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High temperature induces heat stress, adversely affecting the growth and lactation 
performance of cows. Research has shown the protective effect of taurine against 
hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect 
of taurine on the metabolomics of mammary epithelial cells of dairy cows under 
high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L 
(HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 
42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph 
Mass Spectrometer (LC–MS). Compared with the HS group, 2,873 and 3,243 
metabolites were detected in the HT-8 group in positive and negative ion modes. 
Among these, 108 and 97 metabolites were significantly upregulated in positive and 
negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 
15 different metabolites such as palmitic acid, adenine and hypoxanthine were 
screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 
metabolites were, respectively, detected in the HT-32 group in the positive and 
negative ion modes. Among those metabolites, 206 metabolites were significantly 
up-regulated, while 206 metabolites were significantly downregulated in the 
positive mode. On the other hand, 497 metabolites were significantly upregulated 
in the negative mode, while 517 metabolites were reported to be downregulated. 
Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, 
hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-
32 group. KEGG enrichment analysis showed that these metabolites were mainly 
involved in lipid metabolism, purine metabolism and other biological processes. 
Overall, our study indicates that taurine supplementation alters the metabolites 
primarily associated with purine metabolism, lipid metabolism and other pathways 
to alleviate heat stress in bovine mammary epithelial cells.
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1 Introduction

In livestock production, stress can be induced by factors such as environment, nutrition, 
management, pathogens and disease (1). Climate change-induced increases in diurnal 
temperatures and global warming have attracted increasing attention. Heat stress (HS) happens 
when an animal is not able to dissipate the heat load generated by the body’s metabolism and the 
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environment, thereby losing the body’s thermal homeostasis. The cows 
under HS conditions reduce the body heat load by reducing dry matter 
intake (DMI), resulting in insufficient energy and nutrients being 
available to maintain normal production (2–4). HS reduces daily 
rumination time and milk production in lactating high-producing dairy 
cows (5, 6). Furthermore, HS poses a significant threat to dairy farming, 
disrupting cows’ productivity, reproductive performance, and overall 
health (7, 8). In addition, animal management has become a huge 
challenge due to the increase in the number of production animals and 
the increased metabolic activity due to high temperatures (9). Therefore, 
HS caused to huge economic loss on dairy production in the world.

The structural and functional integrity of the mammary tissue is 
considered a crucial factor in the performance of lactation in cows 
(10). Research has shown that environmental and management factors 
can affect mammary gland function at both molecular and cellular 
levels (11). For example, high temperatures can inhibit the 
proliferation of mammary epithelial cells, causing the occurrence of 
various diseases such as mastitis, and affecting the yield and milk 
quality of cows (12–14). HS led to a variety of protein chaperone genes 
up-regulated and interfere with cytoskeletal and cell transport 
function in bovine mammary epithelial cells in vitro (15).

Taurine, as a sulfur-containing non-protein amino acid, is one of 
the most abundant free amino acids in mammalian tissues (16). It is 
involved in many biological processes, including anti-inflammatory, 
antioxidant activities, bile acid binding, membrane stabilization, 
osmoregulation, regulation of cellular calcium flux, and 
immunomodulation (17, 18). It has been shown to be protective in 
stress models and toxic situations such as high temperatures, 
endotoxin excitation, and high stocking densities (19). Previous 
studies have shown that taurine supplementation promotes milk fat 
and protein synthesis and alleviates oxidative stress and inflammation 
in bovine mammary epithelial cells (20, 21). Moreover, taurine can 
reverse the decreases in the activity of superoxide dismutase and 
glutathione peroxidase induced by HS, then alleviate cellular oxidative 
stress, and thus protect bovine mammary epithelial cells against HS 
(22). Furthermore, the protective effect of taurine on mammary glands 
has been achieved by attenuating mammary gland epithelial integrity 
damage and inflammatory response under HS conditions (23).

The metabolites of the organism, especially the macromolecules, 
can directly reflect the changes in life activities in the organism (24). 
Metabolomics is an important method that allows for a comprehensive 
analysis of metabolites in the organism (25). It can be used to explore 
the dynamic response of living system metabolites to changes in 
endogenous or exogenous factors in a quantitative way (26). Previous 
research has demonstrated that HS results in an elevated concentration 
of amino acids in the mammary epithelial cells of dairy cows, thereby 
enhancing the transportation of amino acids and stimulating the 
activity of the mTOR signaling pathway (27). Additionally, 16 
metabolites have been identified in the plasma of dairy cows treated 
with N-Carbamylglutamate (NCG), and found that NCG could relieve 
HS, resulting in an improvement in milk production under HS (28). 
Furthermore, another study using analyzing metabolomics proved the 
protective effect in the yeast chromium by reducing rectal temperature, 
decreasing serum insulin concentration, and increasing serum glucose 
and plasma nicotinamide concentration to improve the lactation 
performance of dairy cows under heat stress (29).

It has been found that heat stress in dairy cows is associated with 
many metabolic pathways, such as glucose metabolism, amino acid 

metabolism, and nucleotide metabolism (30, 31). However, the direct 
impact of taurine on the metabolism of bovine mammary epithelial 
cells under HS remains underexplored. This study aims to address this 
gap by employing liquid chromatography-mass spectrometry 
(LC-MS) to investigate the metabolite profile of bovine mammary 
epithelial cells supplemented with taurine under high-temperature 
conditions. By shedding light on the molecular mechanisms 
underlying taurine’s protective effects, this research seeks to provide a 
theoretical basis for developing targeted interventions to mitigate the 
adverse effects of HS in dairy cows.

2 Materials and methods

2.1 Cells and reagents

The bovine mammary epithelial cells were preserved by our 
laboratory (Rongchang, Chongqing); fetal bovine serum and DMEM/
F-12 medium were purchased from Gibco; taurine (Taurine, 99% 
biotech grade) was purchased from Macklin, and methanol 
(chromatographically pure, HPLC-grade) were purchased from Sigma.

2.2 Cell culture and treatment

The mammary epithelial cells were cultured in DMEM/F-12 
medium containing 10% fetal bovine serum and 100 U/mL penicillin 
and 100 μg/mL streptomycin at 37°C, 5% CO2 in an incubator, and 
then cultured in 10 cm dishes at a density of 6 × 106 cells/mL until cells 
reached 80–90% confluence, and then replaced with culture medium 
containing 0 mmol/L (HS, control group), 8 mmol/L (HT-8) and 
32 mmol/L (HT-32) of taurine, respectively. After cells were cultured 
at 37°C for 6 h, they were then transferred to 42°C for 6 h-incubation 
based on similar work by Salama et al. (32–34). All of the treatments 
were conducted in six biological replicates (n = 6).

2.3 Samples research topic

After the hyperthermia treatment, the medium was discarded and 
washed twice with pre-cooled (4°C) PBS. Afterwards, the dish 
containing the cells was exposed to liquid nitrogen for 10 s and then 
placed on ice. 750 μL of methanol–water (Methanol/Water = 8:2, V/V) 
was added to each dish, and the cells were scraped off with a cell 
scraper and transferred into Eppendorf tubes, while the remaining 
cells were scraped off with another 750 μL of methanol–water and put 
into the same tube. The collected samples were stored at −80°C for 
30 min (mins) and then pulverized by ultrasound. The samples were 
centrifuged at 14,000 g for 15 min at 4°C. The supernatant was 
transferred in a 1.5 mL Eppendorf tube and stored at −80°C for  
measurement.

2.4 Detection of metabolites

LC-MS/MS analysis was performed using UHPLC equipment 
(UHPLC3000, Dionex, Sunnyvale, CA, Germany). Detection 
conditions were presented as follows.
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2.4.1 Chromatographic conditions
Column: UPLC Hypersil Gold C18 column (2.1 Hypers, particle 

size 1.91, Thermo Fisher Science, United  States) and Q-Exactive 
Orbitrapp (Thermo Fisher Science, United States), flow rate 0.2 mL/
min, column temperature 35°C, injection volume 2 μL; mobile phases: 
solvent A (0.1%formic acid), solvent B (methanol containing 0.1% 
formic acid), solvent C (0.1%NH3), and D (methanol containing 
0.1%NH3); gradient elution program: positive ions were 0–10 min, 
5%B and 95%A; 10–12 min, 5%A and 95% B; 12–13 min, 5%A and 
95%B; 13.1–14 min 95%A and 5%B; negative ions were 0–2.5 min, 
95%C and 5%D; 2.5–16.5 min, 95%D and 5%C; 16.5–19 min, 95%D 
and 5%C; 19–20 min, 95%C and 5%D.

2.4.2 Mass spectrometry conditions
MS/MS spectra were acquired in an information-dependent 

acquisition (IDA) mode using Q-ExactiveOrbitRAP under the control 
of the acquisition software (X Cup, Thermo Fisher Science, 
United  States); HASI source operating parameters: sheath and 
auxiliary gas flow rates of 40 and 10 arb, respectively, capillary 
temperature of 320°C, full mass scan range m/z 70–1,050 with a 
resolution of 70,000; the MS/MS scan mode was set to a data-
dependent MS2 (dd-MS2) scan with a resolution of 35,000, high 
collisional dissociation, and a spray voltage of 3.5 kV (positive-ion 
mode)/−2.5 kV (negative-ion mode) in NCE mode.

2.5 Data analysis

2.5.1 Data processing
The raw data from the mass spectrometry downgauge was 

analyzed with Compound Discoverer 3.2 (Thermo Fisher, 
United States) for peak processing and peak integration. The measured 
mass spectral primary and mass spectral secondary information were 
matched with the mzCloud, Chemspider, and mzVault databases to 
analyze the metabolites to which they could be matched.

2.5.2 Analysis of differential metabolites
Multivariate statistical analysis was performed using SIMCA 14.1 

(Umetrics, Sweden) software. The unsupervised principal component 
analysis (PCA) was used to categorize the ions detected in the positive 
and negative modes, and then the data were analyzed using Orthogonal 
Partial Least Squares Discriminant Analysis (OPLS-DA). The model 
was verified by the permutation test to find out the projected importance 
values (VIPs) of the variables. The metabolites were screened for 
differences between treatment and the control. The metabolite analysis 
was performed using the online software MetaboAnalyst 5.0. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database is a 
comprehensive database that integrates genomic, chemical, and 
systemic functional information to reveal the genetic material and 
chemical blueprint of life phenomena. The samples that met the criteria 
were compared with the KEGG database to identify the metabolites and 
explain their biological functions and physicochemical properties. For 
unidentified compounds, KEGG annotations can be used to determine 
their identity. Using the MBROLE 2.0 online website, identified 
differential metabolites were mapped to relevant metabolic pathways to 
better understand their functions and roles in biological systems.

p values were obtained by univariate analysis of the multiplicity of 
differences (Fold-Change) and T-statistical test, combined with VIP 

values (Variable Important for the Projection) obtained by multivariate 
statistical analysis OPLS-DA to screen for differential metabolites. 
Differential metabolites were required to fulfill the following 
conditions simultaneously: (1) |Log2 Fold Change| ≥ 1; (2) P-value ≤ 
0.05; (3) VIP ≥ 1.

3 Results

3.1 Multivariate statistical analysis

In order to find the differential metabolites between the treatment 
and control groups, multivariate statistical analysis of cell lysates was 
performed. The stability of the model was indicated by QC samples. 
Figure 1 showed the plots of PCA scores for the degree of dispersion 
between the groups of samples with different concentrations of taurine 
and the control group in the positive and negative ion mode, 
respectively. Almost all of the samples were within the ellipse 
representing the 95% confidence interval, and all treatment groups were 
separated from the blank group in the horizontal coordinate t [1] (first 
principal component), and the QC samples were clustered together, 
which indicated that the established system was stable and reliable. 
Further, taurine had a significant effect on the metabolism patterns of 
mammary epithelial cells of cows under high-temperature conditions.

To verify the reliability of the model and to identify the potential 
biological markers affecting cellular metabolic patterns, orthogonal 
partial least squares discriminant analysis (OPLS-DA) was carried out 
between the HS, HT-8 and HT-32 groups in positive and negative ion 
modes, respectively. The parameters of the model, R2X and R2Y, 
represented the explanatory rate of the constructed model for the X 
and Y matrices, respectively. The value of Q2 indicated the predictive 
ability of the model, and their sizes directly reflected the reliability of 
the model. The OPLS-DA score plots between different groups in 
positive and negative ion mode were shown in Figures 2A–D, and 
their related model parameters, R2 and Q2 values, were shown in 
Table 1. The R2 values of each group were greater than 0.5, which 
showed that the models of the different concentrations of taurine 
treatment groups were stable; the Q2 values of HT-8 and HT-32 groups 
in positive ion mode were 0.823, 0.836, respectively, and the Q2 values 
of HT-8 and HT-32 group in negative ion mode were 0.780 and 0.863, 
respectively, indicating that the model predictability was good.

In order to decide whether the data derived from the OPLS-DA 
analysis were analytically significant, the data were subjected to a 
permutation test (Permutation test). As shown in Figures 2E–H, the 
slope of the fitted line of the various treatment groups was greater than 
0, and the next step in the analysis could be carried out.

3.2 Effects of taurine on the metabolite 
profile of the mammary epithelial cells

Metabolomic analysis was conducted to reveal the changes in 
metabolic profiles of the mammary epithelial cells following taurine 
treatment under high temperatures. Compared to the control group, a 
total of 2,873 metabolites were detected in the positive ion mode when 
treated with 8 mmol/L taurine (Figure 3A), of which 108 metabolites 
were significantly up-regulated, 60 metabolites were significantly down-
regulated, and the remaining 2,705 metabolites did not show significantly 
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different. On the other hand, a total of 3,243 metabolites were detected 
in the negative ion mode, among which 97 metabolites were significantly 
up-regulated, 166 metabolites were significantly down-regulated, and 
the remaining 2,980 metabolites were not significantly different 
(Figure 3B). In 32 mmol/L taurine group, 2,873 metabolites were found 
in the positive ion mode, of which 206 metabolites were significantly 
up-regulated, 206 metabolites were significantly down-regulated and the 
other 2,461 metabolites did not show significant changes (Figure 3C). In 
addition, a total of 3,243 metabolites were detected in negative ion mode, 
of which 497 metabolites were significantly up-regulated, 517 
metabolites were significantly down-regulated, and the remaining 2,229 
metabolites showed no significant difference (Figure 3D).

3.3 Metabolite clustering analysis

Heatmaps constructed from the peak areas of the differential 
metabolites showed the combined differentiation between treatments. 
The clustering of metabolite contents among groups could be clearly 
observed by horizontal comparison. As shown in Figure 4, the HT-8 
and HT-32 groups had similar metabolite expression patterns in the 
positive ion mode, whereas the HT-8 and HS groups had similar 
metabolite expression patterns in the negative ion mode.

3.4 Analysis of differential metabolites

Based on the OPLS-DA assay, potential metabolic markers were 
screened using a “multi-criteria” technique. Differential metabolites 
between treatment and the control group were screened under the 
conditions of |log2 Fold Change| ≥ 1, VIP value > 1, and P-value ≤ 
0.05. As shown in Table 2, a total of 15 differential metabolites were 
screened in the HT-8 group compared with the control group, of 
which N,N-Dimethyldecylamine N-oxide, Norethindrone, Bis(2-
ethylhexyl) phthalate, Taurine, Bacteriopheophytin, L-Glutathione 
oxidized and PC(18:0/24:0) for seven upregulated metabolites, G 
Benzylpenicillin, Creatinine, 3-Phosphoglyceric acid, Guanosine 
5′-diphosphate, Hypoxanthine, Adenosine 5′-monophosphate, α-D- 

Glucose-1,6-bisphosphate, Palmitic Acid as 8 downregulated  
metabolites.

As shown in Table  3, a total of 30 differential metabolites were 
screened in the HT-32 group compared with the control group, including 
13 upregulated metabolites such as Phenol, Norethindrone, Nonanoic 
acid, Decanoic acid, and Guanine, and ADP, L-Glutathione (reduced), 
UDP, GDP, GTP, ATP, Hypoxanthine, Phytosphingosine, 2-Amino-1,3-
octadecanediol, Palmitic Acid and 17 other downregulated metabolites.

Further analysis of these differential metabolites, as shown in 
Figure 5, revealed that 8 mmol/L and 32 mmol/L taurine resulted in 
the upregulation of decanoic acid, valeric acid, octanoic acid, and 
oxidized glutathione, and the downregulation of ADP, ATP, 
hypoxanthine, phytosphingosine, 2-amino-1,3-octadecanediol 
(sphingolipid analogs), reduced glutathione, and palmitic acid, 
compared to the control.

3.5 Analysis of differential metabolite 
metabolic pathways

In order to identify potential biomarkers of KEGG identification, 
the online software of MetaboAnalyst 5.0 was utilized to analyze 
KEGG. KEGG pathway enrichment analysis was performed by the 
MBROLE.2.0·online website. Figure 6 showed differentially expressed 
metabolites through the KEGG pathway analysis. Figures  6A,B 
showed the top 20 KEGG metabolic pathways enriched by differential 
metabolites between the HT-8 vs. HS and HT-32 vs. HS groups, 
respectively. After being treated with 8 mmol/L taurine, purine 
metabolism, glutathione metabolism, fatty acid biosynthesis and 
metabolism, linoleic acid metabolism, and mTOR signaling pathway 
were significantly changed (Figure  6A). The changes in purine 
metabolism, fatty acid metabolism, taurine and hypo-taurine 
metabolism, mTOR signaling pathway, and metabolic pathway were 
significant after 32 mmol/L taurine (HT-32) treatment (Figure 6B). In 
conclusion, taurine affected the metabolic pathways: purine 
metabolism, amino acid metabolism, glucose metabolism, fatty acid 
metabolism and biosynthesis in bovine mammary epithelial cells 
under high temperature condition.

FIGURE 1

PCA score plots of different samples. (A) PCA score plots of three groups in cationic mode (positive ion). (B) PCA score plots of three groups in anionic 
mode (negative ion). Green represents the quality control group (QC), Red represents control group (HS), blue represents 8  mmol/L taurine group 
(HT-8), yellow represents 32  mmol/L taurine group (HT-32), (n  =  6) the same as below.
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4 Discussion

The aim of this study was to assess the impact of taurine 
supplementation on the metabolite composition of bovine mammary 
epithelial cells subjected to high-temperature stress. In this 
experiment, employing liquid chromatography-mass spectrometry 
(LC-MS), a total of 15 differential metabolites were identified in the 

mammary epithelial cells of dairy cows by supplementation of 
8 mmol/L taurine under high temperature, and 30 differential 
metabolites were identified with the addition of 32 mmol/L taurine, 
compared with the control group. The KEGG enrichment analysis 
revealed that these metabolites mainly regulated the pathways of 
purine metabolism, fatty acid metabolism, fatty acid biosynthesis and 
sphingolipid metabolism.

FIGURE 2

OPLS-DA model and verification diagram of different samples. (A)OPLS-DA scores plot of HT-8 vs. HS in cationic mode. (B) OPLS-DA scores plot of 
HT-8 vs. HS in anionic mode. (C) OPLS-DA scores plot of HT-32 vs. HS in cationic mode. (D) OPLS-DA scores plot of HT-32 vs. HS in anionic mode. 
(E–H) OPLS-DA model verification diagram of panel (A–D).
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Fatty acids and their derivatives are widespread in all living 
organisms, both as energy providers and as part of the composition 
of biological membranes (35). They can regulate gene expression via 
activating transcription factors and cell membrane receptor signaling 
(36). They also affect their own metabolism as well as the metabolism 
of other compounds by influencing gene transcription (37). Under 
high temperature condition, cells need to regulate membrane fluidity 
to maintain normal physiological function, as the amount of 
saturated fatty acids in the membrane affects the fluid properties of 
the membrane. Therefore, cells increase the synthesis of unsaturated 
fatty acids to regulate membrane properties in response to HS (38). 
The synthesis of short- and medium-chain unsaturated fatty acids are 
fatty acid groups consisting of a carbon chain of 3–12 carbon atoms, 

which have a small molecular mass and a strong ability to penetrate 
cell membranes. Short-chain fatty acids include formic acid, acetic 
acid, and valeric acid, while medium-chain fatty acids include 
caproic acid, octanoic acid, nonanoic acid, decanoic acid, etc. (39, 
40). The medium chain fatty acids include hexanoic acid, octanoic 
acid, nonanoic acid and decanoic acid. Studies have shown that 
pathways related to lipid metabolisms, such as fatty acid biosynthesis 
and amino acid metabolism, are inhibited under high temperature 
conditions (41). In the present study, 32 mmol/L taurine significantly 
upregulated the expression of short-chain fatty acids, such as caproic 
acid, valeric acid, nonanoic acid, and decanoic acid in the mammary 
epithelial cells of dairy cows under high temperature conditions. 
Therefore, it can be hypothesized that taurine could protect the cells 

TABLE 1 OPLS-DA model parameters with different concentrations of taurine.

Positive Negative

HT-8 vs. HS HT-32 vs. HS HT-8 vs. HS HT-32 vs. HS

R2X(cum) 0.674 0.534 0.603 0.526

R2Y(cum) 0.999 0.976 0.999 0.997

Q2(cum) 0.823 0.836 0.780 0.863

FIGURE 3

Volcano diagram of differential expressed metabolites between different samples. (A) Volcano diagram of HT-8 vs. HS in cationic mode. (B) Volcano 
diagram of HT-8 vs. HS in anionic mode. (C) Volcano diagram of HT-32 vs. HS in cationic mode. (D) Volcano diagram of HT-32 vs. HS in anionic mode. 
Red dots represent metabolites with significant and upregulated differences, green dots represent metabolites with significant and downregulated 
differences, and black represents metabolites with non-significant differences.
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by regulating the expression of short and medium chain fatty acids 
in the fatty acid synthesis pathway, thereby increasing the expression 
of heat shock proteins and enhancing the tolerance to heat stress.

Palmitic acid (PA) is the most abundant saturated free fatty acid in 
the blood and one of the main substrates for fat synthesis (42). PA can 
regulate cellular metabolism via the activation of phosphatidylinositol 
3-kinase (PI3K) (43). Excessive PA leads to endoplasmic reticulum 
stress, mitochondrial damage, and apoptosis (44–46). Excessive PA also 
induces programmed necrosis (necrotic apoptosis) in endothelial cells 

by initiating enhanced autophagy (47). Besides, PA has been reported to 
stimulate hepatocyte apoptosis by inducing oxidative stress through 
intracellular generation of reactive oxygen species (48) and apoptosis of 
bovine mammary epithelial cells by inducing extreme endoplasmic 
reticulum stress (49). In this study, we  found that 8 mmol/L and 
32 mmol/L of taurine downregulated the expression of palmitic acid in 
bovine mammary epithelial cells under high temperature conditions. 
Therefore, taurine may activate cellular autophagy pathways, and 
alleviate endoplasmic reticulum stress, mitochondrial damage, and 

FIGURE 4

Cluster diagram of differentially expressed metabolites. (A) Cluster diagram of three groups in cationic mode (positive ion). (B) Cluster diagram of three 
groups in anionic mode (negative ion). Red dots represent up-regulated metabolites and green dots represent down-regulated metabolites. The 
vertical axis indicates clustering of all groups and the horizontal axis indicates clustering of all metabolites, with shorter cluster branches indicating 
higher similarity.

TABLE 2 Differential metabolites of HS vs. HT-8 group.

Name Molecular formula Log2 FC P-value VIP Up/down

N,N-Dimethyldecylamine N-oxide C12 H27 N O 7.54 0.000609 1.63657 Up

Norethindrone C20 H26 O2 2.98 0.009498 1.62568 Up

Bis(2-ethylhexyl) phthalate C24 H38 O4 2.51 0.022253 1.39681 Up

Taurine C2 H7 N O3 S 2.15 0.000803 2.09867 Up

Bacteriopheophytin C55 H76 N4 O6 1.7 0.015532 1.34182 Up

L-Glutathione oxidized C20 H32 N6 O12 S2 1.5 0.036793 1.44644 Up

PC (18:0/24:0) C50 H100 N O8 P 1.45 0.048642 1.29947 Up

G Benzylpenicillin C16 H18 N2 O4 S −1.17 0.041552 1.42848 Down

Creatinine C4 H7 N3 O −1.21 0.0084 1.82303 Down

3-Phosphoglyceric acid C3 H7 O7 P −1.36 0.042315 1.71386 Down

Guanosine 5′-diphosphate C10 H15 N5 O11 P2 −1.36 0.044289 1.63198 Down

Hypoxanthine C5 H4 N4 O −1.45 0.001688 1.77526 Down

Adenosine 5′-monophosphate C10 H14 N5 O7 P −1.66 0.048445 1.23457 Down

α-D-Glucose-1,6-bisphosphate C6 H14 O12 P2 −1.83 0.039922 1.5497 Down

Palmitic Acid C16 H32 O2 −4.92 0.002485 1.51669 Down
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apoptosis induced by palmitic acid. Moreover, taurine can reduce 
cellular autophagy by inhibiting the PI3K pathway and inhibiting the 
mTOR pathway through down-regulation of adenosine monophosphate 
(AMP) expression. It also reduces the production of intracellular reactive 
oxygen species under high temperature conditions, thereby alleviating 
oxidative stress and to some extent relieving the damage of mammary 
epithelial cells in dairy cows under high temperature conditions.

Sphingolipids are one of the major lipid classes in eukaryotes and 
play a crucial role in cells as structural components of membrane lipid 
bilayers and signaling molecules (50, 51). They are related to important 
physiological and pathological processes, including cell adhesion, 
recognition of viral and bacterial toxins, skin barrier formation, neural 
function, apoptosis, and glucose metabolism (52, 53). 
Phytosphingosine (PHS) is a sphingolipid found in plants and animals 
and is unique since it has an extra hydroxyl group compared to other 
long-chain bases (54). 2-Amino-1,3-octadecanediol (2-Amino-1, 

3-octadecanediol), a sphingosine analog that inhibits protein kinase 
C, is used in the treatment of skin diseases and cancer (55). Studies 
have shown that sphingolipid metabolites associated with PHS, as well 
as sphingosine 1-phosphate, can cause programmed cell death (56). 
They can also directly or indirectly interfere with mitochondria and 
induce apoptosis (57) and promote apoptosis by disrupting 
mitochondrial autophagy (54, 58). Furthermore, PHS causes abnormal 
nuclear morphology, micronuclei and DNA damage, inhibits cell 
proliferation by damaging DNA, and activates the ATM/P53/p21 
pathway, resulting in cell cycle arrest in S phase (59). In this 
experiment, we  found that the metabolites of PHS and its analog 
(2-Amino-1,3-octadecanediol) in the mammary epithelial cells of 
dairy cows under high temperature conditions were significantly 
downregulated by 32 mmol/L taurine. It means that taurine might 
alleviate apoptosis under high temperature conditions by down-
regulating sphingomyelin metabolism.

TABLE 3 Differential metabolites of HS vs. HT-32 group.

Name Molecular formula Log2 FC P-value VIP Up/down

Phenol C6 H6 O 7.89 5.97E−05 1.13794 Up

N,N-Dimethyldecylamine N-oxide C12 H27 N O 7.34 0.000522 1.18492 Up

Taurine C2 H7 N O3 S 6.05 1.21E−07 1.58637 Up

Norethindrone C20 H26 O2 6.02 1.75E−06 1.19654 Up

Nonanoic acid C9 H18 O2 4.55 0.000363 1.39485 Up

Decanoic acid C10 H20 O2 3.49 2.02E−06 1.39083 Up

Bacteriopheophytin C55 H76 N4 O6 3.07 3.48E−06 1.48380 Up

PC (18:0/24:0) C50 H100 N O8 P 2.6 0.004076 1.09031 Up

Adipic acid C6 H10 O4 1.99 0.037432 1.14083 Up

Valeric acid C5 H10 O2 1.45 4.69E−05 1.41050 Up

Caprylic acid C8 H16 O2 1.33 0.001663 1.39478 Up

Mangostin C24 H26 O6 1.18 0.000708 1.29905 Up

Guanine C5 H5 N5 O 1.09 0.000243 1.22641 Up

Adenosine diphosphate (ADP) C10 H15 N5 O10 P2 −1 0.039933 1.13877 Down

chloroacetic acid C2 H2 Cl2 O2 −1 0.000828 1.44780 Down

L-Histidine C6 H9 N3 O2 −1.11 0.014266 1.58664 Down

Phosphoenolpyruvic acid C3 H5 O6 P −1.13 0.038488 1.23543 Down

Isoniazid C6 H7 N3 O −1.14 0.036489 0.90460 Down

DL-Arginine C6 H14 N4 O2 −1.2 0.036092 1.36733 Down

L-Glutathione (reduced) C10 H17 N3 O6 s −1.25 0.026896 1.29385 Down

Uridine 5′-diphosphate (UDP) C9 H14 N2 O12 P2 −1.35 0.0296 1.30708 Down

Guanosine 5′-diphosphate (GDP) C10 H15 N5 O11 P2 −1.41 0.018383 1.25923 Down

Guanosine triphosphate (GTP) C10 H16 N5 O14 P3 −1.43 0.006164 1.16313 Down

Adenosine triphosphate (ATP) C10 H16 N5 O13 P3 −1.45 0.004106 1.10366 Down

2,3-Bisphospho-D-glyceric acid C3 H8 O10 P2 −1.49 0.007239 1.27946 Down

Creatinine C4 H7 N3 O −1.75 4.95E−05 1.07949 Down

Hypoxanthine C5 H4 N4 O −1.98 0.000226 1.65350 Down

Phytosphingosine C18 H39 N O3 −2.4 0.015633 1.25813 Down

2-Amino-1,3-octadecanediol C18 H39 N O2 −4.85 0.001825 1.23619 Down

Palmitic acid C16 H32 O2 −5.5 0.000499 1.75619 Down
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Purine nucleotides, essential components for cell proliferation, 
provide cells with energy, and help cells against the adverse effects of 
the external environment (60, 61). When an animal is subjected to HS, 
it will release some endogenous substances, such as catalase and 
cytokines, which can affect the purine metabolic pathway and lead to 
changes in the activity of the relevant enzymes (62). Heat stress may 
also lead to a change in purine metabolism to produce excessive free 
radicals and oxidative stress, which may adversely affect the cells (63). 
Hypoxanthine is an important product of the nucleotide degradation 
pathway and can be used as a substrate for ATP synthesis (64, 65). It 
can induce apoptosis by regulating the expression of proteins 
associated with apoptosis (66), which induces cell death and ROS 
production. Studies have shown that HS first affects the animal’s feed 

intake and nutrient absorption, and then affects the body’s metabolism. 
During heat production, a large number of free radicals are generated, 
causing oxidative stress in the body (67, 68). In this experiment, 8 and 
32 mmol/L taurine inhibited purine metabolism by significantly 
down-regulating the production of ATP, ADP, UTP, UDP and 
hypoxanthine in mammary epithelial cells of cows at high temperature. 
By reducing the levels of these metabolites, taurine attenuates high 
temperature-induced oxidative stress and free radical release. Thus, it 
attenuates the damage and apoptosis of mammary epithelial cells in 
dairy cows under high temperature conditions.

The results of this study emphasize the vital role of taurine in 
alleviating HS in dairy cows through various metabolic pathways. 
These effects not only help maintain the health and productivity of 

FIGURE 5

A plot of the peak values of several major metabolites between treatments. (A-L) indicate peak plots of Arabinosylhypoxanthine, ADP, ATP, 
Phytosphingosine, 2-Amino-1,3-octadecanediol, Palmitic acid, Nonanoic acid, Decanoic acid, Caprylic acid, Valeric acid, L-Glutathione (reduced) 
and L-Glutathione (oxidized) between treatments, respectively. Values are means ± SEM (n = 3). Asterisks (*, ** and ***) represent significant 
differences with p < 0.05, p < 0.01 and p < 0.001 respectively.
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dairy herds but also have substantial implications for improving the 
economic sustainability of dairy farming operations. Therefore, 
ensuring sufficient taurine intake through careful nutritional 
management and feeding practices is essential for managing HS and 
optimizing overall herd health and performance.

In summary, the effect of taurine on the metabolome of 
mammary epithelial cells of dairy cows under high temperature 
conditions is a complicated biological process, and the potential 
biomarkers are mainly involved in the regulation of purine 
metabolism, lipid metabolism, sphingolipid metabolism, amino acid 
metabolism, which constitutes a complicated regulatory network. 
However, this study primarily utilized metabolomics analysis to 
pinpoint potential biomarkers indicating taurine’s capacity to mitigate 
HS, it did not proceed to validate the precise mechanisms underlying 
the action of the selected metabolites. To strengthen the findings, 
future research could incorporate cellular function experiments, such 
as assessing cell proliferation and apoptosis, to validate the 
metabolomics results and delve further into taurine’s specific effects 
on mammary epithelial cells.

5 Conclusion

The LC-MS technique and multivariate statistical analysis were 
utilized to screen the significantly different metabolites of the 
mammary epithelial cells of dairy cows under high-temperature 
conditions after taurine treatment with different concentrations of 
taurine. These metabolites are mainly involved in the pathways of 
purine metabolism, lipid metabolism, and sphingomyelin 
metabolism, which accumulates data for the in-depth study of the 
mitigation of heat stress in dairy cows by taurine.
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