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Chlorpyrifos (CPF) is one of the most commonly used organophosphosphate-
based (OP) insecticides. Its wide use has led to higher morbidity and mortality, 
especially in developing countries. Moringa seed extracts (MSE) have shown 
neuroprotective activity, antioxidant, anti-inflammatory, and antibacterial 
features. The literature lacks data investigating the role of MSE against CPF-
induced cerebral and ocular toxicity in mice. Therefore, we aim to investigate 
this concern. A total of 40 mature male Wistar Albino mice were randomly 
distributed to five groups. Initially, they underwent a one-week adaptation 
period, followed by a one-week treatment regimen. The groups included a 
control group that received saline, MSE 100  mg/kg, CPF 12  mg/kg, CPF-MSE 
50  mg/kg, and CPF-MSE 100  mg/kg. After the treatment phase, analyses were 
conducted on serum, ocular, and cerebral tissues. MSE100 and CPF-MSE100 
normalized the pro-inflammatory markers (interleukin-1β (IL-1β), interleukin-6 
(IL-6), and tumor necrosis factor-alpha (TNF-α)) and AChE serum levels. CPF-
MSE50 significantly enhanced these serum levels compared to CPF; however, 
it showed higher levels compared to the control. Moreover, the tissue analysis 
showed a significant decrease in oxidative stress (malondialdehyde (MDA) and 
nitric oxide (NO)) and an increase in antioxidant markers (glutathione (GSH), 
glutathione peroxidase (GSH-PX)), superoxide dismutase (SOD), and catalase 
(CAT) in the treated groups compared to CPF. Importantly, the significance of 
these effects was found to be dose-dependent, particularly evident in the CPF-
MSE100 group. We  conclude that MSE has a promising therapeutic effect in 
the cerebral and ocular tissues of CPF-intoxicated mice, providing a potential 
solution for OP public health issues.
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1 Introduction

Organophosphosphate (OP)—based insecticides have been 
commonly employed in agricultural and household settings. 
Chlorpyrifos (CPF) [O, O-diethyl-o-(3, 5, 6-trichloro-2-pyridyl) 
phosphorothionate] is one of the most common OP-based insecticides, 
which is widely used due to its broad spectrum insecticidal activity 
(1–4). Its wide use has led to higher morbidity and mortality, especially 
in developing countries (5–7).

Chlorpyrifos affects many tissues, including neurological, ocular, 
cardiac, hepatic, and renal. It inhibits the acetylcholinesterase (AChE) 
enzyme in the neuronal synaptic clefts, which is essential for 
eliminating acetylcholine. AChE inhibition leads to acetylcholine 
(ACh) accumulation in those synaptic areas, causing toxic effects. 
Accumulated ACh causes neuronal, behavioral, and cognitive 
dysfunction, impaired memory, delayed neural development, and 
death (8–10). Moreover, CPF has been reported to interfere with the 
mitochondrial electron transport chain (ETC), increasing the 
production of reactive oxygen species (ROS). In addition, it interferes 
with the process important for eliminating ROS. CPF limits the 
antioxidant activities of certain enzymes, such as glutathione 
peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). 
This in turn leads to oxidative stress, lipid peroxidation, and damage 
to the affected tissues (11, 12).

The use of plant extracts in medicine has been described for 
centuries (13). They provide a rich source of bioactive agents with 
notable effects (14–19). The Moringaceae family is a family of drought-
resistant trees. Moringa oleifera (M. oleifera) is the most popular 
member of this family (15, 20, 21). This plant is characterized by 
containing various bioactive components in its seeds and leaves. It 
comprises several vitamins, minerals, and proteins such as vitamins A 
and C and iron, calcium, and potassium (22–25). M. oleifera extracts 
have shown neuroprotective activity, antioxidant, anti-inflammatory, 
and antibacterial features (25–28). Those features are attributed to 
containing polyphenols, terpenoids, and flavonoids, which regulate 
the antioxidant and detoxification activities (25, 26, 29).

Thereby M. oleifera seed extracts (MSE) have potential promising 
therapeutic effects against oxidative damage and OP toxicity (24). 
Although the known therapeutic effects of MSE, there is a shortage in 
the literature regarding its role in CPF intoxication. Hence, in this 
study, we aim to investigate the role of MSE on the CPF-intoxicated 
cerebral and ocular tissues of mice.

2 Methods

2.1 Chemical supplies

Pure moringa seed extract (MSE) and chlorpyrifos (CPF) were 
purchased from moringa sales at the National Research Centre (NRC), 
Egypt. The dried seeds were ground into fine powders and sieved. The 
enzyme-linked immunosorbent assay (ELISA) kits for 
pro-inflammatory cytokines, including interleukin-6 (IL-6), IL-1β, 
and tumor necrosis factor-alpha (TNF-α), were obtained from R&D 
(Mannheim, Germany) (Catalog # ARY005B). The AChE kit was 
obtained from Jiancheng Bioengineering Institute (Nanjing, China) 
(Catalog # A024). Kits for oxidative stress indicators and antioxidant 
status were purchased from Biodiagnostics Co. (Cairo, Egypt).

2.2 The study animals and design of the 
experiment

All procedures of our experiments were revised and 
approved by the Ethical Committee of the Faculty of 
Veterinary Medicine, Suez Canal University, Ismailia, Egypt 
(2023018).

A total of 40 mature male Wistar Albino mice (weighted 
190 ± 10  g) were included in our experiments. They were 
obtained from the Egyptian Organization of Biological 
Products and Vaccines. Mice were cared for in laboratory 
chambers with suitable ventilation and temperature 
(25 ± 2°C) with a relatively humid atmosphere between 40 to 50% 
and under a 12-h  cycle of light and dark. Additionally, they 
were supplied with enough food and water. For one week 
before the experiment, the mice were acclimated under 
these conditions.

After the one-week adaptation, mice were randomly 
distributed to one of five groups (eight mice in each group); the 
first group (control group) received saline as a control, group (2) 
received 100 mg/kg moringa seed extract (MSE), group (3) were 
administered 12 mg/kg chlorpyrifos (CPF) via oral gavage for 
7 days, group (4) received 12 mg/kg CPF and 50 mg/kg MSE for 
7 days and group (5) received 12 mg/kg CPF and 100 mg/kg MSE 
daily for 7 days.

2.3 Collection of blood samples and 
preparation of tissues

Blood samples were obtained from the retro-orbital 
venous plexus on the 15th day of the experiment and were 
centrifuged at 3000 g for 15 min. Then the obtained serum was 
kept at −20°C for further testing. All mice were sacrificed using 
isoflurane after blood sample collection. The cerebral and ocular 
tissue samples were obtained from all animals, cleaned of blood 
clots with saline and purified water then traditionally manually 
dissected. Then, all dissected samples were homogenized in 
5–10 mL of ice-cold buffer per gram of tissue. After that, the 
tissues were centrifuged at 5000 rpm for 30 min. The formed 
supernatant was collected in tubes and stored at −80°C 
for spectrophotometry.

2.4 Assessment of AChE levels

The AChE levels were measured using colorimetric kits that 
use a specific enzymatic reaction to measure AChE levels in serum 
samples. Detailed assay procedures were strictly followed 
according to the manufacturer’s instructions. Specifically, the 
assays were guided by the Lowry assay (30) for protein 
concentration measurement.

2.5 Assessment of the pro-inflammatory 
mediators

We used the ELISA kits to assess the pro-inflammatory cytokines, 
including IL-6, IL-1β, and TNF-α, following the protocol provided by 
R&D (Mannheim, Germany).
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2.6 Statues of tissue antioxidant and 
oxidative stress markers

Nitric oxide (NO) and malondialdehyde (MDA) were the markers 
for lipid peroxidation and were assessed using spectrophotometry 
techniques. NO was assessed as described by Green et al. (31) while 
MDA was estimated as described by Mihara et al. (32). Tissue anti-
oxidant markers included glutathione (GSH), GSH peroxidase (GSH-
Px), catalase (CAT), and superoxide dismutase (SOD) and were 
assessed using methods described by Beutler et al. (33), Paglia et al. 
(34), Aebi (35), and Nishikimi et al. (36) respectively.

2.7 Statistical analysis

Statistical analysis was done using the Statistical Package for social 
sciences (SPSS) 26.0. The Shapiro–Wilk test was employed to assess 
the normal distribution of the data. The statistical significance of the 
results was determined using the one-way analysis of variance 
(ANOVA) test. Tukey’s multiple range test was used for individual 
comparisons. Data were presented as mean and standard error (SE). 
Data were considered significant if the p-value was <0.05.

3 Results

3.1 Role of moringa seed extract on serum 
pro-inflammatory cytokines and 
acetylcholinesterase in CPF-intoxicated 
mice

The control group showed significantly lower levels than the CPF 
group regarding the IL-1β, IL-6, and TNF-α (33.7, 28.2, and 28.3%, 
respectively). Similarly, the MSE100 group showed significantly lower 
levels of IL-1β, IL-6, and TNF-α than the CPF group (31, 27.1, and 
27.2%, respectively). Moreover, compared with the CPF group, the 
CPF-MSE50, and CPF-MSE100 showed significantly lower levels of 
IL-1β (63.2 and 37.5%, respectively), IL-6 (60 and 33.2%, respectively) 
and TNF-α (52.4 and 30.5%, respectively). However, the levels of the 
inflammatory markers in the MSE100 and CPF-MSE100 did not 
significantly differ from the control group. Additionally, the 
CPF-MSE50 showed significantly higher cytokine levels than the 
control group.

Regarding acetylcholinesterase (AChE), the control group showed 
significantly higher levels than the CPF group (3.3%). The CPF group 
also showed significantly lower levels than the other groups (control; 
3.3%, MSE100; 3.4%, CPF-MSE50; 2.3%, and CPF-MSE100; 3%). 
However, there was no significant difference between MSE100, 
CPF-MSE100, and control groups (Table 1; Figure 1).

3.2 Effect of MSE on ocular tissue oxidative 
stress and antioxidant levels in 
CPF-intoxicated mice

Compared with the CPF group, the MSE100, CPF-MSE50, and 
CPF-MSE100 showed significantly lower levels of MDA (46.5, 72.1, 
and 52.1%, respectively) and NO (53.3, 77.1, and 56.5%). On the other 

hand, the MSE100, CPF-MSE50, and CPF-MSE100 showed 
significantly higher levels of GSH (50.8, 64, 53%), GSH-PX (47, 64.3, 
and 50.2%, respectively), SOD (31.7, 55.4, and 34.7%, respectively), 
and CAT (40.1%, 72.4, and 46.3%, respectively) when compared with 
CPF group (Table 2; Figure 2). However, MSE100, CPF-MSE100, and 
the control group significantly differ regarding all oxidative stress and 
antioxidant parameters except for CAT. The CAT level was 
significantly higher in the control group compared with the 
CPF-MSE100 group.

3.3 Effect of MSE on cerebral tissue 
oxidative stress and antioxidant levels in 
CPF-intoxicated mice

Compared with the CPF group, the MSE100, CPF-MSE50, and 
CPF-MSE100 groups showed significantly lower levels of MDA (40.3, 
75, and 44%, respectively), and NO (44.6, 76, and 53% respectively). 
On the other hand, the MSE100, CPF-MSE50, and CPF-MSE100 
showed significantly higher levels of GSH (45.3, 53.3, and 43%, 
respectively), GSH-PX (31.6, 45.2, and 37% respectively), SOD (33.7, 
61, and 39% respectively), and CAT (48.1, 70.1, and 54.2% 
respectively) compared with CPF group (Table 3; Figure 3). On the 
other hand, MSE100 and CPF-MSE100 did not significantly differ 
regarding all oxidative stress markers and antioxidants. In addition, 
MSE100 and CPF-MSE100 showed significantly better results 
compared with CPF-MSE 50 (Figure 4).

4 Discussion

In this study, we aimed to investigate the protective role of MSE 
against CPF toxicity. We found that MSE has a promising therapeutic 
effect in the cerebral and ocular tissues of CPF-intoxicated mice. 
Compared with the CPF group, the MSE 100, CPF-MSE50, and 
CPF-MSE100 groups significantly elevated the AChE levels. However, 
the MSE100 and CPF-MSE100 AChE levels did not significantly differ 
from the values of the control group. But they were still significantly 
better than the CPF group. Moreover, MSE, MSE 100, CPF-MSE50, 
and CPF-MSE100 groups showed a significant reduction in the serum 
levels of the inflammatory mediators compared to the CPF group. In 
this study, MSE decreased the oxidative stress markers (MDA and 
NO) levels and elevated the levels of antioxidant agents (GSH, 
GSH-PX, SOD, and CAT) in the ocular and cerebral tissues of mice. 
MSE50, MSE100, and CPF-MSE 100 groups significantly enhanced 
oxidative stress compared with the CPF group. However, MSE100 and 
CPF-MSE100 showed significantly better results compared with 
CPF-MSE 50.

Notably, the values of oxidative stress markers were higher in the 
cerebral tissue compared with the ocular tissue. In addition, cerebral 
tissue showed lower levels of antioxidants, indicating their 
consumption by the cerebral tissue more than the ocular tissue. This 
points to the significant oxidative stress the brain tissue endures. 
Cerebral tissue is characterized by higher liability to oxidative damage 
induced by ROS (8). This is attributed to higher energy demand and 
lower anti-oxidant levels such as SOD and CAT, in addition to, higher 
content of polyunsaturated fatty acids (PUFA), proteins, and nucleic 
acids (24, 37).
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Given the findings indicating decreased serum levels of 
inflammation and markers of oxidative stress, it is important to 
mention the fundamental mechanisms through which MSE exerts 
its protective effects. MSE’s compounds demonstrate anti-
inflammatory effects by inhibiting pro-inflammatory enzymes such 
as cyclooxygenase and lipoxygenase, as observed with quercetin 
and kaempferol. Additionally, MSE regulates cytokine production 
by modulating signaling pathways like nuclear factor-kappa B 
(NF-kappa B), thereby decreasing the production of 
pro-inflammatory cytokines such as TNF-α and IL-1β. Furthermore, 
MSE contains flavonoids and polyphenols known for their 
antioxidant properties, which contribute to reducing oxidative 
stress and inflammation (38, 39).

Similarly, it has been reported that chronic OP insecticide 
exposures lead to chronic ocular damage through OP-induced retinal 
apoptosis (40–44). Retina easily suffers from CPF-induced damage. 

Normally, it is subjected to severe oxidative stress resulting from the 
high metabolic activities stimulated by light exposure. Moreover, 
retinal oxidative stress has been related to a variety of retinal 
pathological conditions. However, the effect of CPF on eye structures 
other than the retina needs further investigation (44, 45).

CPF as one of the OP compounds interferes with macromolecule 
production such as DNA, RNA, and proteins. In addition, it impairs 
normal neuronal development and interferes with the normal process 
of neurotransmission cascade through the affection of several enzymes 
important for signal transduction (8, 46, 47). In addition, CPF inhibits 
the AChE enzyme and has been linked to oxidative damage of human 
and animal tissues (9–12, 48).

Oxidative tissue damage is attributed to the accumulation of 
reactive oxygen species (ROS); the metabolic products of the energy 
production cascade. Under normal circumstances, it can be controlled 
by the scavenger action of antioxidant enzymes like GSH, GSH-PX, 

TABLE 1 Role of MSE on serum pro-inflammatory cytokines and acetylcholinesterase in CPF-intoxicated mice.

Parameters Groups

Control MSE100 CPF CPF-MSE50 CPF-MSE100

IL-1β (pg/ml) 63.04a ± 3.03 58.02a ± 2.47 187.2b ± 5.74 118.23c ± 3.42 70.11a ± 3.21

IL-6 (pg/ml) 5.2a ± 0.22 5.0a ± 0.19 18.45b ± 1.14 11.03c ± 0.93 6.12a ± 0.17

TNF-α (pg/ml) 44.1a ± 2.65 42.43a ± 2.19 155.75b ± 5.11 81.57c ± 4.41 47.44a ± 1.29

AChE (U/mL) 107.29ad ± 3.82 112.05a ± 3.62 32.55b ± 4.07 75.28c ± 2.98 97.28d ± 2.07

MSE100; Moringa seed extract 100 mg, MSE50; Moringa seed extract 50 mg, CPF; chlorpyrifos, IL-1β; interleukin-1β, IL-6; interleukin-6, TNF-α; tumor necrosis factor-alpha, AChE; 
acetylcholinesterase. Data are expressed as mean ± standard error (SE). Values with different alphabetic superscripts within the same row differ significantly (p < 0.05).

FIGURE 1

Effect of MSE on serum levels in CPF-intoxicated mice. This figure depicts the impact of Moringa seed extract (MSE) on serum levels in mice 
intoxicated with Chlorpyrifos (CPF). (A) refers to interleukin-1β (IL-1β); (B) refers to interleukin-6 (IL-6); (C) refers to tumor necrosis factor-alpha (TNF-α); 
(D) refers to acetylcholinesterase (AChE). Serum levels of pro-inflammatory markers (IL-1β, IL-6, TNF-α, and AChE) were assessed in five experimental 
groups: Control negative, MSE 100 mg/kg, CPF 12 mg/kg, CPF-MSE 50 mg/kg, and CPF-MSE 100 mg/kg. Values having different alphabetic 
superscripts are significantly different (p  <  0.05).
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SOD, and CAT. The imbalance between ROS and anti-oxidants results 
in the accumulation of harmful ROS leading to significant tissue 
damage and cellular apoptosis (49, 50).

Our findings point to the role of oxidative damage and reactive 
oxygen species (ROS) in cerebral and ocular tissues of 
CPF-intoxicated mice. This is evidenced by the significantly 

TABLE 2 Effect of MSE on ocular tissue oxidative stress and antioxidant levels in CPF-intoxicated mice.

Parameters Groups

Control MSE100 CPF CPF-MSE50 CPF-MSE100

MDA (nmol/g) tissue 86.86a ± 2.77 82.41a ± 1.525 177.04b ± 6.11 127.68c ± 2.41 92.32a ± 1.6

NO (μmol/g) tissue 114.58a ± 1.73 116.58a ± 2.22 218.75b ± 8.28 168.69c ± 1.69 123.65a ± 2.7

GSH (mg/g) tissue 138.04a ± 4.92 140.42a ± 6.45 71.33b ± 2.61 111.97c ± 2.18 134.97a ± 2.73

GSH-PX (mol/g) tissue 90.42a ± 6.08 95.09a ± 2.6 44.62b ± 1.27 69.44c ± 1.6 88.94a ± 2.94

SOD (U/g) tissue 29.56a ± 0.6 30.49a ± 0.6 9.67b ± 0.55 17.47c ± 1.08 27.9a ± 0.84

CAT (U/g) tissue 2.63a ± 0.07 2.62a ± 0.06 1.05b ± 0.03 1.45c ± 0.09 2.27d ± 0.11

MSE; Moringa seed extract, CPF; chlorpyrifos, MDA; malondialdehyde, NO; nitric oxide, GSH; glutathione, GSH-PX; glutathione peroxidase, SOD; superoxide dismutase, CAT; catalase. Data 
are expressed as mean ± standard error (SE). Values having different alphabetic superscripts within the same row are significantly different (p < 0.05).

FIGURE 2

Effect of MSE on ocular tissue oxidative stress and antioxidants levels in CPF-intoxicated mice. (A) refers to malondialdehyde (MDA); (B) refers to nitric 
oxide (NO); (C) refers to glutathione; (D) refers to glutathione peroxidase (GSH-PX); (E) refers to superoxide dismutase (SOD), and (F) refers to catalase 
(CAT). This figure presents the impact of Moringa Seed Extract (MSE) on oxidative stress (MDA and NO) and antioxidant levels (GSH-PX, SOD and CAT) 
in the ocular tissues of mice exposed to Chlorpyrifos (CPF). Values having different alphabetic superscripts are significantly different (p  <  0.05).
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higher levels of oxidative stress markers and the decreased level of 
the antioxidant agents in the CPF-intoxicated groups. As a result 

of ROS activity, the antioxidant enzymes were significantly 
consumed with significantly higher values of MDA and NO in the 

TABLE 3 Effect of MSE on cerebral tissue oxidative stress and antioxidant levels in CPF-intoxicated mice.

Parameters Groups

Control MSE100 CPF CPF-MSE50 CPF-MSE100

MDA (nmol/g) tissue 109.45a ± 6.62 103.07a ± 4.6 255.76b ± 10.19 191.8c ± 4.86 112.07a ± 3.35

NO (μmol/g) tissue 91.03ad ± 3.44 85.89a ± 1.81 192.4b ± 4.8 146.07c ± 3.5 101.53d ± 1.75

GSH (mg/g) tissue 125.15a ± 5.51 129.19a ± 2.37 58.53b ± 1.49 109.72c ± 1.94 136.93a ± 2.58

GSH-PX (mol/g) tissue 63.59a ± 4.44 66.85a ± 2.64 21.1b ± 1.18 46.65c ± 1.82 57.26a ± 1.3

SOD (U/g) tissue 19.62ad ± 1.2 21.54a ± 0.51 7.25b ± 0.29 11.93c ± 0.78 18.62d ± 0.26

CAT (U/g) tissue 3.35ad ± 0.11 3.37a ± 0.11 1.62b ± 0.06 2.31c ± 0.08 2.99d ± 0.1

MSE; Moringa seed extract, CPF; chlorpyrifos, MDA; malondialdehyde, NO; nitric oxide, GSH; glutathione, GSH-PX; glutathione peroxidase, SOD; superoxide dismutase, CAT; catalase. Data 
are expressed as mean ± standard error (SE). Values with different alphabetic superscripts within the same row differ significantly (p < 0.05).

FIGURE 3

Effect of MSE on cerebral tissue oxidative stress and antioxidant levels in CPF-intoxicated mice. (A) refers to malondialdehyde (MDA); (B) refers to nitric oxide 
(NO); (C) refers to glutathione; (D) refers to glutathione peroxidase (GSH-PX); (E) refers to superoxide dismutase (SOD), and (F) refers to catalase (CAT). This 
figure presents the impact of Moringa Seed Extract (MSE) on oxidative stress (MDA and NO) and antioxidant levels (GSH, GSH-PX, SOD and CAT) in the 
cerebral tissue of mice exposed to Chlorpyrifos (CPF). Values having different alphabetic superscripts are significantly different (p  <  0.05).
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CPF group compared to the control, MSE, and CPF-MSE 
100 groups.

Our results also indicate a probable dose-dependent pattern of 
MSE. This is evidenced by the significant reduction of the 
inflammatory mediators, oxidative stress marker, and the significant 
elevation of AChE, and the antioxidant agents in the MSE100 and 
CPF-MSE100 compared with the CPF-MSE50 group. Additionally, 
MSE100 and CPF-MSE100 showed similarity to the baseline values of 
the control group with no statistically significant difference. This 
points to the significant role of MSE that achieves tissue homeostasis 
even in CPF-intoxicated cerebral and ocular tissues of mice. 
Furthermore, our results confirm what has been previously reported 
in the literature regarding its anti-oxidant (51–55), anti-inflammatory 
(24, 56, 57), and AChE-enhancing features (24, 28, 58). However, the 
latter is debatable.

The therapeutic properties of MSE are ascribed to the potent 
constituents of its seeds and leaves, which include flavonoids, 
phenolics, carotenoids, and vitamins A and C, alongside essential 
minerals such as iron, calcium, and potassium (15, 23, 25, 59, 60). 
Additionally, MSE is rich in bioactive phytochemicals like niazirin, 
niazimicin, β-sitosterol, and 4(alpha-L-rhamnosyloxy) benzyl 
isothiocyanate, each contributing to its therapeutic potential (61). For 
instance, niazirin is recognized for its strong antioxidant activity (62); 
niazimicin has neuroprotective features (63); β-sitosterol exhibits 
anti-adipogenic activities (64); and the α rhamnosyloxy has been 
reported to attenuate spinal cord injury-associated damage (65). 
However, the exact mechanism of its protective role has not been 
established yet. In previous studies, the anti-oxidant power of MSE 
was assessed by defining the total amounts of phenols, flavonoids, 
and tannin contents in addition to defining the scavenging and 
reducing powers of the diphenyl picrylhydrazyl (DPPH), 

azinobis-ethylbenzothiazoline-sulfonic acid (ABTS), and nitric oxide 
(NO) (53). The DPPH, ABTS, and NO scavenging activities were 
attributed to the phenolic and flavonoid contents of the moringa seed 
water extracts (53, 66).

Considering our results alongside prior research, MSE exhibits 
several protective and therapeutic effects against OP toxicity through 
its antioxidant, anti-inflammatory, and AChE inhibitory actions. 
These findings indicate a possible avenue for addressing OP-related 
public health concerns. Consequently, we  recommend further 
exploration into the protective potential of MSE in human populations.

5 Conclusion

Our study findings highlight the promising therapeutic effects of 
MSE in ameliorating CPF toxicity in mice. MSE administration 
resulted in significant enhancements in AChE activity and antioxidant 
functions while concurrently reducing levels of inflammatory 
mediators and oxidative stress markers in both cerebral and ocular 
tissues of CPF-intoxicated mice.

In conclusion, our study highlights MSE as a promising natural 
intervention for mitigating CPF toxicity, offering insights into its 
therapeutic mechanisms and suggesting avenues for future research. 
By embracing these insights and addressing the identified research 
gaps, we  can advance our understanding of MSE’s potential in 
alleviating pesticide-induced toxicity and contribute to the 
development of effective therapeutic interventions based on natural 
compounds like MSE.

As a limitation of the current study, specific molecular pathways 
should be deeply involved in its preventive and therapeutic effects, and 
assess its safety and efficacy in clinical settings.

FIGURE 4

Summary of MSE effect on cerebral and ocular toxicity induced by CPF in mice. IL-1β; interleukin-1β, IL-6; interleukin-6, TNF-α; tumor necrosis factor-
alpha, AChE; acetylcholinesterase, MDA; malondialdehyde, NO; nitric oxide, GSH; glutathione, GSH-PX; glutathione peroxidase, SOD; superoxide 
dismutase, CAT; catalase.
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