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Osteoarthritis (OA) remains a major cause of lameness in horses, which leads 
to lost days of training and early retirement. Still, the underlying pathological 
processes are poorly understood. MicroRNAs (miRNAs) are small non-coding 
RNAs that serve as regulators of many biological processes including OA. 
Analysis of miRNA expression in diseased joint tissues such as cartilage and 
synovial membrane may help to elucidate OA pathology. Since integrin α10β1-
selected mesenchymal stem cell (integrin α10-MSC) have shown mitigating 
effect on equine OA we here investigated the effect of integrin α10-MSCs on 
miRNA expression. Cartilage and synovial membrane was harvested from the 
middle carpal joint of horses with experimentally induced, untreated OA, horses 
with experimentally induced OA treated with allogeneic adipose-derived MSCs 
selected for the marker integrin α10-MSCs, and from healthy control joints. 
miRNA expression in cartilage and synovial membrane was established by 
quantifying 70 pre-determined miRNAs by qPCR. Differential expression of the 
miRNAs was evaluated by comparing untreated OA and control, untreated OA 
and MSC-treated OA, and joints with high and low pathology score. A total of 
60 miRNAs were successfully quantified in the cartilage samples and 55 miRNAs 
were quantified in the synovial membrane samples. In cartilage, miR-146a, miR-
150 and miR-409 had significantly higher expression in untreated OA joints than 
in control joints. Expression of miR-125a-3p, miR-150, miR-200c, and miR-499-
5p was significantly reduced in cartilage from MSC-treated OA joints compared 
to the untreated OA joints. Expression of miR-139-5p, miR-150, miR-182-5p, 
miR-200a, miR-378, miR-409-3p, and miR-7177b in articular cartilage reflected 
pathology score. Several of these miRNAs are known from research in human 
patients with OA and from murine OA models. Our study shows that these 
miRNAs are also differentially expressed in experimental equine OA, and that 
expression depends on OA severity. Moreover, MSC treatment, which resulted 
in less severe OA, also affected miRNA expression in cartilage.
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Introduction

Lameness in horses is the most important reason for lost days of 
training and early retirement, and may lead to euthanasia (1–4). 
Osteoarthritis (OA) accounts for up to 60% of all cases of equine 
lameness (5). OA is a complex heterogenous disease with multiple 
causative factors including trauma or overuse, poor conformation of 
the joints, and advancing age (4). OA affects the entire joint and is 
characterized by inflammation of the synovium, thickening of the 
joint capsule, fraying of the ligaments, subchondral bone sclerosis, and 
irreversible destruction of the articular hyaline cartilage (6–8). The 
underlying pathophysiology of OA is poorly understood, and equine 
OA is mainly diagnosed based on radiography, computed tomography, 
or magnetic resonance imaging, which will only detect changes when 
the disease is progressed and osteophytes and significant cartilage 
damage has already occurred. As articular cartilage has limited 
capacity to heal, these changes cannot be reversed (9, 10). Therefore, 
there is demand for early diagnostics, improved therapeutics and for 
continued research into OA pathology.

Mesenchymal stem cell (MSC) treatment is attracting 
increasing attention for treatment of OA, and intra-articular MSC 
treatment has shown beneficial effects on OA in studies of 
experimentally induced (11–18) and naturally occurring equine 
OA (19–22). MSCs have the ability to differentiate into 
chondrocytes in vitro (23, 24), and have been shown to regenerate 
cartilage in  vivo (25). MSCs are also known to release 
immunomodulatory factors, which decrease inflammation and 
promote healing, which contribute to their disease modifying 
effects (26). These secreted factors also include miRNAs. It has 
been shown that MSC derived extracellular vesicles (EVs) 
containing the miRNAs let-7a-5p, miR-100-5p, miR-122-5p, 
miR-148a-3p, and miR-486-5p, promoted macrophage M2 
polarization and anti-inflammatory IL-10 release in vitro and 
exerted a chondroprotective effect in an OA-model in rats in vivo 
(27). Another study found a variety of miRNAs derived from 
MSCs in vitro, including the let-7 family, miR-29b, miR-122, 
miR-125b, and miR-148a. Both miR-29b and miR-148a are known 
to promote the differentiation of chondrocytes and the secretion 
of proteoglycans and type II collagen (28), while miR-125b 
decreases extracellular matrix (ECM) degradation through down-
regulation of A Disintegrin and Metalloproteinase with 
Thrombospondin motifs-4 (ADAMTS-4) (29). MSC preparations 
from different sources are known to consist of a heterogeneous mix 
of cells, and selection of the MSC populations for therapeutic use 
has been suggested to result in superior clinical effect (30–32). 
Using the MSC marker integrin α10β1 for selection has been 
shown to result in consistent and homogeneous MSC preparations 
(33, 34). MSCs selected for the expression of integrin α10β1 
(integrin α10-MSCs) showed better adherence to damaged 
cartilage and exposed subchondral bone in explants, increased type 
II collagen deposition after chondrogenic differentiation in vitro, 
and higher secretion of the immunomodulatory factor 
prostaglandin E2 after stimulation in vitro compared to unselected 
MSCs (34). The homing ability and regenerative capacity of 
integrin α10-MSCs was demonstrated in a rabbit model of cartilage 
damage (25), and treatment with integrin α10-MSCs has previously 
been shown to mitigate the progression of OA in an equine model 
(13). The current study used cartilage and synovial membrane 
samples from a previous study, in which a clinical effect of integrin 

α10-MSC treatment was seen both on clinical presentation, post 
mortem evaluation of articular cartilage and on synovial fluid 
prostaglandin E2 and interleukin-10 (35).

MicroRNAs (miRNAs) are small non-coding RNAs that serve as 
regulators of many biological processes, including embryologic 
development, proliferation, apoptosis, and cell metabolism (36). 
MiRNAs regulate gene expression on a post-translational level by 
guiding the RNA-induced silencing complex (RISC) to a target 
messenger RNA (mRNA), resulting in degradation or translational 
repression. Therefore, altered miRNA expression can alter the 
translational landscape within a cell, facilitating or repressing multiple 
disease pathways (37). Multiple miRNAs have been associated with 
processes involved in OA pathogenesis and cartilage aging (38), and 
a number of miRNAs have been identified to be  differentially 
expressed in synovium and cartilage from healthy and diseased joints 
including let-7a, let-7e, miR-10a, miR-23b, miR-26a, miR-27, 
miR-99a, miR-125, miR-139, miR-140, miR-146a, miR-151–5p, 
miR-200c, and miR-378 (39–49) and many more. Understanding 
miRNA regulation is complex, as each miRNA targets several 
hundreds mRNAs and each mRNA can be targeted by a wide range of 
miRNAs (50). MiRNAs exhibit greater resistance to ribonucleases, 
extreme temperatures, and pH variations when compared to longer 
RNA molecules.

In particular, circulating miRNAs, released from cells into the 
bloodstream or cerebrospinal fluid, have demonstrated remarkable 
stability attributed to their transportation within exosomes or 
microvesicles, or their association with protein complexes. The high 
stability points toward miRNAs as promising candidates for future 
clinical biomarkers of osteoarthritis in horses (51–54). The aim of this 
study was to identify differentially expressed miRNAs in the articular 
cartilage and synovial membrane of horses with experimentally 
induced OA and to assess effect of intra-articular treatment with 
integrin α10-MSC. The study design involved samples from healthy 
control joints and joints with experimentally induced OA joints, 
which were either untreated or integrin α10-MSC-treated, in order to 
investigate possible epigenetic mechanisms of action behind OA 
development and MSC-treatment in horses.

Materials and methods

Horses and study design

This study used cartilage and synovial membrane from the middle 
carpal joint (MCJ) of two groups of horses with experimentally induced 
post traumatic osteoarthritis either treated with integrin α10-MSCs or 
left untreated and from the control joint from the untreated group. A 
total of seventeen healthy Standardbred trotters aged 3–7 years (mean: 
4.7 years; median 4 years), weight range 396–535 kg (mean: 472 kg; 
median 470 kg), 15 mares and two geldings were included in the study. 
There were eight horses in the MSC-treated group and nine horses in the 
untreated group. The horses underwent repeated clinical assessments 
and had blood and synovial fluid sampled sequentially throughout the 
70-day study period for other purposes as described in a previous 
publication by our group (35). The horses were euthanized at study 
termination on day 70 with pentobarbital (Euthasol® Vet, Le Vet B.V., 
Oudewater, NL) 140 mg/kg, after sedation with detomidine 
(Domosedan® Vet, Orion Corporation, Espoo, Finland) 1 mg/100 kg and 
butorphanol 3 mg/100 kg (Dolorex®, Ag Marin Pharmaceuticals, 
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United States). The samples obtained post-mortem were analyzed in the 
present study. For OA-induction surgery, the horses were premedicated 
with a combination of romifidine 6 mg/100 kg (Sedivet®Vet, Boehringer 
Ingelheim Vetmedica, Missouri, United  States), acepromazine 
3 mg/100 kg (Plegicil® Vet, Boehringer Ingelheim Vetmedica, Missouri, 
United States), atropine sulfate 0.5 mg/100 kg (Atropin, Aguettant Ltd., 
Bristol, United Kingdom), and butorphanol 3 mg/100 kg (Dolorex®, Ag 
Marin Pharmaceuticals, United States). Anesthesia was induced with 
ketamine 2.5 mg/kg (Ketador® Vet, Richter Pharma AG, Oberosterreich, 
Austria) and midazolam 4 mg/100 kg (Midazolam “Accord,” Accord-UK 
Ltd., Barnstaple, United Kingdom). The horses were placed in dorsal 
recumbency and anesthesia maintained with isoflourane (Vetflurane®, 
Virbac, Carros, France). Perioperatively the horses received flunixin 
meglumine 1.1 mg/kg (Finadyne, MSD Animal Health, New Jersey, 
United States), penicillin 22,000 IU/kg (Benzylpenicillin PanPharma, 
Brancaster Pharma, Surrey, United Kingdom), and gentamicin 6.6 mg/
kg (Genta-Equine, Dechra Veterinary Products, Shrewsbury, 
United Kingdom).

Osteoarthritis model

Osteoarthritis was induced through the carpal osteochondral 
fragment-exercise model (17, 55–62). OA was induced in the left MCJ 
of all horses and the right MCJ was sham operated and served as a 
control joint. In the right carpus an osteochondral “chip” fracture was 
made with an 8 mm curved osteotome in the dorsal margin of the 
third facet of the distal surface of the radial carpal bone at the level of 
the medial plica. The fragment remained attached to the plica. The 
debris was not flushed from the joint.

The horses were stall rested for the first 14 days after surgery, 
interrupted by shorter daily periods of hand walking from day 2. 
Treadmill exercise was initiated on day 14 after surgery. The horses 
were exercised 5 days a week for 8 weeks through the following 
program: 2 min slow trot 16–19 km/h (4.4–5.3 m/s). 2 min fast trot 
32km/h (9 m/s). 2 min slow trot 16–19 km/h (4.4–5.3 m/s). From day 
14 the horses were also allowed free pasture-exercise every day.

Integrin α10-MSC treatment

Allogeneic adipose equine MSCs were isolated from a 7-year-old 
male horse. The MSCs were culture expanded until passage 3 and 
selected for a high expression of integrin α10β1 were selected as 
previously described (35). On day 18 the horses in the treatment 
group were treated with 2 × 107 equine allogeneic adipose tissue-
derived and integrin α10β1 selected mesenchymal stem cells in 4 ml 
DMSO cryopreservation medium (Cryostor, BioLife Solutions). The 
α10-MSCs were thawed in a water bath at 37°C, aspirated into a 
syringe through a 14G canula at a slow pace and injected into the MCJ 
of the OA leg through a 20G canula over a minimum of 10 s.

Postmortem macroscopic pathology 
evaluation

Shortly after euthanasia, the MCJs were opened by careful sharp 
dissection and photographed in detail for later blinded assessment of 

macroscopic pathology to assess the development of OA and the 
clinical effect of MSC treatment on experimentally induced OA (35). 
Macroscopic pathology was scored from detailed photographs by 
observers blinded to treatment group using a detailed score developed 
by our group (63). In brief, each carpal bone in the MCJ was assessed 
separately according to erosion severity and extent of erosions, which 
were multiplied resulting in a total cartilage erosion score. The 
synovial membrane was scored separately. These results were 
published previously (35). Here, they only serve to describe the groups.

Macroscopic pathology scoring showed that both the treated and 
the untreated OA joints had developed generalized cartilage erosions. 
There was more macroscopic cartilage pathology in the untreated OA 
joints (mean pathology score=25.7; CI = 13.0–38.4) compared to the 
control joints (mean pathology score = 9.6; CI = 4.5–14.7), although 
this difference was not significant (p = 0.0629). There was significantly 
more macroscopic cartilage pathology (p = 0.0491) in the untreated 
OA joints compared to the MSC-treated OA joints (mean pathology 
score = 11.0; CI = 4.1–17.9) (35).

There was no difference in synovial membrane pathology score 
between the untreated OA joint and control joint (p = 0.128) or 
between the MSC-treated and untreated OA joints (p = 0.91) (35).

Tissue sampling

Tissue samples were collected shortly after euthanasia. Synovial 
membrane samples were collected using sharp scissors. Samples were 
taken and pooled from the entire dorsal aspect of the middle carpal 
joint. Cartilage samples were shaved of the third facet of the radial 
carpal bone with a scalpel blade. This included cartilage adjacent to 
the surgically created fragment, but with a minimal distance to the 
fragment of 3–4 mm. Both tissues were placed in cryotubes containing 
RNAlater (Qiagen) and kept at 5°C overnight and stored at −20°C 
until further analyses.

Target miRNA and primer design

Relative miRNA expression in cartilage and synovial membrane 
was established by quantifying the following 70 miRNAs: Let-7a, 
Let-7c, let-7d, Let-7e, Let-7f, let-7g, miR-10a, miR-10b, miR-19a, 
miR-20a, miR-23a, miR-26a, miR-27a miR-27b, miR-28-3p, 
miR-28-5p, miR-29a, miR-29b, miR-30b, miR-30c, miR-30d, miR-98, 
miR-99a, miR-101, miR-122, miR-125a-3p, miR-125a-5p, miR-139-3p, 
miR-139-5p, miR-140-3p, miR-140-5p, miR-146a, miR-148a-3p, 
miR-148b-3p, miR-148b-5p, miR-150, miR-151-5p, miR-155, 
miR-182-5p, miRNA-183, miR-184, miR-186, miR-192, miR-195, 
miR-196b-3p, miR-199b-3p, miR-199b-5p, miR-200a, miR-200b, 
miR-200c, miR-214-3p, miR-215, miR-296, miR-329b, miR-340-3p, 
miR-340-5p, miR-342-3p, miR-342-5p, miR-374a, miR-378, 
miR-409-3p, miR-499-3p, miR-499-5p, miR-676, miR-872, miR-1307, 
miR-1388, miR-1839, miR-7177b, and miR-8992 (A list of miRNAs 
and specific primer sequences are included in Supplementary Table S1). 
These 70 miRNAs have been selected based on literature and 
smallRNA sequencing in equine synovial fluid in a previous study 
(submitted for publication). Primers were designed based on the 
principles described by Balcells et al. (64). Primers were designed 
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using miRprimerdesign3 (65) and synthesized by Sigma-Aldrich 
(Sigma–Aldrich, Brøndby, Denmark).

Microfluidic high throughput RT-qPCR 
(Fluidigm)

RNA extraction
Cartilage and synovial membrane tissue samples were 

homogenized in 1  ml QIAzol LysisReagent (Qiagen) using a 
gentleMACSTM Dissociator (Milteny Biotec, GmbH, Bergisch 
Gladbach, Germany). Total RNA was extracted using miRNeasyMini 
Kit (Qiagen), and all samples underwent on-column DNase digestion 
with RNase free DNase sets (Qiagen), according to the manufacturer’s 
instructions. RNA purity and concentration was determined by 
spectrophotometry (Nano Drop ND-1000, NanoDrop Technologies, 
Saveen and Werner AB, Limhamn, Sweden), and RNA integrity was 
measured on an Agilent 2100Bioanalyzer (Agilent Technologies, 
Nærum, Denmark) using the RNA 6000 Nano Kit. Minimum RNA 
integrity number (RIN) accepted was 6.5 and average RIN was over 8. 
Both miRNA and the assay used for detection (microfluidic qPCR) are 
generating highly reproducible data, even for more degraded samples 
(data not shown).

cDNA synthesis, pre-amplification, and 
exonuclease treatment

RNA was converted into single stranded cDNA by reverse 
transcription in two consecutive steps, where three separate cDNA 
syntheses (technical replicates) were performed for each RNA sample. 
Hundred nanogram total RNA was mixed with a Master mix 
containing 1 μL 10 x reaction buffer polyA (New England Biolabs, 
Ipswich, MA, United States), 1 μL 1 mM ATP (New England Biolabs, 
Ipswich, MA, United States), 1 μL 1 mM dNTP mix (Sigma–Aldrich, 
Brøndby, Denmark), 1 μL 10 μM RT-primer (5′ caggtccagtttttttttttttttvn 
3′) (Sigma–Aldrich, Brøndby, Denmark), 0.5 μL reverse transcriptase 
200,000 U/mL (New England Biolabs, Ipswich, MA, United States) 
and 0.2 μL PolyA polymerase 5,000 U/mL (New England Biolabs, 
Ipswich, MA, United States). Master mix and RNA were incubated 
using a thermocycler (TProffessional TRIO 3x48, Fisher Scientific, 
Denmark, Slangerup, Denmark), and reverse transcription occurred 
at 42°C for 60 min prior to 5 min inactivation at 95°C. Three 
non-reverse transcriptase controls (-RT) were included during the 
procedure for later use as control samples.

Samples were pre-amplified and exonuclease treated using the 
following protocol in order to ensure sufficient amount of DNA for 
quantification and to degrade unincorporated primers. Stocks of 200 
nM primer mix were prepared containing equal amounts of the 
selected primer pairs and mixed with low EDTA TE-buffer (VWR-Bie 
& Berntsen, Herlev, Denmark). Afterwards 3 μL TaqMan PreAmp 
Master Mix (Applied Biosystems, Foster City, CA, United States), 2 μL 
low EDTA TE-buffer, 2.5 μL 200 nM primer mix, and 2.5 μL cDNA 
were mixed and incubated in a thermocycler for 16 cycles (95°C for 
10 min followed by 15 s at 95°C and 4 min at 60°C). Pre-amplified 
cDNA was subsequently treated with 4 U/μL exonuclease (New 
England Biolabs, Ipswich, MA, United States) and incubated at 37°C 
for 30 min followed by 80°C for 15 min. Finally, the samples were 
diluted 1:10  in low EDTA TE Buffer and stored at −20°C until 
microfluidic qPCR was performed.

An aliquot of undiluted pre-amplified cDNA was saved for 
preparation of dilution series.

Microfluidic qPCR
High throughput microfluidic qPCR was performed using the 

96.96 dynamic array integrated fluidic circuits chip (Fluidigm, San 
Francisco, CA, United States) combining 96 samples with 96 primer 
sets in 9216 separate simultaneous qPCR reactions.

An assay master mix was prepared and consisted of 3 μL 2X Assay 
Loading Reagent (Fluigdim, San Francisco, CA, United States) and 
3 μL 10 μM forward and reverse primer.

Then a Pre-sample mix was made of 3 μL TaqMan Gene 
Expression Master mix (Applied Biosystems, Foster City, CA, 
United States), 0.3 μL 20X DNA Binding Dye Sample Loading Reagent 
(Fluidigm, San Francisco, CA, United States), 0.3μL 20 X EvaGreen 
(Biotium; VWR- Bie & Berntsen, Herlev Denmark), 0.9 μL low 
TE-buffer and 1.5 μL pre-amplified cDNA.

Samples and primers were loaded in the microfluidic chip 
according to the manufacturer’s instructions, and the BioMark 
(Fluidigm, San Francisco, CA, United States) was used to perform the 
microfluidic qPCR cDNA technical triplicates, no template control, 
-RT samples, amplification curves, melting curves, and dilution curves 
all served as different quality controls points for each process and were 
used in the subsequent data preprocessing. Data were handled by the 
Fluidigm Real-Time PCR Analysis software 3.0.2 (Fluidigm, San 
Francisco, CA, United States).

Data processing and statistical analyses

Data was corrected for PCR efficiency by standard curves, 
efficiency between 85 and 115% were accepted before correction. 
Expression values were normalized using global normalization in 
order to reduce non-biological variation between samples. To ensure 
data reproducibility of each primer set, cDNA technical replicates 
were compared and excluded if the deviation was too high (>1.0 Cq 
between triple determinations). Tissue samples and/or targets with 
more than 15% of values with more than 1.0 Cq between triple 
determinations were excluded. cDNA technical replicates were 
averaged for each miRNA. miRNA expression data never reaching the 
fluorescence threshold (1.09% of samples for cartilage and 0.0% for 
SM) were assigned the highest Cq measured (= lowest expression) for 
the miRNA in question in any sample + 1. Subsequently, expression 
data (Cq values) were transformed into relative quantities (Rq) and 
log2 transformed prior to statistical analysis.

Normality of data was assessed using Shapiro-wilks test, 
histograms and QQ-plots. Gross pathology scores of the untreated 
control joints and the treated and untreated OA joints were compared 
using Wilcoxon Exact Test analyzed with R.

Differential expression of the various miRNA Rq was compared 
between the following groups: untreated OA joint versus untreated 
control joint, and untreated OA joint versus MSC-treated OA joint. 
Because of some variance in macroscopic pathology in all groups 
(untreated control joint, untreated OA joint and MSC-treated OA 
joint), meaning that we  observed joints of both high and low 
pathology score in all groups, we  also compared all joints with a 
pathology score above versus below 10 across groups, to evaluate how 
the severity of cartilage erosions impacted the miRNA expression and 
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separate these effects from the effect caused solely by MSC-treatment. 
The fold change (FC) between groups was calculated for each of the 
miRNAs using Microsoft Excel. miRNAs were considered differentially 
expressed when the level of significance was below 0.05 and FC was at 
least 50% (<0.5 or >1.5).

Principal component analysis (PCA) and heatmap were created 
in RStudio (version 4.2.2), using the ggplot2 and pheatmap package. 
The PCAs were based on log2 transformed relative quantities, and the 
heatmap was based on autoscaled log2 transformed relative quantities.

Results

miRNAs in the cartilage were differentially 
expressed between groups

A total of 60 out of the 70 miRNAs were successfully identified in 
the cartilage samples (Supplementary File S2) The heatmap did not 
reveal any shared expression signature among the three treatment 
groups based on the 60 miRNAs (Figure  1). Three out of the 60 
miRNAs were differentially expressed in the cartilage between the 
untreated OA joints and untreated control joints (miR-146a; miR-150; 
miR-409-3p) (Table 1). Four out of the 60 miRNAs were differentially 
expressed in the cartilage between the untreated OA joints and the 
MSC-treated OA joints (miR-125a-3p; miR-150; miR-200c; 
miR-499-5p), while additionally 4 miRNAs were likely to 
be upregulated (miR-139a-5p; miR-378; miR-409 and miR-7177b), 
although the expression difference did not reach significance (p > 0.05, 
but < 0.09) (Table 1). Seven out of the 60 miRNAs were differentially 
expressed in the cartilage between joints with a pathology score above 
and below 10, respectively (miR-139-5p; miR-150; miR-182-5p; 
miR-200a; miR-378; miR-409-3p; miR-7177b), and one miRNA with 
a significant but only borderline differentially expressed (miR-125a-5p; 
p = 0.041; FC = 1.41) (Table 1).

Microfluidic qPCR failed to quantify 9 out of the 70 miRNAs in 
all of the cartilage and synovial membrane samples (miR-27A; 
miR-139-3p; miR-183; miR-184; miR-200b-3p; miR-296; 
miR-329b-3p; miR-499-3p; and miR-8992). In addition, miR-342-5p 
was not present in any of the cartilage samples, but was found in the 
synovial membrane.

There was no difference between groups 
for miRNA expression in synovial 
membrane

We were able to quantify 55 out of the 70 miRNAs in the synovial 
membrane samples from untreated control joints and untreated and 
treated OA joints and MSC-treated OA joints. In contrast to the 
cartilage samples, miR-182-5p; miR-200a; miR-215; miR-374a; 
miR-1388-5p and miR-7177b were not present in synovial membrane, 
while miR-342-5p was identified in synovial membrane but not in 
cartilage. None of the 55 miRNAs were differentially expressed in the 
synovial membrane between untreated OA- and untreated control 
joints, between untreated- and MSC-treated OA joints, or between 
joints with high and low pathology score.

Tissue specific miRNA expression 
signatures in cartilage and synovial 
membrane

Fifty-four miRNAs were identified in both cartilage and synovial 
membrane, of which 31 were significantly differentially expressed 
between the two tissues. Cartilage and synovial membrane had 
different miRNA expression profiles based on a PCA, as the two 
tissues formed two separate clusters (Figure 2). The different samples 
of the synovial membrane clustered more tightly than cartilage, 
indicating that the miRNA expression profile were more uniform in 

FIGURE 1

Heatmap of autoscaled log2 transformed relative quantities of miRNA expression in cartilage of the three different groups; control, OA untreated, and 
OA MSC. Each individual horse has been provided with a number from 1 to 9. The miRNAs are visualized vertically, while the samples are depicted 
horizontally. MiRNA with similar expression profiles are clustered closer together.
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synovial membrane than in cartilage in our model. The 31 
differentially expressed miRNAs were: miR-10a; miR-10b; miR-19a; 
miR-20a; miR-27b; miR-28-5p; miR-29b; miR-99a; miR-101; 
miR-122; miR-125a-3p; miR-139-5p; miR-140-3p; miR-140-5p; 

miR-146a; miR-148a-3p; miR-148b-3p; miR-150; miR-155; miR-182; 
miR-192; miR-199b-3p; miR-199-5p; miR-200c; miR-340-5p; 
miR-342-3p; miR-378; miR-409-3p; miR-499-5p; miR-676; and 
miR-1307.

TABLE 1 miRNAs differentially expressed in articular cartilage between groups.

Untreated OA versus 
untreated control 

cartilage

Untreated versus MSC-
treated OA cartilage

High versus low 
pathology score

Interpretation

miRNA FC p-value FC p-value FC p-value

miR-125a-3p 8.99 0.037* ↓ in MSC-treated joints

miR-125a-5p 1.41 0.041* ↑ with high pathology score

miR-139-5p 5.3 0.062 3.976 0.033* ↓ in MSC-treated joints and↑ 

with high pathology score

miR-146a 3.37 <0.001*** ↑ in OA joints compared to 

controls

miR-150 2.39 0.032* 2.83 0.019* 2.9 0.003** ↓ in MSC-treated joints,↑ in 

OA joints compared to 

controls and with high 

pathology score

miR-182-5p 3.46 <0.01** ↑ with high pathology score

miR-200a 0.37 0.046* ↓ with high pathology score

miR-200c 3.35 0.048* ↓ in MSC-treated joints

miR-378 3.16 0.077 2.89 0.031* ↓ in MSC-treated joints and↑ 

with high pathology score

miR-409-3p 2.3 0.024* 1.46 0.089 2.21 0.013* ↓ in MSC-treated joints,↑ in 

OA joints compared to 

controls and with high 

pathology score

miR-499-5p 2.19 0.045* ↓ in MSC-treated joints

miR-7177b 3.80 0.067 3.51 0.016* ↓ in MSC-treated joints and↑ 

with high pathology score

FC, fold change; OA, osteoarthritis. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 2

Principal component analysis (PCA) of the three different groups; control (green), OA untreated (red) and OA MSC (blue) in the two different tissues; 
cartilage (dot) and synovial membrane (triangle) using two principal components (PCs) as coordinate axes plotted against miRNA expression levels of 
the 54 different miRNAs quantified in both cartilage and synovial membrane. (A) Samples from cartilage and synovial membrane form two separate 
clusters, meaning the two clusters display diverse miRNA expression profiles. (B) Samples from only cartilage and (C) samples from only synovial 
membrane do not form separate clusters between groups.
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Discussion

Differential expression of several miRNAs has been associated 
with OA in humans and laboratory animal species (39–49). We were 
able to quantify 60 and 55 miRNAs in articular cartilage and synovial 
membrane, respectively, from horses with experimental OA. The 
combined analysis of all miRNAs investigated did not result in a 
clustering of the three analyzed groups; untreated OA, MSC treated 
OA, and control. However, several individual miRNAs in cartilage 
were differentially expressed between the three groups.

Three miRNAs were upregulated in cartilage from untreated OA 
joints compared to control joints (miR-146A; miR-150; miR-409-3p). 
Both miR-146a (36, 41, 66–69) and miR-150 (70, 71) are known to 
be related to OA, whereas miR-409-3p (72, 73) has been described to 
be involved in regulation of inflammation, which is a prominent part 
of the OA pathogenesis.

miR-146a is one of the most extensively studied miRNAs in 
relation to OA and inflammation. It has been found to have increased 
expression in cartilage of OA joints compared to controls in a number 
of previous studies in human patients (41, 66–69), and has therefore 
been suggested as a biomarker of OA. Bioinformatics analysis has 
demonstrated that miR-146a targets 159 proteins (67), including 
inflammatory inducers in the nuclear factor kappa B pathway and 
IL-1β, and factors involved in apoptosis or autophagy (67), which 
might have been ongoing at the time our horses were euthanized (day 
70 after OA-induction). There was no correlation between pathology 
score and expression of miR-146, corresponding to findings by 
Yamasaki et  al. (74), who showed that miR-146 had increased 
expression in OA cartilage compared to healthy cartilage, but with no 
correlation to the severity of pathological changes. Considering not 
only severity, but also chronicity, of OA may be  important for 
characterizing the expression pattern of miRNAs on osteoarthritic 
cartilage. In humans, miR-146 was downregulated in cartilage of 
patients with late-stage OA compared to healthy cartilage (75), 
suggesting that miR-146a plays a role mainly in the early and 
intermediate stages of OA.

Two miRNAs are of particular interest based on our results. 
Expression of miR-409-3p and miR-150 seemed to reflect presence 
and severity of OA in our experimental setup; expression was higher 
in OA cartilage compared to control, higher in cartilage with high 
pathology score, and lower in OA cartilage after MSC treatment, 
which resulted in reduced OA severity (35).

miR-409-3p has not previously been described in OA or cartilage 
models. However, miR-409-3p has been shown to increase the 
pro-inflammatory response by inhibiting the anti-inflammatory 
suppressor of cytokine signaling 3 (SOCS3) in non-joint cell types in 
vivo and in vitro (72, 73).

SOCS3 is known to play a critical role intraarticularly by 
preventing cartilage loss in arthritic conditions (76–79), where it 
inhibits signaling pathways of pro-inflammatory cytokines and 
catabolic factors such as metalloproteinase-3 (MMP-3), MMP-13, 
interleukin-6 and inducible nitric oxide synthase (79, 80). While never 
described in OA before, miR-409-3p may be linked to presence and 
severity of the disease through its down-stream effects on SOCS3, and 
this warrants further investigation in future studies.

In our model of post-traumatic OA, miR-150 expression seemed 
to be  negatively associated with OA, as expression was higher in 

cartilage of untreated OA joints compared to control joints and in 
joints with high pathology score and was reduced by MSC treatment 
in OA affected joints. This is in contrast to previous studies reporting 
downregulation of miR-150 in OA cartilage in human patients, in 
murine OA models and in vitro (70, 71, 81), and a study suggested a 
therapeutic effect of EVs containing miR-150 on OA (82–84). The 
reason for these diverging results is not clear but could be related to 
species differences or to variations in pathogenesis of different types 
of OA. Expression of miR-150 is increased in rheumatoid arthritis 
(85), a highly inflammatory type of arthritis, and the increased 
miR-150 expression in our model could potentially be related to a 
more severe inflammatory response than encountered in naturally 
occurring OA.

Expression of miRNAs was not only affected by the presence of 
OA, but also by the severity of cartilage pathology—with higher 
expression of the aforementioned two miRNAs (miR-409-3p and 
miR-150) as well as several others (miR-125a-5p, miR-139-5p, 
miR-182-5p, miR-378, and miR-7177b) in cartilage with high 
pathology score compared to cartilage with lower scores. In turn, 
miR-200a was downregulated in joints with more severe pathology. 
In our study there were joints with a high or a low pathology score 
in both the control group and in the OA groups. This could 
be  related to the repeated synovial sampling, to the treadmill 
exercise program or to contralateral limb overuse caused by the 
compensatory movement pattern that occurs in lame horses (86, 
87). Therefore, we investigated the differentially expressed miRNAs 
in joints with a pathology score above and below 10 across 
all groups.

Correlation between OA severity and expression of miRNAs has 
previously been demonstrated in humans (88, 89), thus suggesting 
that miRNAs could potentially help clinicians stage the disease.

Several of the miRNAs affected by pathology score were also 
downregulated in cartilage from MSC-treated OA joints compared to 
untreated OA joints, with miR-139-5p, miR-378, miR-409, and 
miR-7177b not quite reaching statistical significance (0.09 > p > 0.05). 
This might suggest that the downregulation in the MSC-treated joints 
was due to the reduced pathology in these joints rather than a direct 
effect of the MSCs.

A major aim of this study was to assess differences in miRNA 
expression in OA cartilage with and without MSC-treatment. 
MSC-therapy had chondroprotective effects in earlier studies 
involving models of equine OA (13, 14, 21), and this was confirmed 
in our study, as the MSC-treated OA group had significantly less 
severe cartilage pathology compared to the untreated OA group (35). 
In the present study, several miRNAs were downregulated in articular 
cartilage from the MSC-treated OA joints relative to the untreated OA 
joints. These changes can be directly related to the MSCs or be due to 
the reduced OA in treated joints. It is well-described that MSCs exert 
immunomodulatory effects that could affect expression of miRNAs 
and thereby influence progression of OA (26).

The most prominent difference between MSC-treated and 
non-treated OA joints was the differential expression of miR-125a-3p, 
which was 9 times lower in MSC-treated OA cartilage than 
non-treated OA cartilage. miR-125a-3p has not previously been 
described in OA or cartilage, but has been shown to affect osteogenic 
and adipogenic differentiation of stem cells (90, 91). Therefore, the 
observed lower expression of miR-125a-3p in MSC-treated OA 
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cartilage could be associated with MSC differentiation rather than 
reduction in OA.

In contrast to cartilage, expression of miRNAs in synovial 
membrane was not affected by OA, severity of pathological 
changes, or treatment with MSCs. Comparable results were 
obtained in a murine model of post-traumatic OA, where none of 
559 identified miRNAs were differentially expressed in synovial 
membrane from sham operated and experimental OA 
(destabilization of the medial meniscus) groups (92). The authors 
provided several potential explanations for this finding, including 
timing of sampling and the focal nature of the synovial response 
in OA. Such factors may also have affected the results of the 
present study. Synovitis is generally considered to occur in the 
early stages of OA (8) and sampling at day 70 after induction of 
OA may have been too late in the course of disease to detect 
differences in synovial membrane inflammation between groups. 
We have previously reported from this animal experiment that 
histology scores in synovial membranes from MSC-treated 
OA-affected joints did not differ from non-treated OA-affected 
joints (35). Also, the site of tissue sampling may have influenced 
the obtained results. Our study design encompassed weekly 
arthrocenteses (35, 93), which may have affected the results. 
Synovial membrane was sampled from the entire dorsal aspect of 
the joint, which is where arthrocenteses had been performed. 
Repeated arthrocentesis has been shown to causes joint 
inflammation with an increase in nitric oxide, prostaglandin E2, 
glycosaminoglycan and metalloproteinases concentrations in 
synovial fluid (94, 95). Therefore, synovial membrane 
inflammation caused by arthrocentesis may have masked 
differences between OA, control and MSC-treated joints in our 
study. Obviously, the lack of differential expression may also be a 
pathological feature of OA. Increased expression of miR-146a and 
miR-150 as well as other miRNAs has been demonstrated in the 
highly inflammatory and destructive rheumatoid arthritis (83, 
84), but synovitis in OA is much less severe and more variable (8), 
which may explain less pronounced changes in synovial membrane 
miRNA expression.

Currently there are only few studies reporting expression of 
miRNAs in experimental and naturally occurring equine OA (54, 
96–98). There is no consistency in the miRNAs identified as being 
differentially expressed in the studies, and it is therefore impossible at 
this stage to speculate about the validity of our or other experimental 
models in mimicking changes occurring in spontaneous equine OA.

Conclusion

We were able to quantify 60 miRNAs in articular cartilage and 55 
miRNAs in synovial membrane out of our 70 miRNA panel.

In cartilage, miR-146a, miR-150, and miR-409 had significantly 
higher expression in untreated OA joints than in control joints. Expression 
of miR-125a-3p, miR-150, miR-200c, and miR-499-5p was significantly 
reduced in cartilage from MSC-treated OA joints compared to the 
untreated OA joints. Expression of miR-139-5p, miR-150, miR-182-5p, 
miR-200a, miR-378, miR-409-3p, and miR-7177b in articular catilage 
reflected pathology score. In contrast, none of the miRNAs in synovial 
membrane showed differential expression between groups.

Most of the identified miRNAs have been described in OA and/
or inflammation in other species than the horse. Our results thus 
expands the very limited knowledge on the miRNA landscape in 
equine OA by suggesting that these miRNAs play a role in OA in this 
species. Moreover, our findings suggest that MSC-treatment may have 
a direct or indirect (through reduction in OA severity) effect on 
miRNA expression in post-traumatic OA. Taken together, our results 
suggest that further studies into the diagnostic and therapeutic 
potential of miRNAs in equine OA are warranted.
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