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Introduction: Stringent regulations in pig farming, such as antibiotic control and 
the ban on certain additives and disinfectants, complicate disease control efforts. 
Despite the evolution of microbial communities inside the house environment, 
they maintain stability over the years, exhibiting characteristics specific to each 
type of production and, in some cases, unique to a particular company or farm 
production type. In addition, some infectious diseases are recurrent in specific 
farms, while other farms never present these diseases, suggesting a connection 
between the presence of these microorganisms in animals or their environment. 
Therefore, the aim of this study was to characterise environmental microbiomes 
of farms with high and low sanitary status, establishing the relationships between 
both, health status, environmental microbial ecology and its functionality.

Methods: For this purpose, 6 pig farms were environmentally sampled. Farms 
were affiliated with a production company that handle the majority of the pigs 
slaughtered in Spain. This study investigated the relationship among high health 
and low health status farms using high throughput 16S rRNA gene sequencing. 
In addition, to identify ecologically relevant functions and potential pathogens 
based on the 16S rRNA gene sequences obtained, functional Annotation with 
PROkaryotic TAXa (FAPROTAX) was performed.

Results and Discussion: This study reveals notable differences in microbial 
communities between farms with persistent health issues and those with good 
health outcomes, suggesting a need for protocols tailored to address specific 
challenges. The variation in microbial populations among farms underscores the 
need for specific and eco-friendly cleaning and disinfection protocols. These 
measures are key to enhancing the sustainability of livestock farming, ensuring safer 
products and boosting competitive edge in the market.
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1 Introduction

Decisions made by European authorities, such as the prohibition 
of antibiotics as prophylactics (since 2006), the recently restricted use 
of colistin and the banning of zinc oxide as treatment, have led to a 
significant increase in on-farm diseases, such as Salmonella spp. or 
post-weaning diarrhoea (1). Moreover, this leads to an increase in the 
excretion of these pathogens into the environment and, consequently, 
an increase in environmental infectious pressure and alteration of the 
microbial ecology of the farm environment (2). For all these reasons, 
searching for cost-effective, animal-friendly, and environmentally 
respectful alternatives to antibiotics are necessary; all of them aim to 
enable the animal to be  immunocompetent, resilient to fight 
infectious diseases and to recover as quickly as possible in the event 
of illness (3).

Among the various alternatives to antibiotics at field level, the most 
studied are management, the development of new vaccines, feed 
supplements, and strict biosecurity, including comprehensive cleaning 
and disinfection (C&D) protocols. Martelli et al. (4) demonstrated that 
an adequate C&D schedule significantly reduces residual 
contamination in pig facilities. However, persistent pathogens such as 
Salmonella spp. remain in the environment among batches. Therefore, 
routine C&D protocols used in the field must be complemented with 
other control measures throughout the pig breeding and production 
chain (4).

In recent years, an increasing number of studies have highlighted 
the potential role of biocides in selecting cross-resistance to 
antibiotics in bacteria. However, the vast majority of them were 
conducted using pure culture models under laboratory conditions (5, 
6). The current absence of field data makes it difficult to assess the 
significant risk of selecting bacteria with heightened antibiotic 
resistance due to the use of biocides in industries, as well as to 
determine which biocides are linked to the highest risk of cross-
selection of antibiotic resistance (7).

Traditionally, different types of disinfectants have been used at 
field level for surface hygiene in livestock, such as products based on 
quaternary ammonium compounds containing glutaraldehyde, 
formaldehyde, peroxide-based compounds or peracetic acid, iodine-
based compounds or chlorocresols. However, it is widely known that 
formaldehyde is one of the most effective disinfectants against 
zoonotic pathogens of such importance as Salmonella spp. (8). 
Restrictions in Europe on the use of formaldehyde, given its 
categorisation as a carcinogen, mutagen, and highly toxic, have meant 
the imminent need for the sector to seek alternatives for farm hygiene 
(8, 9). In this context, C&D is key to reducing the environmental 
pressure of pathogens and the number of infected individuals, but the 
threat of persistence of the most resistant strains in the environment 
remains, as they can persist between consecutive animal batches, 
increasing the risk of infection (10).

Farm environment can be  a complex stable community of 
microorganisms, mostly bacteria, but also includes viruses, archaea, 

fungi, yeasts and protozoa, that persists among different animal 
batches. The microorganisms that inhabit the farm environment 
can strongly influence the associated animal health, food quality 
and safety (11). In this sense, there is a growing research effort to 
unravel the ecological mechanisms that encompass this 
microbiome. Among them, it is noteworthy that these communities 
may find protection through structures known as biofilms. Biofilms 
are formations attached to a surface where microorganisms are 
embedded and shielded by an exopolysaccharide matrix. The 
forming of biofilms improves the producer’s ability to endure in a 
specific environment (12, 13). Moreover, communities safeguarded 
by a biofilm exhibit 100 times more resistance against C&D 
protocols (14, 15). Additionally, adaptive stress responses contribute 
to the efficiency of these communities in surviving the farm 
environment (16).

Despite the evolution of microbial communities inside the house 
environment (11), these communities maintain stability over the 
years, exhibiting characteristics specific to each type of production 
and, in some cases, unique to a particular company or production type 
(17). On several occasions, clones of microorganisms, such as 
Salmonella spp., or Campylobacter spp., found in animal-derived 
products have been commonly detected at the farm of origin (18, 19). 
In addition, some infectious diseases are always associated with 
specific farms, while other farms never present diseases (high health 
status farms vs low health status farms), suggesting a connection 
between the presence of these microorganisms in the animals and 
their surrounding environment at the farm.

Thus, the aim of this study was to characterise environmental 
microbiomes of both, high and low sanitary status farms, establishing 
the relationships between health status, environmental microbial 
ecology and its functionality.

2 Materials and methods

2.1 Study sample

Over a 4-month period, 6 houses from 6 pig farms were 
environmentally sampled. Farms were affiliated with a production 
company that handles the majority of the pigs slaughtered in Spain.

2.2 Selection of high and low sanitary 
status farms to define “healthy” and 
“unhealthy” microbiomes

A farm with a High Health Status (HHS) should meet the 
following criteria: (i) An outstanding production performance. 
Production parameters measured as average daily gain and feed 
conversion rate falling within the best 25% of the whole pig 
population. (ii) Outstanding health records reaching at least the best 
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10% of the whole pig population. These parameters are mortality, 
percentage of substandard pigs during the rearing period and 
treatment cost due to antimicrobials. The expected mortality rate from 
weaning to slaughter, percentage of substandard pigs and treatment 
cost for these farms would be  4%, 2–3% and 1–1.5 € per pig, 
respectively. These farms are usually selection and multiplication farms.

Accordingly, Low Health Status (LHS) farms in this case will 
be those farms with recurrent problems of post-weaning diarrhoea 
within 2 weeks after weaning and at least 10–15% morbidity.

Based on the information provided by the company enrolled for 
the study, management practices were standardised across all their 
farms. Still, HHS and LHS farms have all passed the Biocheck UGent 
survey. However, farms with HHS scored higher for some of the 
features included in both, external and internal biosecurity, especially, 
“purchase of breeding pigs,” “personnel and people visiting the farm,” 
“measures between compartments, “working lines and use of 
equipment” and “cleaning and disinfection.” Along with the Biocheck 
UGent, the company had established its own risk index for the main 
swine pathogens based on their occurrence at their farms during the 
last 10 years. HHS farms were free of these main swine pathogens; 
porcine reproductive and respiratory syndrome virus (PRRSV), swine 
dysentery and Mycoplasma hyopneumoniae and had mortality rates 
lower than 4%.

2.3 Sampling

During January and June 2023, six pig farms were enrolled for the 
study (3 HHS and 3 LHS). One house from each farm was selected 
according to the described criteria. At each farm, one house from the 
nursery facility containing sows with 3 weeks-old piglets was selected. 
Thereafter, 10 pens within each house were sampled (walls and slats), 
i.e., four and six pens from the corners and the middle of the house, 

respectively (Figure  1). In addition, two slurry pit samples were 
collected. For this purpose, two 500 mL sterile pots were filled from 
different points of the house pits to ensure a representative sample 
from each house studied. Wall and slat samples were collected by 
wiping 1  m2 of surfaces using both sides of the sterile wipe 
(Whirl-Pak®, Scharlab, Madrid). First, wall samples (10 per farm, one 
per pen) were taken at an approximate height of 70 cm above the pen 
floor. Then, the slat samples (10 per farm, one per pen) were collected, 
between and under the grates whenever possible. Once collected, all 
samples were placed individually in a sterile bag with sterile diluent 
and transported to the laboratory in refrigerated conditions (4°C) and 
processed within 12 h.

Once in the laboratory, wall and slat samples were processed 
identically. Two pools of 5 wipes each (1/4 of a wipe per pool) were 
generated for each type of sample. The remaining wipes were stored 
in freezer for further studies. Then, each pool and each slurry sample 
were placed in a stomacher (BagFilter® 400 mL, Scharlab, Madrid) and 
homogenised with 15 mL of PBS (5 min, 260 rpm).

2.4 DNA extraction, 16S rRNA gene 
amplification, and MiSeq sequencing

The DNA was extracted from 250  μL of each homogenised 
environmental sample (wall and slats) and from 250 μL of slurry 
following the manufacturer’s instructions (QIAamp Power Fecal Pro 
DNA kit, Werfen, Barcelona, Spain). The DNA quality was determined 
using Nanodrop ND − 1000 spectrophotometer (Thermo Scientific, 
Wilmington, DE, United States) and DNA was quantified using Qubit 
fluorometer (Life Technologies, Paisley, United Kingdom). The DNA 
was frozen at −20°C for shipment at the Instituto de Investigación 
Sanitaria y Biomédica de Alicante—ISABIAL (Alicante, Spain). Once 
there, 16S rRNA gene amplification and MiSeq (Illumina) sequencing 

FIGURE 1

Sampling scheme.
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was performed according to Montoro-Dasi et al. (20). To this end, 
12.5 ng of DNA from each sample, quantified using Qubit, was used 
to prepare the library according to the 16S rRNA Metagenomic 
Sequencing Library Preparation protocol (Illumina). The primers 
targeted the V3 and V4 regions of the 16S rRNA gene, and included 
Illumina adapters: 16S Amplicon PCR Forward Primer = 5′ 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGG 
NGGCWGCAG; and 16S Amplicon PCR Reverse Primer = 5′ 
GTCTCGTGGGCTCGGAGATGTGTATAAG AGACAGGA CTAC 
HVGGGTATCTAATCC. NGS Libraries were analysed using the 
Agilent 4200 TapeStation System to ensure their integrity. Sequencing 
was performed on a MiSeq (21) system in 2 × 300 bp format. The 
quality of the raw reads was evaluated using the FastQC software (22).

2.5 Bioinformatic analysis

Bioinformatic analyses were performed separately for each type 
of sample (wall, slat, and slurry). For this purpose, the Amplicon 
Sequence Variant (ASV) picking, and analysis was performed with 
QIIME2 (v2021.4) pipeline (23). Demultiplexed paired FASTQ 
sequences were imported into the QIIME2 v2021.4. The DADA2 
plugin incorporated into QIIME2 was used to quality filter, denoise, 
combine, and remove chimaera from the sequences. The raw 
sequences were truncated from the first low-quality base site whose 
number of low-quality values (default quality threshold ≤30) and the 
primer sequences were removed from all reads. Then, sequences were 
grouped into amplicon sequence variants (ASVs) with 99% 
identification. Taxonomy was assigned to ASVs using the classify-
sklearn naïve Bayes taxonomy classifier in the feature-classifier plugin 
against the SILVA v138 database (24, 25). Sequences not assigned to 
any taxa or classified as Eukaryote, Archaea or only bacteria were 
filtered out (24, 25).

2.6 Statistical analysis

The statistical analysis of wall, slats and slurry was conducted 
using the following methodology (26). No outlier samples were 
identified via principal component analysis. Genera with almost 25% 
zeros within each treatment were excluded. The remaining zeros were 
replaced by one for microbiome data and by half of the minimum 
value detected for each genus. A total of 57, 95, and 259 genera, from 
the wall, slat and slurry samples, respectively, remained in the datasets. 
Datasets were transformed using the additive log-ratio (ALR) 
transformation as follows (Equation 1):

 
AL ref log x xref x xrefj || = j = log j log( ) ( ) ( ) ( )−−

 (1)

Here, j represents the total number of variables in the dataset, 𝑥j 
is the value for the genus j and 𝑥𝑟𝑒𝑓 is the reference variable used for 
data transformation. The reference variable was chosen as the one 
with the lowest coefficient of variation: Cellulosilyticum for wall 
samples, p-2534-18B5_gut_group for slat samples, and Dojkabacteria 
for slurry samples. The lack of isometry was checked using Procrustes 
correlation (27). ALRs were autoscaled with mean of 0 and standard 
deviation of 1.

A partial least-squares discriminant analysis (PLS-DA) was 
employed to identify the genera that allowed the classification or 
discrimination of the sanitary status (28). For the PLS-DA models, the 
sanitary status served as the categorical vector y, and the 
ALR-transformed dataset for genera was utilised as the matrix X. The 
balance error rate (BER) for the Mahalanobis distance, calculated 
using a 4-fold cross-validation repeated 100 times, was employed to 
determine the optimal number of components for the model in each 
iteration. During each iteration, variables with a variable importance 
prediction (VIP) score below 1 were excluded from the X matrix, as 
they did not contribute significantly to the classification among the 
treatments (29). Following variable selection, a new PLS-DA model 
was computed. This process of variable selection and PLS-DA model 
computation were repeated until the lowest BER was obtained. The 
prediction accuracy of the final PLS-DA model was assessed by 
constructing a confusion matrix and a permuted confusion matrix, 
using 4-fold cross-validation repeated 10,000 times. The confusion 
matrix enabled the evaluation of the model’s ability to predict each 
treatment based on the selected variables, while the permuted 
confusion matrix assessed whether the observed performance was due 
to a random selection of variables throughout the PLS-DA iterations. 
The prediction performance was deemed spurious when the 
percentage of true positives for each treatment was far from their 
random probabilities (50% for two categories).

In addition to PLS-DA, Bayesian statistics were employed to assess 
the relevance of the differences in genera abundance between the HHS 
and LHS groups. A model with a single effect of “environment” and flat 
priors was fitted. The marginal posterior distribution of the unknowns 
was estimated using MCMC with four chains of 50,000 iterations, with 
a burn-in of 1,000 and a lag of 10. The posterior mean of the differences 
between the HHS and LHS was used to estimate the posterior mean of 
the differences in genera abundance between these groups. These 
estimates were expressed in units of standard deviation (SD) for each 
variable. Differences in the mean abundance of genera between the 
HHS and the LHS groups were considered relevant when the probability 
of the differences (30) being greater (if the difference is positive) or 
lower (if negative) than 0 (P0) was higher than 0.95.

Alpha and beta diversity were calculated using the ALR at the 
genus level to assess differences in microbiome composition among 
groups in wall, slat and slurry samples. Alpha diversity was evaluated 
with the Shannon diversity and the inverse Simpson indexes to analyse 
the species diversity and evenness. Differences in alpha diversity 
distribution among groups were considered significant when the p 
value from a Mann–Whitney U test was lower than 0.05. Beta diversity 
was assessed using the Bray–Curtis dissimilarity matrix, and a 
nonmetric multidimensional scaling (NMDS) was performed to 
obtain the loadings of the first two dimensions. Differences in 
microbial genera composition were examined using a permutational 
multivariate analysis of variance (PERMANOVA; p value < 0.05) on 
the loadings of the two first MDS dimensions (31, 32).

2.7 Bacterial functional annotation and 
distribution

Finally, the Functional Annotation of PROkaryotic TAXa 
(FAPROTAX) database (33, 34) was implemented to identify 
ecologically relevant functions, potential pathogens based on the 16S 
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rRNA gene sequences for each sample, and for more-related-
environmental samples (wall and slat).

3 Results

A total of 36 samples were collected from 3 HHS and 3 LHS farms. 
On each farm, 10 samples from wall (2 pooled samples/farm), 10 from 
slat (2 pooled samples/farm), and 2 from slurry pit were collected.

3.1 16S rRNA sequencing

The summary of sequences and ASVs obtained in this study for 
wall, slat, and slurry samples can be seen in Table 1, detailing the 
results obtained from each sample type.

The datasets generated and analysed are available at NCBI’s 
BioProject PRJNA1079579 and BioSample SAMN40044702.

3.2 Taxonomic characterisation of 
environmental microbial communities

To better establish the microbial community composition of 
pig farm environments according to their health status, organisms 
present at different taxonomic levels and their relative abundance 
were evaluated. Alignment of ASVs against the SILVA database 
resulted in identification of 23 bacterial phyla and 389 bacterial 
genera. While the majority of OTUs were identified at genus level 
(255), some were only classified at the phylum, class, order, or 
family level.

At phylum level, Firmicutes represented the dominant phylum of 
the environmental community in all the sample types collected. In 
the case of wall and slat samples, this phylum was followed by 
Proteobacteria. For wall samples, relative abundance of Proteobacteria 
comprised 25.0 and 25.4%, for HHS and LHS farms, respectively, of 
total relative abundance, whereas for slat samples was 21.3 and 18.5%, 
respectively. For slurry samples, Firmicutes was followed by 
Bacteroidota, comprising 25.6 and 19.8% of the relative abundance, 
for HHS and LHS farms, respectively, and Proteobacteria represented 
8.6 and 4.3% of the relative abundance for HHS and LHS. The relative 
abundance of all the phyla present is shown in Figure 2. A more 
similar distribution can be  observed among the environmental 

samples (wall and slat), indicating a distinct pattern compared to the 
slurry samples.

Two hundred and fifty-five genera were identified across all the 
samples (wall, slat, and slurry). Among them, 4 genera were detected 
in all the samples analysed (Corynebacterium, Turicibacter, 
Lactobacillus and Terrisporobacter), a total of 18 genera were exclusive 
for HHS farms (Terrabacter, Chryseobacterium, Soonwooa, 
Asteroleplasma, Pseudoramibacter, Butyrivibrio, Intestinimonas, 
Oscillospira, Anaerotruncus, Caproiciproducens, Schwartzia, Veillonella, 
Candidatus saccharimonas, Acetobacter, Devosia, Shewanella, 
Vitreoscilla and Morganella) and 30 were exclusive for LHS farms 
(Gordonia, Gelidibacter, Sulfuricurvum, Desulfatiglans, Desulfatiferula, 
Elusimicrobium, Endomicrobium, Caryophanon, Solibacillus, 
Atopostipes, Anaerofustis, Epulopiscium, Papillibacter, Sporobacter, 
Dehalobacterium, Hydrogenedesnsaceae, Dojkabacteria, Moranbacteria, 
Parcubacteria, Paenochrobactrum, Paracoccus, Mitochondria, 
Sphingopyxis, Thauera, Wohlfahrtiimonas, Aestuariicella, Rickettsiella, 
Oceanobacter, Thiopseudomonas and Arenimonas).

Moreover, 11 were exclusive for wall samples (Barchybacterium, 
Terrabacter, Micrococcus, Soonwoa, Desemzia, Veillonella, Devosia, 
Shewanella, Morganella, Serratia and Vibrio); between them, Terrabacter, 
Soonwoa, Veillonella, Devosia, Shewanella and Morganella were only 
observed in wall samples collected from HHS farms. On the other hand, 
5 genera were exclusive for slat samples (Timotella, Savagea, Alloiococcus, 
Fusobacterium and Wohlfahrtiimonas), of which Wohlfahrtiimonas was 
only detected in HHS farms. Finally, 147 genera were exclusive for slurry 
samples (the most prevalent were Treponema, Fastidiosipila, Arcobacter, 
Trichococcus, Candidatus nomurabacteria, Proteiniphilum, Tissierella, 
Cloacimonas, Acholeplasma and Sedimentibacter), of which 9 and 25 
were exclusive for HHS and LHS samples, respectively.

3.3 Sanitary status environmental 
microbiota modulation

A PLS-DA with ALR-transformed variables was employed to 
evaluate the impact of sanitary status (HHS vs. LHS) on the 
environmental microbiota across wall, slat, and slurry samples. The 
analysis identified the most relevant genera, i.e., those that reached the 
highest prediction performance in each type of sample.

For three types of environmental samples, the model revealed a 
dependency of the microbiome on the farms´ sanitary status, 
distinguishing between both states effectively (Procrustes correlation 
and prediction performance). Wall samples, for instance, exhibited a 
high Procrustes correlation of 0.92, identifying 14 out of 57 genera as 
relevant variables and achieving prediction performance rates of 
99.3% for HHS and 95.3% for LHS (Figure 2A). The results showed 
that 25% of the genera enable discrimination between both sanitary 
statuses in the wall samples, as listed in Table 2.

Similarly, slat samples displayed a Procrustes correlation of 0.92, 
with 24 out of 95 genera identified as relevant variables, achieving a 
prediction performance rate of 93.0% for HHS and 100% for LHS 
(Figure  3A). Again, 25% of the genera were required for 
discriminating between the sanitary statuses in the slat samples, as 
detailed in Table 3.

Finally, slurry samples also exhibited a high Procrustes correlation 
of 0.82, with 23 out of 259 genera identified as relevant variables, 
achieving prediction performance rates of 100% for HHS and 99.8% 

TABLE 1 General features of 16S rRNA amplicon sequencing of wall, slat, 
and slurry microbiota.

Wall Slat Slurry

Total raw reads 1,256,874 1,184,076 1,365,695

Average sequence length (bp) 417.8 416.6 411.8

Average number of sequences for sample 104,739.5 98,676 113,807.9

Total sequences 744,382 724,024 812,647

ASV’s generated 1,354 1,926 5,892

ASV’s generated for taxonomic 

assignment
284 376 1,268

bp, base pairs; ASVs, amplicon sequence variants.
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for LHS (Figure 4A). The results showed that only 8% of the genera 
enable discrimination between both sanitary statuses in the slat 
samples, as outlined in Table 4.

Once the discriminative power of the model was established, 
the analysis of the microbiota composition was conducted, revealing 
similar patterns in both sanitary states for the environmental 
samples. The Shannon diversity index, which is more sensitive to 
species richness, indicated that microbiota diversity in wall, slat and 
slurry samples was similar under both sanitary conditions 
(Kruskal–Wallis test, HHS vs. LHS: p-value = 0.06, 0.06 and 0.13, 
respectively, Figures 2B, 3B, 4B). The inverse Simpson index, which 
is more sensitive to species evenness, revealed significantly higher 
diversity in HHS compared to LHS in wall samples (Kruskal-Wallis 
test, HHS vs. LHS: p-value = 0.03, Figure 2C), while no differences 
were observed in slat and slurry samples (Kruskal-Wallis test, HHS 
vs. LHS: p-value = 0.18, both, Figures  3C, 4C). Furthermore, 
pairwise PERMANOVA comparisons between groups using Bray–
Curtis dissimilarity matrices showed similarity in microbiome 
composition between both sanitary statuses in wall, slat and slurry 
samples (p-value = 0.545, 0.058 and 0.324, respectively; Figures 2D, 
3D, 4D).

To gain a deeper understanding of the impact of sanitary status 
on the environmental microbiome, a Bayesian statistical analysis 
was performed from the initial relevant genera identified through 

TABLE 2 Results of the Bayesian statistical analysis conducted on the key 
genera identified through partial least-squares discriminant analysis 
(PLS-DA) in wall samples.

Genus HPD95 meanDiff P0

Aerococcus [−2.37, −0.44] 1.38 99.43*

Leuconostoc [1.47, 2.22] −1.34 99.23*

Weissella [−0.22, 2.17] −1.01 95.56*

Lactococcus [0.65, 2.39] −1.27 98.84*

Jeotgalibaca [−2.36, −0.46] 1.19 98.08*

Streptococcus [−0.13, 2.22] −0.99 95.20*

Clostridium_sensu_stricto_1 [−2.39, −0.87] 1.25 98.79*

Facklamia [−2.41, −0.37] 1.35 99.35*

Carnobacterium [−0.73, 1.94] −0.29 67.35

Lactobacillus [−1.07, 1.74] −0.30 68.07

Jeotgalicoccus [−2.38, −0.39] 1.29 98.98*

Enhydrobacter [−1.25, 1.53] −0.25 65.47

Aeromonas [−0.92, 1.84] −0.63 84.27

Um fam Enterobacteriaceae [−0.81, 1.88] −0.70 87.18

HPD95 = The highest posterior interval density of 95% probability. P0 = Probability of the difference 
(DLHS-HHS) being greater than 0 when DLHS-HHS > 0 or lower than 0 when DLHS-HHS < 0. 
meanDiff = Posterior mean of the differences among the HHS and LHS samples. * = Significant 
differences were considered relevant if | DLHS-HHS | surpassed R value and its P0 > 0.95.

FIGURE 2

Environmental microbiota modulation induced by sanitary status in pig farms in wall samples. (A) Two-dimensional PLS-DA score plot was constructed 
using microbiota genera as variables, representing the distribution of the samples between the first two components in the model, which correspond 
to the sanitary status (HHS vs. LHS). Alpha diversity was computed using the (B) Shannon diversity index and (C) inverse Simpson index. Beta diversity 
was computed by calculating (D) the Bray–Curtis dissimilarity matrix. Differences among populations were established as having a p-value lower than 
0.05. HHS, high health status; LHS, low health status.
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PLS-DA. For wall samples, as shown in Table  2, the Bayesian 
statistical analysis revealed 9 genera with relevant differences 
(P0 > 0.95) in abundance between the two sanitary statuses (HHS 
vs. LHS). Among them, Leuconostoc, Weissella, Lactococcus, and 
Streptococcus were more abundant in HHS; while Aerococcus, 
Jeotgalibaca, Clostridium_sensu_stricto_1, Facklamia, and 
Jeotgalicoccus were more abundant in LHS.

For slat samples, as shown in Table  3, the Bayesian statistical 
analysis revealed 9 genera with relevant differences (P0 > 0.95) in 
abundance between the two sanitary statuses (HHS vs. LHS). Among 
them, Weissella, Leuconostoc, and Macrococcus were more abundant 
in HHS; while Clostridium_sensu_stricto_1, Terrisporobacter, 
Romboutsia, Turicibacter, Facklamia, Corynebacterium, Jeotgalibaca, 
Caryophanon, Jeotgalicoccus, UmphylumFirmicutes, Aerosphaera, and 
Solibacillus were more abundant in LHS.

Finally, for slurry, as shown in Table 4, the Bayesian statistical 
analysis revealed 9 genera with relevant differences (P0 > 0.95) in 
abundance between the two sanitary statuses (HHS vs. LHS). Among 
them, all were more abundant in HHS: Lactobacillus, 
UMFAMPlanococcaceae, Bacteroidales_UCG001, Treponema, 
Streptococcus, UmphylumFirmicutes, Anaerocella, Enterococcus, 
Proteiniphilum, Fibrobacter, Acidaminococcus, Jeotgalibaca, 
UmfamAcidaminococcaceae, Rikenellaceae_RC9_gut_group, 
Roseimarinus, Izemoplasmatales, NK4A214_group, and Herbinix.

3.4 Bacterial functional annotation and 
distribution

In a general analysis all the genera identified in this study were 
included. A total of 33 categories of microbial functions linked to the 
bacterial communities were detected, of which 1 and 11 were exclusive 
for samples collected from HHS and LHS farms, respectively. As 
shown in Table  5, for both groups the predominant microbial 
functions assigned were chemoheterotrophy, fermentation, aerobic 
chemoheterotrophy and aromatic compound degradation. Moreover, 
as mentioned above, iron respiration was exclusive to HHS, and 
functions related to thiosulfate respiration, methanol oxidation, 
methylotrophy, nitrate denitrification, nitrite denitrification and 
respiration, denitrification, nitrous oxide denitrification and 
intracellular parasites were exclusive to LHS farms.

Regarding the functional annotation for each sample type, 
functions associated with the microbiota of wall samples were 
fermentation, chemoheterotrophy, aerobic chemoheterotrophy, nitrate 
respiration and reduction and nitrogen respiration, all of them 
included genera identified in both, HHS and LHS farms. Regarding 
slat samples, the more relevant functions observed were fermentation 
and chemoheterotrophy, both related with the genera Fusobacterium, 
present in both experimental groups. Moreover, the functional 
annotation of more-environment-related samples (wall and slat) was 

FIGURE 3

Environmental microbiota modulation induced by sanitary status in pig farms in slat samples. (A) Two-dimensional PLS-DA score plot was constructed using 
microbiota genera as variables, representing the distribution of the samples between the first two components in the model, which correspond to the 
sanitary status (HHS vs. LHS). Alpha diversity was computed using the (B) Shannon diversity index and (C) inverse Simpson index. Beta diversity was computed 
by calculating (D) the Bray–Curtis dissimilarity matrix. Differences among populations were established as having a p-value lower than 0.05. HHS, high health 
status; LHS, low health status.
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performed. Results showed a total of 9 functional groups, of which the 
following are noteworthy: human pathogens, human-associated and 
animal parasites (related to Moraxella genus, and present in HHS and 
LHS samples), and nitrate and nitrogen respiration (related to 
Shewanella genus, only present in HHS samples).

Finally, for slurry samples, 29 functional groups were identified, 
of which it is interesting to highlight those related only to the genera 
Paracoccus (methanol oxidation, methylotrophy, nitrate 
denitrification, nitrite denitrification, nitrous oxide denitrification, 
and denitrification), aromatic compound degradation (Gordonia and 
Desulfatiglans), and intracellular parasites (Mitochondria), only 
identified in LHS farms.

4 Discussion

It is clearly demonstrated that controlling pathogenic 
microorganisms without the administration of antibiotics is one of the 
main challenges in modern livestock farming (35). Furthermore, strict 

antibiotic control in pig farming, the prohibition zinc oxide or the ban 
on highly effective field-level disinfectants such as formaldehyde make 
it very difficult to control animal diseases. After the implementation 
of all these mandatory regulations, this study has highlighted a 
significant difference in microbial communities established between 
farms that consistently experience health issues and those that 
consistently have good health outcomes. By understanding the 
differences between these populations in depth, we  can develop 
tailored and effective protocols for each specific issue.

The microbial diversity of the samples was analysed according to 
alpha and beta diversity indexes. Although there were some differences 
in alpha diversity according to sample type (wall, slat or slurry), for all 
samples collected, significantly higher levels in beta diversity were 
observed for LHS farms. These findings are in agreement with data 
presented by Bridier et  al. (2), which revealed that strict C&D 
procedures in pig slaughterhouses reduced the diversity of the 
bacterial community (2). This aligns with other studies indicating a 
decrease in microbial diversity when exposed to disinfectants 
(2, 36–40).

Regarding phyla composition, Firmicutes represented the 
dominant phylum of the environmental community in all the samples 
collected, followed by Proteobacteria in wall and slat samples, and by 
Bacteroidota in slurry samples. According to previous studies related 
to intestinal microbiota in pigs, Firmicutes is the dominant phylum 
during all the production cycle, followed by Proteobacteria at birth, 
and by Bacteroidota (formerly known as Bacteroides) during the rest 
of the production cycle, similar to the slurry results (41, 42). Both 
phyla are related to overall health of the animal, Firmicutes is involved 
in maintaining energy balance in the body, and Bacteroidota is 
associated with butyrate production and T cell-mediated immune 
responses, limiting the gastrointestinal colonisation by pathogens. In 
contrast, increased levels of Proteobacteria are repeatedly associated 
to intestinal inflammatory disorders (42–44).

At the genus level, 4 genera were present in all the samples 
analysed: Corynebacterium, Turicibacter, Lactobacillus and 
Terrisporobacter. Within them, Lactobacillus is known as a common 
inhabitant of the mammalian gastrointestinal tract, related to 
intestinal and immune system regulation, correct development of the 
intestinal microbiota and induction of competitive exclusion of 
pathogens by both adhesion to absorption sites of the intestinal 
mucosa and competition for nutrients (42, 45). Moreover, Turicibacter 
and Terrisporobacter, both significantly more abundant in LHS farms, 
are related to ether extract and protein digestibility, respectively, but 
considered opportunistic pathogens (41, 46, 47). However, the 
Corynebacterium genus, also significantly more abundant in LHS 
farms, contains opportunistic human pathogens asymptomatically 
carried by pigs (48).

Among the genera exclusively associated with HHS farms, 
beneficial and detrimental bacteria were observed. Some of the 
bacteria are related to beneficial effects to the host, such as 
Butyrivibrio, which belongs to butyrate-producing bacteria, with 
demonstrated beneficial effects on animals (49); Oscillospira, 
considered as a candidate for new probiotic generation with a strong 
association with body weight and animal health (50); 
Caproiciproducens, able to inhibit pathogenic bacteria, enhance 
animal immunity, and promote animal growth due to its ability to 
produce caproic acid (51, 52); or Devosia, a genus reported to be able 
to effectively reduce the toxicity of deoxynivalenol in diets for 

TABLE 3 Results of the Bayesian statistical analysis conducted on the key 
genera identified through partial least-squares discriminant analysis 
(PLS-DA) in slat samples.

Genus HPD95 meanDiff P0

Weissella [−2.28, 0.02] −1.11 97.28*

EscherichiaShigella [−1.72, 1.01] −0.38 71.98

Staphylococcus [−1.98, 0.64] −0.72 87.80

Clostridium_sensu_stricto_1 [1.27, 2.31] 1.78 100*

Terrisporobacter [0.9, 2.37] 1.64 99.97*

Leuconostoc [−2.31, −0.21] −1.27 98.90*

Romboutsia [0.76, 2.34] 1.58 99.92*

Macrococcus [−2.24, 0.08] −1.05 96.32*

Turicibacter [0.45, 2.37] 1.42 99.60*

Lactococcus [−2.2, 0.25] −0.95 94.27*

Facklamia [0.61, 2.37] 1.50 99.83*

Corynebacterium [0.94, 2.35] 1.67 99.99*

Streptococcus [−2.07, 0.42] −0.88 92.51

Jeotgalibaca [0.25, 2.31] 1.32 99.08*

Caryophanon [−0.05, 2.25] 1.10 97.10*

Enterococcus [−2.08, 0.55] −0.73 88.20

Jeotgalicoccus [0.94, 2.4] 1.64 99.95*

Rothia [−2.05, 0.58] −0.73 87.82

Um phylum Firmicutes [−0.23, 2.18] 1.02 95.53*

Aerosphaera [−0.11, 2.22] 1.07 96.45*

Proteus [−2.07, 0.48] −0.80 89.99

Solibacillus [−0.2, 2.21] 0.98 95.14*

Chishuiella [−1.62, 1.18] −0.21 63.02

Um fam Enterobacteriaceae [−1.76, 0.96] −0.41 74.35

HPD95 = The highest posterior interval density of 95% probability. P0 = Probability of the 
difference (DLHS-HHS) being greater than 0 when DLHS-HHS > 0 or lower than 0 when 
DLHS-HHS < 0. meanDiff = Posterior mean of the differences among the HHS and LHS 
samples. * = Significant differences were considered relevant if | DLHS-HHS | surpassed R 
value and its P0 > 0.95.
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growing-finishing pigs (53). Furthermore, other genera are related to 
environmental health, such as Terrabacter, initially isolated from soil 
mixed with pig hair from Spain (54) and considered of ecological 
importance for its involvement in biological phosphate removal from 
wastewater and bioremediation processes (55). However, other 
genera were considered detrimental microbes, such as Asteroleplasma 
and Intestimonas, opportunistic pathogens related to heat stress and 
gut inflammation in growing pigs (50), Candidatus saccharimonas, 
involved in chronic inflammation, or Shewanella and Morganella, 
considered unusual opportunistic pathogens (56, 57).

Regarding the specific genera observed in LHS farms, more that 
are considered detrimental bacteria were observed. Some of them 
related to the host, such as Solibacillus, negatively correlated with 
crypt depth (58); or Sporobacter, suggested to have a negative role 
in gut health and associated with Salmonella positive free-range 
pigs (59, 60). There were also pathogens associated with 
ectoparasites, such as Wohlfahrtiimonas, causing several diseases in 
humans related to traumatic skin lesions, myiasis, wound 
contamination and sepsis (61); or Rickettsia, an obligate intracellular 
pathogen that causes diseases in humans, as well as domestic and 
wild animals, through vector transmission (62). Moreover, some 
genera were environment related, including Gelidibacter, associated 

with decomposition of pig carcasses (63); and Sulfuricurvum and 
Desulfatiferula, sulphur-reducing genera (64). On the other hand, 
two beneficial bacteria were detected, Anaerofustis, positively 
correlated with crude fibre digestibility (65), and Arenimonas, 
considered a soil probiotic (66).

Moreover, there were genera present in both experimental groups, 
but with significant differences in their abundance. Of these, 
noteworthy are 4 genera significantly more abundant in HHS farms: 
Leuconosctoc, with probiotic potential and antimicrobial effect such as 
lactic acid-producing bacteria (67); Weissella, also considered a 
potential probiotic with antimicrobial effect by producing compounds 
such as bacteriocins (68); Lactococcus, negatively correlated with 
methicillin-resistant Staphylococcus in healthy piglets, and with 
protective action in post-weaning diarrhoea and other intestinal 
infections in piglets (69, 70) and, in contrast, Streptococcus, one of the 
most important pathogens of pigs, causing septicemia, meningitis, 
arthritis, and endocarditis, especially in post-weaning pigs (71). 
Regarding the genera significantly more abundant in environmental 
samples (wall and slat) from LHS farms, it should be highlighted 
Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter, 
previously associated to heat stress in pigs and considered 
opportunistic pathogens (46).

FIGURE 4

Environmental microbiota modulation induced by sanitary status in pig farms in slurry samples. (A) Two-dimensional PLS-DA score plot was 
constructed using microbiota genera as variables, representing the distribution of the samples between the first two components in the model, which 
correspond to the sanitary status (HHS vs. LHS). Alpha diversity was computed using the (B) Shannon diversity index and (C) inverse Simpson index. 
Beta diversity was computed by calculating (D) the Bray–Curtis dissimilarity matrix. Differences among populations were established as having a p-
value lower than 0.05. HHS, high health status; LHS, low health status.
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In addition, it is important to highlight some genera identified in 
the functional annotation analysis (FAPROTAX) because of their 
significant role in some important metabolic functions. There were 
some genera more-environmentally-related, including Fusobacterium 
(related to fermentation and chemoheterotrophy in slat samples), a 
genus with strong negative correlations with body weight gain in 
piglets and associated with diarrhoea and enteritis processes (72, 73); 
and Moraxella (human pathogen present in wall and slat samples), 
associated with infrequent opportunistic infections in humans and 
pigs. Furthermore, Moraxella has been described as a potential source 
of colistin resistance genes in pig farms (mcr-like genes, including 
new variants observed on pig production in China, mcr − 1.35 and 
mcr-1.36), as well as other antibiotic groups such as ampicillin, 
penicillin, quinolones, macrolides and tetracyclines (74, 75). 
Regarding the genera observed in each experimental group, it is 
important to note the role of Shewanella in iron respiration, a genus 
isolated from HHS group (as reported above). This process attracts 
much social and scientific attention due to its contribution to 
environmental pollution control and remediation field, promoting 
degradation of contaminants, such as aromatic compounds (76, 77). 

It is interesting to mention that many disinfectants used at the farm 
contain aromatic compounds among their active ingredients, that 
might have facilitated the persistence of this genus in the house 
environment. Finally, Paracoccus, a genus isolated from LHS farms 
and related to different functions (methanol oxidation, 
methylotrophy, nitrate denitrification, nitrite denitrification, nitrous 
oxide denitrification and denitrification), has previously been isolated 
from different environments, exhibiting excellent environmental 
adaptability, with a wide pH range and high concentrations of 
ammonia (78). In fact, it is reported that these bacteria facilitate 
different denitrification processes and participate in methanol 
oxidation, a process related to the presence of organic matter and 
exclusively from LHS farms (79, 80). However, it is essential to 

TABLE 4 Results of the Bayesian statistical analysis conducted on the key 
genera identified through partial least-squares discriminant analysis 
(PLS-DA) in slurry samples.

Genus HPD95 meanDiff P0

Lactobacillus [−2.25, −1.35] −1.81 100*

DMER64 [−1.13, 1.67] 0.27 66.11

Um fam Planococcaceae [−2.41, −0.64] −1.50 99.86*

Bacteroidales_UCG001 [−2.38, −0.82] −1.60 99.94*

Candidatus_Nomurabacteria [−1.65, 1.08] −0.30 68.30

Treponema [−2.39, −0.87] −1.62 99.97*

Fastidiosipila [−1.02, 1.71] 0.29 67.22

Streptococcus [−2.31, −0.33] −1.38 99.41*

Um phylum Firmicutes [−2.31, −1.18] −1.76 100

Anaerocella [−2.37, −0.53] −1.47 99.78*

Actinomyces [−1.76, 1.01] −0.37 71.78

Um fam Synergistaceae [−1.78, 0.99] −0.39 72.73

Enterococcus [−2.38, −0.58] −1.49 99.82*

Proteiniphilum [−2.41, −0.53] −1.46 99.74*

Fibrobacter [−2.34, −1.1] −1.72 99.99*

Acidaminococcus [−2.41, −0.68] −1.52 99.86*

Jeotgalibaca [−2.39, −0.76] −1.56 99.87*

Um fam Acidaminococcaceae [−2.36, −0.69] −1.55 99.87*

Rikenellaceae_RC9_gut_group [−2.35, −1.08] −1.72 100*

Roseimarinus [−2.4, −0.54] −1.46 99.76*

Izemoplasmatales [−2.39, −0.58] −1.50 99.79*

NK4A214_group [−2.43, −0.78] −1.57 99.92*

Herbinix [−2.38, −0.68] −1.52 99.86*

HPD95 = The highest posterior interval density of 95% probability. P0 = Probability of the 
difference (DLHS-HHS) being greater than 0 when DLHS-HHS > 0 or lower than 0 when 
DLHS-HHS < 0. meanDiff = Posterior mean of the differences among the HHS and LHS 
samples. * = Significant differences were considered relevant if | DLHS-HHS | surpassed R 
value and its P0 > 0.95.

TABLE 5 OTUs abundance per functional group for high and low health 
status farms.

Group HHS (%) LHS (%)

Chemoheterotrophy 44.72 44.22

Fermentation 34.61 30.30

Aerobic chemoheterotrophy 10.27 13.52

Aromatic compound degradation 6.50 9.65

Animal parasites or symbionts 1.63 0.37

Nitrate reduction 0.79 0.08

Human associated 0.26 0.11

Human gut 0.21 0.06

Mammal gut 0.21 0.06

Respiration of sulphur compounds 0.17 0.41

Sulphate respiration 0.16 0.40

Cellulolysis 0.13 0.06

Nitrate respiration 0.07 0.07

Nitrogen respiration 0.07 0.07

Human pathogens all 0.05 0.06

Sulphite respiration 0.03 0.20

Dark hydrogen oxidation 0.02 0.10

Reductive acetogenesis 0.02 0.09

Aromatic hydrocarbon degradation 0.02 0.03

Aliphatic non methane hydrocarbon 

degradation 0.02 0.03

Hydrocarbon degradation 0.02 0.03

Sulphur respiration 0.01 0.01

Iron respiration 0.01 0.00

Thiosulfate respiration 0.00 0.01

Methanol oxidation 0.00 0.01

Methylotrophy 0.00 0.01

Nitrate denitrification 0.00 0.01

Nitrite denitrification 0.00 0.01

Nitrous oxide denitrification 0.00 0.01

Denitrification 0.00 0.01

Nitrite respiration 0.00 0.02

HHS, high health status farms; LHS, low health status farms.
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consider that functional annotations based on the FAPROTAX 
database provide inferred functions relying on 16S rRNA fragments, 
which may not be  as precise as a comprehensive shotgun 
metagenomic study. For that reason, further studies such as 
metabolomics are needed to verify the functions and roles of these 
specific pathways in the different health status pig farms.

All the differences observed between the microbial populations 
of HHS and LHS, as well as the study of the functionality of the 
most prominent populations, emphasise the importance of 
knowing the individual situation of each farm when developing 
control methodologies, such as C&D protocols. With more specific, 
eco-friendly, and safe C&D protocols targeted against pathogenic 
microorganisms, we can achieve a much more sustainable livestock 
farming, as well as safer products for consumers and 
competitiveness in the market. While our results provide an initial 
insight into the relationship between environmental microbiota 
and farm health status, it’s important to note that pooling of 
samples was necessary to ensure adequate DNA quantity and 
quality. Further research is required to deepen our understanding 
of the role of environmental microbiota in farms with varying 
health statuses.
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