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Introduction: Coxiella burnetii (C. burnetii)-infected livestock and wildlife have 
been epidemiologically linked to human Q fever outbreaks. Despite this growing 
zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and 
studies to understand their epidemiologic role are needed. In C. burnetii-
endemic areas, ticks have been reported to harbor and spread C. burnetii and 
may serve as indicators of risk of infection in wild animal habitats. Therefore, the 
aim of this study was to compare molecular techniques for detecting C. burnetii 
DNA in ticks.

Methods: In total, 169 ticks from wild animals and cattle in wildlife conservancies 
in northern Kenya were screened for C. burnetii DNA using a conventional PCR 
(cPCR) and two field-friendly techniques: Biomeme’s C. burnetii qPCR Go-
strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) 
analysis assay. Results were evaluated, in the absence of a gold standard test, 
using Bayesian latent class analysis (BLCA) to characterize the proportion of C. 
burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three 
tests.

Results: The final BLCA model included main effects and estimated that PCR-
HRM had the highest Se (86%; 95% credible interval: 56–99%), followed by the 
Biomeme (Se  =  57%; 95% credible interval: 34–90%), with the estimated Se of 
the cPCR being the lowest (24%, 95% credible interval: 10–47%). Specificity 
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estimates for all three assays ranged from 94 to 98%. Based on the model, an 
estimated 16% of ticks had C. burnetii DNA present.

Discussion: These results reflect the endemicity of C. burnetii in northern Kenya 
and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. 
Further studies using ticks and wild animal samples will enhance understanding 
of the epidemiological role of ticks in Q fever.
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1 Introduction

Coxiella burnetii (C. burnetii) is a small gram-negative bacterium and 
the etiological agent of Q fever, a zoonotic infection with distribution 
throughout most of the world (1). Although rarely fatal in humans, the 
disease may lead to substantial morbidity and can be highly debilitating, 
even with treatment (2). Infections also result in significant economic 
losses associated with control and treatment of the disease in domestic 
animals as well as production losses resulting from poor reproductive 
performance (3). Human Q fever cases are commonly associated with 
livestock contact, such as the notable Q fever epidemic of more than 4,000 
cases in The Netherlands during 2007–2010 (1) that originated from a 
C. burnetii strain in goats (4, 5). However, an increasing number of global 
reports link human Q fever cases to contact with wild animals (6). For 
instance, a capybara (7), and three-toed sloth (Bradypus tridactylus) (8) 
were epidemiologically linked to community-acquired pneumonia 
caused by C. burnetii infection in French Guiana (7–10). In another study, 
two cases of Q fever in South Wales, Australia, were linked to handling 
kangaroo joeys, and mowing lawns contaminated with kangaroo feces 
(11). Clinical disease associated with C. burnetii infection has also been 
reported in wild animals, including critically endangered species such as 
the dama gazelle (Nanger dama mhorr) and saiga antelope (Saiga tatarica 
tatarica) (12, 13). Knowledge of the clinical outcome of coxiellosis in 
wildlife is still limited, however placentitis and reproductive failure have 
been reported, raising concerns regarding the impact of C. burnetii on 
conservation breeding programs (14). Despite the increasing importance 
of coxiellosis in wild animals and the recognized risk to human health, 
study of the disease in wild animals and their environment has been 
largely neglected (6).

In Kenya, Q fever is ranked among the top 10 priority zoonotic 
diseases (15). A recent systematic review suggested that both human 
and animal C. burnetii infections are largely unrecognized and 
therefore underestimated due to limited diagnostic capacity at remote 
satellite laboratories (16). The review also highlighted that 
epidemiologic studies in high-risk regions, where there is increased 
livestock-wildlife interactions, are required to improve our 
understanding of the role that wild animals play in Q fever outbreaks 
(16). Previously, studies on Q fever in Kenya have focused on livestock 
(17–22), humans (23–25), or both (26–28), while only a few studies 
addressed C. burnetii infections in wild animals and their environment 
(29, 30). Active surveillance programs for wild animal diseases are 
expensive, logistically difficult, and may result in limited sample sizes, 
which could underestimate the abundance of C. burnetii (14, 31).

An alternative approach to surveillance is to screen disease 
vectors, such as ticks, to estimate C. burnetii abundance in an 
ecosystem (32). Ticks are ecological bridges for C. burnetii spread 

between wild animals and domestic animals (2). Ticks can get infected 
with C. burnetii when feeding on a bacteremic host and transmit the 
bacterium to a different host during subsequent feeding (33). Even if 
the ticks only acquire the bacterium without transmitting it, pathogen 
surveillance using ticks could provide insights into the presence and 
abundance of C. burnetii in wild animal ecosystems (34). Ticks are 
easy to collect and can be  sampled to represent widespread 
geographical coverage. In known C. burnetii endemic areas, such as 
northern Kenya (35), tick species collected from wild animals and 
their environments have been found to harbor C. burnetii (20, 29, 36, 
37). Furthermore, in these same regions, there was a strong correlation 
between C. burnetii seropositivity in livestock and their infestation 
with C. burnetii infected ticks (20, 21, 26). Therefore, detection of 
C. burnetii in ticks offers a promising approach to further Coxiella 
surveillance in wild animals and their ecosystems.

Therefore, the aim of this study was to compare the performance of 
three tests for screening tick vectors for C. burnetii. We compared (1) 
conventional PCR assay (cPCR), against two field-friendly techniques: (2) 
the C. burnetii qPCR Go-strips test (Biomeme, Philadelphia, Pennsylvania, 
United States) on the Biomeme Franklin™ three 9 platform (referred to 
here as “the Biomeme”) and (3) a C. burnetii PCR high-resolution melt 
(PCR-HRM) assay. Additionally, the proportion of ticks with C. burnetii 
DNA was used as an indicator of pathogen abundance in the ecosystem. 
Because a gold standard test is not available, the performance of the three 
assays were compared using a Bayesian latent class analysis (BLCA) to 
assess the feasibility of using ticks for surveillance of C. burnetii in 
an ecosystem.

2 Materials and methods

2.1 Tick collection, identification, and DNA 
extraction

This study utilized DNA from ticks whose collection and 
processing has been previously described (38); our study design was 
retrospective and data collection was opportunistic and occurred 
before C. burnetti DNA testing was performed. Ticks were 
opportunistically collected (convenience sampling) from 179 wild 
animals and cattle during routine veterinary interventions in wildlife 
conservancies within Nyeri, Meru, Laikipia, Isiolo, and Marsabit 
counties (northern Kenya), between May 2011 and April 2019. The 
ticks were collected from 13 different wild animal species, as well as 
cattle present in the conservancies. Wildlife species included: black 
rhinoceros (Diceros bicornis), African buffalo (Syncerus caffer), 
African elephant (Loxodonta africana), giraffe (Giraffa camelopardalis), 
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Grévy’s zebra (Equus grevyi), hartebeest (Alcelaphus buselaphus), 
impala (Aepyceros melampus), leopard (Panthera pardus), lion 
(Panthera leo), plains zebra (Equus quagga), spotted hyena (Crocuta 
crocuta), white rhinoceros (Ceratotherium simum), and African wild 
dog (Lycaon pictus), as well as farmed Boran and zebu cattle (Bos 
indicus). Cattle and wild animals were visually examined for ticks 
during clinical interventions and, if detected, several ticks were 
collected from each animal and placed in a tube containing 70% 
ethanol for preservation of the tick DNA. Collection location, date, 
and host species were recorded on each tube. Tick samples were stored 
in a −80°C freezer until analyzed.

Field immobilizations and wild animal sample collections were 
conducted according to Kenya Wildlife Service standard operating 
procedures. No animals were specifically immobilized or handled for 
this study. This study was approved by the Stellenbosch University 
Animal Use and Care (ACU-2023-27912) and Kenya’s National 
Commission for Science, Technology, and Innovation 
(NACOSTI/P/21/8054).

For C. burnetii testing, one tick per host animal (i.e., 179 ticks 
total, representing 179 different individual animals) was selected. A 
subset of these were identified to the genus level based on 
metagenomics, as previously described (38). Each tick (n = 179) was 
placed into liquid nitrogen then homogenized in 1.5 mL microfuge 
tubes, containing 200 μL of 1x phosphate-buffered saline (PBS), and 
150 mg of 0.1 mm and 750 mg of 2.0 mm yttria-stabilized zirconium 
(YSZ) oxide beads (Glen Mills, Clifton, New Jersey, United States), 
using a Mini-Beadbeater-16 (BioSpec, Bartlesville, Oklahoma, 
United States) for 1 min. Tick DNA was extracted with the Qiagen 
DNeasy Blood and Tissue Kit (Qiagen, Germantown, Maryland, 
United  States) using 100 μL of the tick homogenate, according to 
manufacturer’s instructions. Extracted DNA was stored at −80°C 
prior to PCR testing. Prior to performing the PCRs, DNA quantity 
and quality were measured using the Qubit dsDNA High Sensitivity 
Assay kit (Thermofisher Scientific, Waltham, Massachusetts, 
United States) and the Qubit 4 fluorometer (Thermofisher Scientific), 
as described by the manufacturer.

2.2 Coxiella PCR detection

Each of the tick DNA samples were screened for presence of 
C. burnetii DNA using three separate methods: cPCR, PCR-HRM, and 
the Biomeme’s C. burnetii qPCR Go-strips (Biomeme). The PCR-HRM 
and cPCR assays were performed at the Molecular Biology and 
Bioinformatics Unit at the International Centre for Insect Physiology 
and Ecology (ICIPE, Nairobi, Kenya). Tests using the Biomeme were 
conducted at Mpala Research Centre (Laikipia, Kenya), following 
manufacturers’ instructions. Primers utilized in all PCRs targeted the 
IS1111 transposase elements of the C. burnetii genome (Table 1).

2.2.1 Coxiella burnetii conventional PCR
This PCR assay included a touch-down PCR amplification, 

followed by 1.5% agarose gel electrophoresis to visualize the PCR 
product. Primers used were trans 1 and trans 2 (Table  1), which 
amplified a 687 bp fragment of the repetitive, transposon-like element, 
as described previously (40).

The 11 μL PCR mixture consisted of 0.5 μL of each forward and 
reverse primer at a final reaction concentration of 0.5 μM, 2 μL of template 

DNA, 2 μL of HOT FIREPol® Blend Master Mix (Solis BioDyne, Tartu, 
Estonia), and 6 μL of nuclease free water. Known C. burnetii positive tick 
DNA samples and nuclease free water were included on each plate as a 
positive control and no template control, respectively. The Supercycler 
Trinity thermocycler (Kyratec, Queensland, Australia) was used for the 
PCR. The cycling conditions included an initial enzyme activation step at 
95°C for 12 min. This was followed by 5 cycles of denaturation at 95°C for 
30 s, an annealing step where the temperature was lowered by 1°C 
between successive steps from 66°C to 61°C for 45 s, and extension at 
72°C for 1 min. An additional 35 cycles consisting of denaturation at 95°C 
for 30 s, annealing at 61°C for 30 s, extension at 72°C for 45 s, and a final 
extension step at 72°C for 7 min were added. The PCR products were 
stained with ethidium bromide and loaded onto a 1.5% agarose gel 
submerged in a TAE (40 mM Tris-acetate, 1 mM EDTA) buffer-filled 
electrophoresis chamber set at 97 volts for 42 min. The sizes of the PCR 
products were determined using an O’rangeRuler 100 bp DNA ladder 
(Thermofisher Scientific). Images of the gels were recorded.

Positive samples had a clear 687 bp band and were reamplified 
using trans 1 and trans 2 primers with cycling conditions as described 
in the previous paragraph (40). The amplicons were then cleaned with 
the ExoSAP-IT PCR Product Cleanup kit (Affymetrix, Santa Clara, 
California, United States), according to manufacturer’s instructions. 
The purified amplicons were submitted for Sanger sequencing at 
Macrogen (Amsterdam, The Netherlands) to confirm the identity of 
the amplified sequences.

2.2.2 Biomeme Coxiella burnetii Go-strip qPCR 
assay

The C. burnetii Go-strips (Biomeme) were supplied as individually 
packaged three-well qPCR test strips. Each three-well qPCR test strip 
contained lyophilized master mix, primers, and probes. The primers 
used for this assay target a 290 bp fragment of the IS1111 transposase 
elements in the genome of C. burnetii (Sarah Senula, pers. comm., 
February 8, 2022).

The Biomeme C. burnetii Go-strip qPCR assays were performed 
according to the manufacturer’s instructions. In brief, 20 μL of tick 
DNA eluent was transferred into a single well of the Biomeme 
Go-Strip and a positive control included for each batch of samples. 
Biomeme provided a synthetic C. burnetii positive control on 
Whatman paper punches. Each punch was resuspended by adding 
400 μL of TAE buffer to the punch and incubating overnight at 
room temperature. A 20 μL aliquot of the positive control eluent 
represented 5 copies per reaction. The Go-Strips were loaded into 
the Biomeme Franklin™ three9 Real-Time PCR Thermocycler and 
the Biomeme Go application was launched on the connected 
Android phone (Samsung s8+, Samsung, Ridgefield Park, New 
Jersey, United States). Using the Biomeme Go application, each 
sample was individually labeled with a sample identifier, and the QR 
code on the C. burnetii Go strips pouch scanned to launch the 
Biomeme C. burnetii qPCR cycling parameters. The PCR cycle 
consisted of an initial denaturation step for 1 min at 95°C, followed 
by 45 cycles for 1 s at 95°C, and annealing for 20 s at 60°C. The 
Biomeme Go mobile application provided views of amplification 
plots of raw data in real time. Samples positive for C. burnetii DNA 
showed fluorescence on the green channel and the Cq value per 
sample was also recorded. Samples with a Cq value ≤ 40 were 
categorized as positive.
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2.2.3 Coxiella burnetii PCR-HRM analysis
The PCR-HRM assay involved a PCR step followed by HRM 

analysis, using C_burnetii_HRM-F and C_burnetii_HRM-R primers, 
designed using Geneious Prime software (Biomatters, Inc., San Diego, 
California, United  States) to cross sequences in which Coxiella-
endosymbiont sequences have insertions and deletions, thus 
preventing amplification of Coxiella-endosymbionts. The amplification 
regions were identified through alignments of nucleotide sequences 
available in the GenBank database, ensuring that the 3′ regions of the 
primers were specific to C. burnetii and not the closely related Coxiella 
endosymbionts (Supplementary Figure S1). The specificity of each 
primer set was evaluated using the Basic Local Alignment Search Tool 
(BLAST) from the National Center for Biotechnology Information 
(NCBI) database. The primer sets were adjusted to achieve optimal 
annealing temperatures and amplification efficiency. Specificity of the 
designed primers were tested using samples confirmed to be positive 
for C. burnetii, Coxiella endosymbionts, and nuclease free water, as a 
negative control.

The PCRs were conducted in 11 μL reaction volumes consisting 
of 2 μL of HOTFIREPol EvaGreen HRM mix (Solis BioDyne), 0.5 μL 
of each forward and reverse primer at a final reaction concentration 
of 0.5 μM, 2 μL of template DNA, and 6 μL of nuclease free water. 
Known C. burnetii positive tick DNA samples and nuclease free 
water were included in each test batch as a positive control and no 
template control, respectively. A HRM-capable MIC-4 thermocycler 
(Bio Molecular Systems, Upper Coomera, Queensland, Australia) 
was used for DNA amplification. The PCR cycling conditions 
included an initial enzyme activation step at 95°C for 12 min, 
followed by 40 cycles of denaturation at 95°C for 30 s, annealing at 
62°C for 25 s, extension at 72°C for 20 s, and a final extension at 72°C 
for 7 min. The PCR was immediately followed by the melt curve 
analysis during which amplicons were gradually melted at 0.1°C 
increments from 75°C to 95°C, with fluorescence acquisition every 
0.5 s. The Mic qPCR Software automatically generated raw graphs of 
fluorescence against temperature (°C) from the fluorescence 
acquisition data. The samples’ melt profiles were compared to that of 
the positive control, based on their melt-curve peaks and curve 
shapes. Positive samples showed melt profiles with peaks and shapes 
that aligned with the positive control. To confirm HRM based 
species identification, the positive samples were reamplified by 
conventional PCR using COX-F (GTCTTAAGGTGGGCTGCGTG) 
and COX-R (CCCCGAATCTCATTGATCAGC) primers, targeting 

a 295 bp fragment of the IS1111 transposase elements in the 
C. burnetii genome (41). The cycling parameters were programed as 
previously described in the conventional PCR section. The PCR 
products were visualized as described above. All samples with 295 bp 
bands were considered positive, then purified with the ExoSAP-IT 
PCR Product Cleanup kit (Affymetrix) and submitted for Sanger 
sequencing at Macrogen to confirm the identity of the 
amplified sequences.

2.3 Data and statistical analyses

Chromatogram files were imported into Geneious Prime software 
version 2022 (Biomatters Inc.) for trimming, editing, and alignment. 
To generate consensus sequences, the study sequences were queried 
against known sequences in GenBank using the Basic Local Alignment 
Search Tool to reveal their identity and relation to currently deposited 
sequences (42). The study sequences were then aligned to all available 
C. burnetii sequences in GenBank using the MAFFT plugin 
(Biomatters Inc.) in Geneious Prime software (Biomatters Inc., 
version 2022).

The numbers of C. burnetii DNA positive and negative ticks were 
summarized for each method and positive results were reported as 
proportions of the total number of samples tested. The number of 
positive and negative results were also summarized by tick genus and 
host species. Agreement between the three possible pairs of PCR tests 
was calculated with Cohen’s Kappa coefficient using the psych package 
(43) in R statistical software (44). A Kappa coefficient close to 1 
indicated very good agreement, while 0 indicated poor agreement 
between tests (45).

2.3.1 Bayesian latent class analysis
A Bayesian latent class analysis (BLCA) was used to estimate the 

proportion of ticks with C. burnetii DNA and evaluate the performance 
of the three tests in the absence of a gold standard reference test. This 
analytic approach is well-established in human medicine and 
veterinary science (46–48) and the World Organization for Animal 
Health has accepted this method for diagnostic test validation (49). A 
checklist for BLCA reporting standards (47) is included in 
Supplementary Appendix S2.

For the present study, a three-test, one population model was used 
with the latent class defined as whether a tick is positive or negative for 

TABLE 1 Test type, primer sequence and criteria for positive results for the three evaluated Coxiella burnetii PCR tests targeting the IS1111 transposase 
elements in the C. burnetii genome, using DNA from ticks collected from wildlife and cattle in Kenya between May 2011 and 2019.

Test Primer name Primer sequence (5′-3′) Amplicon 
length (bp)

Positive result References

Conventional PCR Trans 1 TATGTATCCACCGTAGCCAGTC 687 Samples that have a clear 

band at the expected 

amplicon size of 687 bp

Hoover et al. (39)

Trans 2 CCCAACAACACCTCCTTATTC

Biomeme qPCR Proprietary Proprietary C. burnetii qPCR Go-strips test 

(Biomeme, Philadelphia, Pennsylvania, 

United States)

290 Samples that had a Cq* value 

≤40

N/A

PCR-HRM C_burnetii_HRM-F GGAACTTGTCAGAGATGATTTGGT 150 Samples whose melt profiles’ 

peaks and shape was similar 

to the positive control

This study

C_burnetii_

HRM-R

AGAGTTCCCGACTTGACTCG

*Cq, quantification cycle value.
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C. burnetii DNA, as an indicator of C. burnetii presence and abundance 
in the ecosystem. This is a similar approach as previous studies that have 
shown density estimates of infected ticks are better predictors of the 
likelihood of Lyme disease occurrence than pathogen or tick abundance 
alone (50). The model used in the current study included binary test 
outcomes from the cPCR, Biomeme Go-Strips, and PCR-HRM assays. 
Observations from each tick were included in the analysis if results were 
available for all three tests. The model was structured assuming that the 
different combinations of positive and negative test results followed a 
multinomial distribution. The analysis was implemented in OpenBugs 
within the R statistical software (51) and RStudio environments (52) 
using packages r2OpenBugs (53). Programming code for the model 
implementation was adapted from Cheung et al. (48) and Salgadu et al. 
(54) and is provided in Supplementary Appendix S3. The model was fit 
using non-informative priors for Bayesian estimates of Se and Sp due to 
either limited data (cPCR) or no published data (Biomeme and 
PCR-HRM) on C. burnetii detection in African ticks.

Bayesian estimates of the proportion of ticks with C. burnetii DNA, 
Se, and Sp were generated using a Markov Chain Monte Carlo 
algorithm. A model was fit to the data that assumed all tests were 
independent. While all three PCR tests are based on the detection of 
the IS1111 transposase elements in the C. burnetii genome, the primers 
used anneal and amplify different segments and lengths of the IS1111 
transposase elements. Therefore, these were considered independent 
detection methods. Three separate chains were run for 30,000 iterations, 
with the first 10,000 discarded as “burn-in” based on examination of 
trace plots. Model convergence and unimodality were assessed by visual 
inspection of the trace plots, autocorrelation plots, and posterior 
median distributions of each parameter with the R packages “coda” (55) 
and “mcmplots” (56). Posterior median estimates of each parameter 
and their corresponding 95% credible intervals were reported.

3 Results

Ticks were identified to the genus level in 67 out of 179 samples; 
112 ticks were not assigned a genus since metagenomic data were 
unavailable. The majority of identified ticks were Rhipicephalus spp. 
(64/67), and 3/67 of the ticks belonged to the Amblyomma genus. 
Extracted DNA quantity from ticks ranged between 0.03 and 116 ng/

μL. Samples from 179 ticks were tested by conventional PCR and the 
PCR-HRM techniques, while 169 samples were tested on the Biomeme 
(due to limited availability of kits). Summaries of test results by source 
host species and tick genera are presented in Supplementary Table S1. 
In total, 9/179 (5.0%) ticks tested positive for C. burnetii DNA by 
cPCR, 21/169 (12.4%) tested positive with the Biomeme PCR, and 
32/179 (17.9%) tested positive by PCR-HRM. Frequency distributions 
of positive test combinations are shown in Table 2. A figure showing 
the melt profiles of samples used to test the specificity of the C_
burnetii_HRM-F and C_burnetii_HRM-R primers is included in 
Supplementary Figure S2.

There was moderate agreement beyond what would be expected 
by chance between the PCR-HRM and the Biomeme test results 
(Kappa = 0.46; 95% CI: 0.28–0.64), while agreement was fair between 
the cPCR and PCR-HRM results (Kappa = 0.23; 95% CI: 0.053–0.41) 
and only slight agreement between the cPCR and Biomeme results 
(Kappa = 0.14; 95% CI: 0.061–0.33).

The BLCA model was fit to the 169 data points for tick samples 
with a test result for all three assays. Posterior median estimates and 
95% credibility intervals of Se, Sp, and the proportion of ticks with 
C. burnetii DNA are shown in Table 3. The model estimated that the 
PCR-HRM assay had the highest Se (86%; 95% credible interval: 
56–99%) followed by the Biomeme (Se =57%; 95% credible interval: 
34–90%), and the lowest Se for the cPCR (24, 95% credible interval: 
10–47%). Specificity estimates ranged from 94 to 98% for all three 
assays. The estimated proportion of ticks with C. burnetii DNA was 
16% (95% credible interval: 8–28%).

4 Discussion

The pathogen C. burnetii remains endemic in rural regions of 
northern Kenya, posing a risk to both human and animal health (35). 
Although ticks have been shown to play a role in C. burnetii 
transmission, their use for non-invasive pathogen surveillance in these 
ecosystems, shared by livestock, wildlife, and humans, has been largely 

TABLE 2 Results for 169 tick DNA samples tested for Coxiella burnetii by 
conventional PCR, Biomeme’s commercially available C. burnetii Go-
Strip assay, and a C. burnetii PCR-high resolution melt (HRM) technique.

Conventional 
PCR

Biomeme PCR-
HRM

Total samples 
with test result 

combination (%)

Positive Positive Positive 3 (1.8%)

Positive Positive Negative 0

Positive Negative Positive 3 (1.8%)

Negative Positive Positive 11 (6.5%)

Positive Negative Negative 3 (1.8%)

Negative Positive Negative 7 (4.1%)

Negative Negative Positive 14 (8.3%)

Negative Negative Negative 128 (75.7%)

Total 169

TABLE 3 Results from the Bayesian latent class model estimating the 
sensitivity and specificity of three assays (conventional PCR, Biomeme’s 
commercially available C. burnetii Go-Strip Assay, and a C. burnetii PCR-
HRM technique) and the estimated proportion of ticks carrying C. 
burnetii.

Parameter Posterior median 
estimate (%)*

95% credibility 
interval

Sensitivity

Conventional PCR 24% 10–47%

Biomeme 57% 34–90%

PCRHRM 86% 56–99%

Specificity

Conventional PCR 98% 94–100%

Biomeme 96% 91–100%

PCRHRM 94% 86–100%

Proportion with C. burnetti 16% 0.08–28%

*The model assumes independence across assays. Model estimates were generated from 169 
tick samples collected from wildlife and cattle in Kenya between May 2011 and 2019. The 
Deviance Information Criterion (DIC) of the final model was 27.91 (95% credibility interval: 
23.41–37.26%).
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neglected due to limited diagnostic capability at remote satellite 
laboratories (2, 16, 57). Therefore, the goal in the present study was to 
fill this gap by using BLCA to compare cPCR, the Biomeme, and 
PCR-HRM assays, using tick DNA, to provide information on 
detection methods, presence and abundance of C. burnetii in wild 
animal conservancies in northern Kenya. The study found that all 
three assays detected C. burnetii DNA in whole tick DNA extracts, 
although a higher Se was found with the PCR-HRM and Biomeme 
assays at 86, and 57%, respectively, compared to the cPCR (24%). All 
three assays had high Sp (94–98%), therefore, the assays had a high 
probability of identifying truly negative ticks. Using BLCA, the 
estimated proportion of ticks that were positive was 16%, which 
demonstrated the feasibility of detecting C. burnetii using 
non-invasively collected samples for ecosystem surveillance and 
infection risk evaluation.

All three PCR methods detected C. burnetii positive ticks, 
however, the Se of the assays varied. The PCR-HRM assay had the 
highest Se, estimated at 86%, which supports its selection as a 
screening test for identifying C. burnetii positive ticks. Although the 
Biomeme assay had a lower Se of 57%, it might be a more convenient 
method for screening in remote areas. The currently used cPCR assay 
had a low Se (24%) when used with tick samples, which could 
be attributed to differences between cPCR and qPCR assays (58). In 
general, cPCR assays use longer amplicons and are qualitative, whereas 
qPCR assays are quantitative and use shorter amplicons, which ensure 
higher PCR efficiency and improved sensitivity (58, 59).

While PCR-HRM was found to be  more sensitive, both the 
Biomeme and PCR-HRM had sensitivities and specificities higher 
than the currently used cPCR. Both the Biomeme and PCR-HRM 
platforms use portable, battery charged thermocyclers, making them 
field deployable and more reliable for remote satellite laboratories 
where power supply may be unreliable. At the time of this report, the 
Biomeme Franklin thermocycler and the MIC-4 thermocycler were 
similarly priced; however, the running cost for the Biomeme was 
approximately tenfold higher in our setting, compared to running the 
PCR-HRM using the MIC-4 thermocycler. Costs and availability will 
vary depending on setting and likely change over time. Besides cost, 
both assays offer advantages in different settings. The PCR-HRM 
approach is better suited for high throughput because the MIC-4 
thermocycler can accommodate batches of 48 samples, compared to 
the Biomeme Franklin three 9 limit of 3 samples with 3 targets 
(maximum of nine tests per run). Biomeme’s lyophilized master 
mixes and probes are advantageous in truly field-forward situations, 
where cold storage facilities are unavailable, and where the operator 
may have limited technical experience. Based on findings from the 
present study, the cPCR assay using trans 1 and trans 2 primers for 
C. burnetii screening, was not an ideal platform to detect C. burnetii 
DNA in whole tick extracts. The differences in primer lengths across 
the PCR tests could influence the detection of C. burnetii DNA. The 
longer primer length in the cPCR compared to the shorter lengths in 
Biomeme qPCR and PCR-HRM might impact the sensitivity and 
specificity of each test. This variation is intrinsic to the nature of the 
primers and was a significant factor in our decision to compare these 
methods. Our results should be interpreted with this consideration 
in mind, and further studies could explore the impact of primer 
length on detection performance more comprehensively. Additional 
studies should evaluate the performance of cPCR using shorter 
primers such as those reported by Klee et al. (41). Ultimately, the 

choice of diagnostic test should be based on practical considerations 
that include the goals of the surveillance program as well as available 
resources (60).

Estimated specificity was high for all three tests, with the Sp 
central estimates ranging from 94% (PCR-HRM) to 98% (cPCR). 
Other reports of Sp for C. burnetii detection by Biomeme or 
PCR-HRM were not available for comparison. Test specificity 
describes the proportion of individuals without infection who are 
correctly identified as negative by a screening test. A high test 
specificity is especially important when there is low pathogen 
prevalence. Therefore, the C. burnetii PCR-HRM assay could be useful 
for surveillance in low prevalence or negative populations.

In this study, C. burnetii DNA was successfully detected in ticks 
collected from both wild animals and cattle, emphasizing the value 
of using tick samples for disease surveillance in areas where 
C. burnetii is endemic. Our model estimated that 16% of ticks 
collected tested positive for C. burnetii DNA, which is consistent with 
the endemic status of the pathogen in this area. Serological surveys 
in northern Kenya have reported seroprevalence rates of 10.3% in 
wild animals (30), 12.8–83.7% in livestock (19, 20, 28, 35) and 16.2–
24.4% in humans (23, 35). It is unknown how accurately these 
estimates of C. burnetii in ticks translate into true infection prevalence 
due to the (inherently biased) opportunistic nature of sampling. In 
addition, positive tick samples may cluster by host species. Therefore, 
we exercise caution in interpreting our findings of C. burnetii in ticks 
as a true prevalence. It does, however, offer insight into the endemicity 
of C. burnetti in the ecosystem and the usefulness of ticks in revealing 
this burden.

Ticks can serve as indicators of C. burnetii presence in an 
ecosystem due to their involvement in the sylvatic transmission cycle 
(2, 14), however, their utility for disease surveillance is not well-
established. Ndeereh et al. (30) reported the prevalence of C. burnetii 
in ticks collected from wild animals in Laikipia, Kenya, to be 0.54% 
(4/137 tick pools). In contrast, a study of ticks collected from 
ruminants in South  Africa detected varying levels of zoonotic 
pathogens, including 7% positivity for C. burnetii DNA (61). This 
finding suggests that ticks may offer an advantageous and alternative 
sample type for surveillance of C. burnetii. They are widely distributed 
and can provide a non-invasive means of detecting pathogens, as 
shown in other studies (19, 29, 62–64). Validated methods to collect 
ticks from the environment already exist (65, 66) and they can 
facilitate widespread geographic coverage. This approach may provide 
insight on the C. burnetii status in a region without the need to 
handle individual animals, restrict sampling activities to culling/
hunting seasons, or rely solely on opportunistic post-mortem 
examinations of wild animals.

Detection of C. burnetii in ticks may vary due infection 
prevalence in different hosts, sampled populations or environments, 
tick collection procedures, laboratory processing, and screening 
methods. Previously, studies have relied on cPCR for C. burnetti DNA 
detection in ticks, which the current study found lacking in 
sensitivity. Therefore, previous studies may have led to an 
underestimation and under recognition of the role of ticks in 
C. burnetii epidemiology. Further studies using larger numbers of 
ticks that represent multiple animal populations and incorporate 
more sensitive detection methods, such as the PCR-HRM assay, 
would improve estimates of true C. burnetii burden and could 
elucidate drivers of variability in C. burnetii DNA detection in ticks.
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Since the primary goal of this study was to compare available 
detection platforms, Bayesian latent class analysis was used to estimate 
test performance of three C. burnetii PCR methods for detection in 
ticks. This analytic approach was selected since it does not depend on 
gold standard test results and has been increasingly used to evaluate and 
compare diagnostic tests (48). In the present study, a single population 
model was applied (48) and we assumed conditional independence of 
tests. This assumption was based on the three diagnostic assays using 
different primers and amplifying different segments of the IS1111 
transposase elements in the C. burnetii genome. Models that incorporate 
covariance (non-independence of assays) could be considered; however, 
in the present study, we did not have sufficient sample size or additional 
populations to fit covariance models based on recommended guidelines 
(48). Repeated studies with larger sample sizes, and multiple comparison 
populations, could address this limitation as well as reduce the variability 
in model estimates (67). As knowledge on these assays advance, the 
inclusion of prior knowledge (including the estimates published herein) 
into the Bayesian modeling approach will improve inferences.

We acknowledge that there were limitations in this study. First, the 
estimates of test performance did not incorporate screening of tick pools 
(usually 3–5 adult ticks or 10 nymphs per pool) (68), which could be a 
more economic option for screening (48, 69). Therefore, future studies 
should evaluate test performance using a pooled testing approach. 
Secondly, the primer target (IS1111 insertion sequence) and length 
(290 bp) used in the Biomeme assay were known; however, the specific 
primer sequence was unavailable since it is proprietary. Therefore, 
confirmatory sequencing for C. burnetii could only be conducted using 
amplicons re-amplified by cPCR. A notable limitation was the variation 
in primer lengths among the PCR tests. While each test targeted 
different segments of the IS1111 transposase elements in the C. burnetii 
genome and was thus considered an independent detection method, the 
differences in primer lengths (687 bp for cPCR, 290 bp for Biomeme 
qPCR, and 150 bp for PCR-HRM) could introduce variability in test 
performance. Future research should aim to standardize primer lengths 
to minimize this variability and enhance the comparability of different 
PCR methods. Finally, the three assays were assessed using tick DNA 
samples, which are distinct from clinical samples in that they may 
contain Coxiella-like endosymbionts (2). These endosymbionts are 
solely found in ticks, where they enhance fitness, and are genetically 
related to C. burnetii (2). Consequently, they may be detected by certain 
PCR assays (based on primers) and could lead to biased estimates of 
C. burnetii abundance in an ecosystem (70). Future studies should 
determine whether the three assays perform differently when applied to 
clinical samples, where endosymbionts would not affect assay 
interpretation and infection burden can be more directly estimated.

5 Conclusion

The findings from this study demonstrate the value of using ticks 
from wildlife and cattle to detect the presence of C. burnetii in an 
ecosystem. A comparison of PCR assays showed that the PCR-HRM is 
a suitable screening test for C. burnetii using ticks; this test has good 
performance, is field-friendly, and delivers rapid results. While the 
PCR-HRM had higher Se compared to the Biomeme and cPCR, the 
Biomeme assay offers some advantages in certain settings. Findings 
from this study provide a first step to improve feasibility of noninvasive 
C. burnetii surveillance in ecosystems with human-wildlife-livestock 

interfaces. Future studies should evaluate these newer assays using 
multiple populations, different sample types, and similar BLCA methods.
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