous studies which demonstrated that mice and 
piglets infected with Cryptosporidium, were able to recover after 
treatment with iNOS inhibitor or peroxynitrite scavenger, suggesting that 
reactive nitrogen intermediates may serve as an early and innate defense 
against intestinal epithelial infection (62). It was documented that the 
synthesis of NO is increased in cryptosporidiosis, while the inhibition or 
absence of iNOS decreased epithelial infection and oocyst shedding (63).

The mechanisms behind the antiprotozoal effect of essential oils 
need further investigations to be fully understood. The high lipophilic 
nature of the essential oils allows easy absorption by the cell membrane 
and inhibition of the lipid metabolism of parasites. Another mode of 
action involves penetrating the membrane first, followed by modulation 
of cytoplasmic metabolic pathways or organelle function, rather than 
compromising the integrity of the parasite’s membrane (64).

Conclusion

Cryptosporidium is an opportunistic causing with life threatening 
illness in immunocompromised individuals with limited treatment 
options. In the present study EUG was able to combat cryptosporidiosis 
alone and had a synergistic effect when added to NTZ. Mice received 
EUG alone or in combination with NTZ showed reduced fecal oocyst 
count and restored the normal histological structures of the liver and 
spleen when compared with non-treated mice. Based on the results, 
the present study signified a basis for utilizing EUG as an affordable, 

FIGURE 2

3D (upper panel) and 2D (lower panel) ligand-interacted forms show key amino acid residues of SerRS using BIOVIA drug discovery studio visualizer. 
EUG, eugenol; NTZ, nitazoxanide; SerRS, cytoplasmic seryl-tRNA synthetase.

https://doi.org/10.3389/fvets.2024.1374116
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gattan et al. 10.3389/fvets.2024.1374116

Frontiers in Veterinary Science 08 frontiersin.org

FIGURE 3

3D (upper panel) and 2D (lower panel) ligand-interacted forms show key amino acid residues of TrpRS using BIOVIA drug discovery studio visualizer. 
EUG, eugenol; NTZ, nitazoxanide; TrpRS, tryptophanyl-tRNA synthetase.

FIGURE 4

3D (upper panel) and 2D (lower panel) ligand-interacted forms show key amino acid residues of MAPK1 using BIOVIA drug discovery studio visualizer. 
EUG, eugenol; NTZ, nitazoxanide; MAPK1, mitogen-activated protein kinase1/serine–threonine protein kinase.

https://doi.org/10.3389/fvets.2024.1374116
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gattan et al. 10.3389/fvets.2024.1374116

Frontiers in Veterinary Science 09 frontiersin.org

safe, and alternative therapy combined with NTZ in the management 
of cryptosporidiosis.
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FIGURE 5

Treatment with eugenol reduced oocysts counts in the stool of infected mice. Oocysts were counted in infected untreated mice and compared to 
counts in animals treated with NTZ or EUG. Data are expressed as mean  ±  SD and were analyzed using ANOVA for pairwise comparison. Letter “a” 
indicates statistical difference compared to infected untreated group (p  <  0.001). Letter “b” indicates statistical difference versus eugenol treated group 
(p  <  0.001). Letter “c” indicates statistical difference versus NTZ treated group (p  <  0.001).

TABLE 2 Showing treatment with eugenol reduced oocysts counts in the stool of infected mice.

Animal group Oocyst count/HPF Mean  ±  SD %R p value (among groups) post hock test

Infected untreated 30.4 + 3.33 0.001*

Infected + Eugenol 11.4 + 1.33 62.5% a, b

Infected + NTZ 5.2 + 0.6 82.56% a

Infected + Eugenol + NTZ 1.9 + 0.2 93.44% a, c

Oocysts were counted in infected untreated mice and compared to counts in animals treated with NTZ or euogenol or both. Data are expressed as mean ± SD and were analyzed using ANOVA 
for pairwise comparison.
%R: percentage of reduction. SD: Standard deviation. * indicates statistical significance. Letter “a” indicates significant reductions in oocysts counts after treatments compared to infected 
untreated group. Letter “b” indicates a significant difference in oocysts versus NTZ treated group. Letter “c” indicates a significant difference in oocysts versus eugenol treated group.
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FIGURE 6

Small intestine sections of all studied groups. (A) Sections of uninfected untreated mice showing uniform intestinal tissue showing regular villi (Black 
arrows) with uniform crypts and glands in the lamina propria (Red arrows) (H&E, 400×). (B) Sections of infected untreated mice showing expansion of 
the lamina propria with chronic inflammatory cells (Black arrowheads). Glands (Red arrows) are distorted and attacked by chronic inflammatory cells. 
There are areas of edema (Red arrowheads) (H&E, 400×). (C) Sections of infected EUG treated mice showing significant reduction in the severity and 
the extent of inflammation (Black arrowheads) and edema (Red arrowheads) in the mucosa. Glands appear more uniform with no inflammatory cells 
attacking the glands (Red arrows) (H&E, 400×). (D) Sections of infected NTZ treated mice showing restoration of intestinal tissue, with mild chronic 
inflammatory cells infiltrate in the lamina propria (Black arrowheads). Glands retained their uniform regular outlines (Red arrows) with dilated blood 
vessels (Blue arrows) (H&E, 400×). (E) Sections of infected NTZ+ EUG treated mice showing restoration of intestinal tissue, with mild chronic 
inflammatory cells infiltrate in the lamina propria (Black arrowheads). Glands show uniform regular outlines (Red arrows) (H&E, 400×).
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FIGURE 7

Liver sections of all studied groups. (A) Sections of uninfected untreated mice showing Uniform plates of hepatocytes (Black arrows) with no evidence 
of injury (H&E, 400×). (B) sections of infected untreated mice showing significant hydropic degeneration of hepatocytes (Black arrows). There are areas 
of lytic necrosis (Black arrowheads) with confluent necrosis (Red arrow) (H&E, 400×). (C) Sections of infected EUG treated mice showing Hepatocytes 
show no evidence of hydropic degeneration (Black arrows). There are two foci of lobulitis (Red arrow) (H&E, 400×) (D) Sections of infected NTZ treated 
mice showing restoration of hepatocytes integrity with no evidence of injury (H&E, 400×). (E) sections of infected NTZ+ EUG treated mice showing 
restoration of hepatocytes integrity with No evidence of injury.
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FIGURE 8

Sections of ileum showing INOS expression: (A) Negative expression in normal control mice. (B) Strong expression in infected untreated group (IHC 
×200). (C,D) Moderate expression in both NTZ and EUG treated groups, respectively, (IHC ×200). (E) Mild diffuse expression in NTZ  +  EUG treated 
GROUP (IHC ×200).

TABLE 3 Showing the percentage of iNOS positive cells in ileal tissues of different animal groups.

Animal group % of positive cells Mean  ±  SD p value (among groups) post hock test

Uninfected untreated 2.67 ± 1.2

Infected untreated 40.01 ± 1.9 0.002* a*

Infected + NTZ 23.2 ± 2.2 a*, b*

Infected + Eugenol 28.6 ± 2.1 a*, b*

Infected + Eugenol + NTZ 16.04 ± 2.5 a*, b*, c*

Data are expressed as mean ± SD and were analyzed using ANOVA for pairwise comparison. Letter “a” indicates statistical difference compared to infected untreated group (p < 0.001). Letter 
“b” indicates statistical difference versus eugenol treated group (p < 0.001). Letter “c” indicates statistical difference versus NTZ treated group (p < 0.001).
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