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Aims: The aim of this study was to investigate the effects of aspirin eugenol 
ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-
induced immune stress.

Methods: Two hundred and forty one-day-old male Arbor Acres chicks were 
randomly divided into four groups (saline, LPS, saline + AEE and LPS  +  AEE) with 
six replicates of ten broilers each. The saline group and LPS group were fed the 
normal diet, while the other two groups received normal diet plus 0.1  g/kg AEE. 
Broilers in the LPS and LPS  +  AEE groups were injected intraperitoneally with 
0.5  mg/kg B.W LPS in saline for seven consecutive days beginning at 14  days 
of age, while broilers in the saline and saline + AEE groups were injected with 
saline only.

Results: The results showed that AEE improved the ileal morphology and 
increased the ratio of villus height to crypt depth of immune-stressed broilers. 
LPS-induced immune stress significantly reduced the expression of the genes 
for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 
and claudin-2, in the ileum, while AEE significantly up-regulated the expression 
of these genes. Compared with the saline group, the LPS-treated chickens 
showed significantly increased mRNA expression of the inflammatory factors 
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), 
interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin 
E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased 
by AEE supplementation. In addition, analysis of the ileal bacterial composition 
showed that compared with saline and LPS  +  AEE groups, the proportion of 
Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of 
Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant 
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Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, 
Brevibacillus was dominant in the saline group, while the LPS  +  AEE group was 
rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, 
Negativibacillus, Oscillospiraceae, and Flavonifractor.

Conclusion: These results indicate that dietary supplementation with 0.1  g/
kg AEE could protect the intestinal health by improving the intestinal villus 
morphology, enhancing the expression of tight junction genes and alleviating 
inflammation to resist the immune stress caused by LPS stimulation in broilers, 
and the mechanism may involve COX-2-related signal transduction and 
improved intestinal microbiota composition.

KEYWORDS

immune stress, aspirin eugenol ester, intestinal barrier function, ileal microbiota, 
broiler

1 Introduction

Under the current intensive broiler breeding program, excessive 
immune responses, pathogen infection and drug overuse can induce 
immune stress in chickens (1), resulting in slow growth, decreased 
immunity and disease resistance (2), and huge economic losses to 
broiler producers (3). As the organ with the largest area of direct 
contact with the external environment in the body (4), the intestine 
not only has the physiological function of food digestion and nutrient 
absorption in the body (5), but also is an important immune organ (6) 
for resisting pathogen invasion (7). The ileum is the site where the 
small intestine and large intestine connect (8), and it plays an 
important role in the intestinal immune system (9). The occurrence 
of immune stress in broiler chickens can inhibit the intestinal immune 
function (10), lead to intestinal inflammation (11), barrier damage 
(12), and microbial imbalance (13), which negatively affects the birdsʼ 
health and productivity. Thus, there is an urgent need to discover new 
safe and efficient anti-stress treatments for poultry production.

Aspirin eugenol ester (AEE) is a new class of non-steroidal anti-
inflammatory drugs formed by the combination of aspirin and eugenol 
through the acyl chloride reaction (14). Compared with the precursor 
drugs, AEE not only has low toxicity (15), long action time (16), and 
wide safety range (17), but also reduces the irritation of aspirin on the 
gastrointestinal tract (18) and enhances the stability of eugenol (19). 
Studies have shown that AEE has anti-inflammatory (20) and 
antioxidant (17, 21, 22) effects that are better than either aspirin or 
eugenol alone (23). In view of the fact that drugs entering the intestine 
always affect the intestinal microbiota (24), some researchers have 
conducted experiments with AEE and found that it can indeed alter the 
composition of the gut microbiota in mice and rats (25, 26) and 
regulate the metabolomics of cecal contents and feces in rats (27). 
Moreover, AEE can inhibit the epoxide pathway and reduce the level 
of the inflammatory mediator cyclooxygenase-2 (COX-2) and 
Prostaglandin E2 (PGE2) (28). The COX-2/PGE2 signaling pathway can 
regulate the expression of intestinal tight junction proteins (29), 
thereby affecting intestinal epithelial barrier function (30–32).

However, the impacts of AEE on growth performance, intestinal 
mucosal immunity, barrier functions and gut microbiota remain elusive, 
especially in broiler chickens under immune stress. Lipopolysaccharide 
(LPS) is one of the most commonly used immune activators (33–35), 
and intraperitoneal injection can induce immune stress (36, 37). 

Therefore, this study used intraperitoneal injection of LPS to establish 
an immune stress model in broiler chickens to explore the protective 
effect of AEE on intestinal health. Our goal was to obtain theoretical 
support for the application of AEE in the field of animal husbandry and 
provide new data on the use of anti-stress drugs in broiler production.

2 Materials and methods

2.1 Animals and treatments

A total of 240 one-day-old healthy male Arbor Acres broiler chicks 
were randomly assigned into four groups with six replicates of 10 chicks 
each. The four groups comprised a saline group, an LPS group, a saline 
+ AEE group and an LPS + AEE group. Broilers are reared in 4-layer 
stereoscopic superimposed cage, with 6 cages per layer and 10 chickens 
per cage. Light, temperature and humidity are artificially controlled, and 
they can drink and eat freely. Broilers in the saline and LPS groups were 
fed a basal diet, while broilers in the saline + AEE and LPS + AEE groups 
were fed the basal diet containing 0.1 g/kg AEE. AEE (purity 99.5%) was 
provided by the Lanzhou Institute of Husbandry and Pharmaceutical 
Sciences of CAAS, and its concentration was based on our team’s 
previous studies (38). From the age of 14 days, broilers in the LPS and 
LPS + AEE groups received intraperitoneal injections of 0.5 mg/kg B.W 
LPS in saline once a day for 7 days; broilers in the saline and saline + 
AEE groups received peritoneal injection of the same dose of saline only 
once a day. Continuous injection for 7 days. This immune stress model 
induction method is based on our team’s previous experiments and 
improved (37). The experiment was conducted in accordance with the 
NRC guidelines (Table 1) for feeding a basal diet and in accordance with 
animal ethics guidelines and protocols approved by the Animal Care 
and Use Committee of Henan University of Science and Technology.

2.2 Sample collection

According to our team’s previous experiments (2), at 2 h, 4 h, 24 h 
after the initial injection (14d-2 h, 14d-4 h, 15d) and at 24 h after the 
16d, 18d, 20d injections (17d, 19d, 21d), one chicken was selected from 
each cage for euthanasia and samples of ileal tissue and contents were 
collected. Part of the tissue samples was fixed in 4% paraformaldehyde, 
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and the remaining tissue samples and contents were frozen in liquid 
nitrogen and transferred to −80°C for preservation.

2.3 Examination of intestinal morphology

The fixed ileum tissues were trimmed, dehydrated, embedded in 
paraffin, sectioned, stained with hematoxylin and eosin (H&E), 
microscopically examined and imaged using CaseViewer2.4 software to 
record the morphology and structure of the ileum. Ten relatively 
complete villi were selected from each ileum tissue section, and the villus 
height and crypt depth were measured. The mean value was determined 
and the ratio of villus height to crypt depth (V/C) was calculated.

2.4 Gene expression analysis using 
quantitative real-time PCR

TRIzol reagent (Thermo Fisher Scientific, Ottawa, Canada) was 
used to extract total RNA from ileum tissue, and gel electrophoresis on 
1.0% agarose and Nano-drop2000 (Thermo Scientific, Ottawa, Canada) 
absorbance measurements were used to determine RNA concentration 
and purity. RNA was converted to cDNA with an Evo M-MLV mix kit 

(Accurate Biology, AG11728, China). NCBI/Primer-BLAST was used 
to design target gene-specific primers (Table 2), which were used for 
quantitative real-time. The SYBR Green premixed ProTaq-HS qPCR 
kit (Accurate Biology, AG11701, China) was used to prepare the 
reaction mixes and qRT-PCR was performed on a CFX-Connect real-
time PCR system (Bio-Rad Laboratories, Hercules, CA). The specific 
operation is according to the instruction manual. The 2−ΔΔCt method 
was used to analyze the relative gene expression levels.

2.5 Analysis of the ileum microbiota

Total microbial genomic DNA was extracted from ileum contents 
samples using the E.Z.N.A.® soil DNA kit (Omega Bio-tek, Norcross, 
GA, United  States) according to manufacturer’s instructions. The 
quality and concentration of DNA were determined by 1.0% agarose 
gel electrophoresis and absorbance measurements with a Nano-
drop2000 spectrometer (Thermo Scientific, Ottawa, Canada); DNA 
aliquots were kept at −80°C for later testing. The hypervariable region, 
V3-V4, of the bacterial 16S rRNA gene was amplified with the 
following primer pairs (39).

338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
806R (5′-GGACTACHVGGGTWTCTAAT-3′)
with an ABI GeneAmp® 9700 PCR thermocycler (ABI, CA, 

United States). The PCR product was electrophoresed on a 2% agarose 
gel, purified using the AxyPrep DNA gel extraction kit (Axygen 
Biosciences, Union City, CA, United States), and quantified using a 
Quantus™ fluorometer (Promega, United States). Purified amplicons 
were pooled in equimolar amounts and paired-end sequencing was 
done on an Illumina MiSeq PE300 platform (Illumina, San Diego, 
United  States) according to the standard protocols by Majorbio 
Bio-Pharm Technology Co. Ltd. (Shanghai, China). The raw 
sequencing reads were deposited into the NCBI sequence read archive 
(SRA) database (Accession No: PRJNA1052936). Raw FASTQ files 
were quality-filtered with Fastp version 0.19.6 (40) and merged by 
FLASH version 1.2.7 (41). The optimized sequences were clustered 
into operational taxonomic units (OTUs) using UPARSE 7.1 (42) with 
97% sequence similarity level, and the most abundant sequence for 
each OTU was selected as representative. To minimize the effects of 
sequencing depth on alpha and beta diversity calculations, the number 
of 16S rRNA gene sequences from each sample were rarefied to 
20,000, which still yielded an average Good’s coverage of 99.09%. The 
taxonomy of each representative OTU sequence was determined using 
the RDP classifier version 2.2 (43) against the 16S rRNA gene database 
(Silva v138) using a confidence threshold of 0.7. The community 
composition of each sample was calculated at different species 
classification levels. Bioinformatic analysis of the ileum microbiota 
was carried out using the Majorbio cloud platform.1

2.6 Statistical analysis

The experimental results were analyzed by one-way ANOVA 
using SPSS software (ver. 20.0 for Windows, SPSS Inc., Chicago, IL, 

1 https://cloud.majorbio.com

TABLE 1 Composition and nutrient levels of the experimental basal diet.

Ingredients, % Content

Corn 60.1

Soybean meal 33.07

Soybean oil 3.6

Limestone-calcium carbonate 1.1

Calcium hydrogen phosphate 1

DL-methionine (98%) 0.2

L-lysine HCL (78%) 0.2

Sodium chloride 0.3

Vitamin Premixa 0.03

Mineral Premixb 0.2

Choline chloride (50%) 0.15

Ethoxyquin (33%) 0.05

Total 100

Calculated nutrient levelsc

Metabolizable energy, kcal/kg 2,990

Crude protein 20.5

Calcium 0.99

Available phosphorus 0.44

Lysine 0.1

Methionine 0.47

aVitamin premix provided the following per kg of diet: vitamin A (retinylacetate), 12,500 IU; 
vitamin D3 (cholecalciferol), 2,500 IU; vitamin E (DL-a-tocopherol acetate), 18.75 mg; 
vitamin K3 (menadione sodium bisulfate), 2.65 mg; vitamin B1, 2 mg; vitamin B2, 6 mg; 
vitamin B6, 6 mg; vitamin B12 (cyanocobalamin), 0.025 mg; biotin, 0.0325 mg; folic acid, 
1.25 mg; pantothenic acid, 1.25 mg; nicotinic acid, 50 mg.
bMineral premix provided per kilogram of complete diet: Cu (as copper sulfate), 8 mg; Zn (as 
zinc sulfate), 75 mg; Fe (as ferrous sulfate), 80 mg; Mn (as manganese sulfate), 100 mg; Se (as 
sodium selenite), 0.15 mg; I (as potassium iodide), 0.35 mg.
cCalculated value based on the analyzed data of experimental diets.

https://doi.org/10.3389/fvets.2024.1401909
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://cloud.majorbio.com


Zhang et al. 10.3389/fvets.2024.1401909

Frontiers in Veterinary Science 04 frontiersin.org

United States) followed by Duncan’s multiple comparison tests. The 
data are expressed as mean ± standard error, and p < 0.05 indicates a 
significant difference.

3 Results

3.1 Effects of AEE on ileal morphology in 
immune-stressed broilers

The results of H&E staining (Figure 1A) showed that compared 
with saline group, the villi in the ileum from the LPS group were 
arranged sparsely, but feeding AEE alleviated the damage to the ileum 
morphology caused by immune stress. By measuring the villus height 
and crypt depth in the ileum, it was found that there was no significant 
difference in villus height between the groups at 14d-2 h, 14d-4 h, and 
21d. At 17d and 19d, the villus height in the LPS group was 
significantly lower (p < 0.05) than that in the saline group (Figure 1B). 
From 17 to 21 days of age, the crypt depth in the LPS group was 
significantly greater (p < 0.05) than control, and it was reduced in the 
LPS + AEE group compared with the LPS group, while there was no 
significant difference in crypt depth between the saline+AEE group 
and the saline group (Figure 1C). The V/C calculation of the LPS 
group was lower (p < 0.05) than that of the saline group from 17 to 
21 days of age, and V/C was increased by the addition of AEE to the 
diet (Figure 1D).

3.2 Effects of AEE on relative mRNA 
expression of tight junction genes in the 
ileum of immune-stressed broilers

At 14d-2 h, there was no significant difference in the expression 
of the tight junction genes occludin (Figure 2A), zonula occludens-1 
(ZO-1) (Figure 2B), claudin-1 (Figure 2C) and claudin-2 (Figure 2D) 
between the LPS group and the saline+AEE group compared to the 
saline group. From 14d-4 h to 17d, the expression of the tight 
junction genes in the LPS group was significantly lower (p < 0.05) 
than that in the saline group, and the addition of AEE to the feed 
significantly upregulated (p < 0.05) the expression of these genes. At 
19d, the expression of claudin-1 in the AEE added groups was 
significantly higher (p < 0.05) than that in the non-addition groups 
(Figure 2C).

3.3 Effects of AEE on relative mRNA 
expression of inflammatory cytokines in 
the ileum of immune-stressed broilers

Compared with saline group, LPS-induced immune stress 
significantly increased (p < 0.05) the relative mRNA expression of ileal 
inflammatory factors tumor necrosis factor-α (TNF-α) (Figure 3A), 
interleukin-1β (IL-1β) (Figure 3B), interleukin-6 (IL-6) (Figure 3C) 
and interleukin-10 (IL-10) (Figure  3D), COX-2 (Figure  3E) and 
mPGES-1 (Figure 3F) in the ileum of broilers. TNF-α in the LPS group 
showed high expression throughout the experiment, while the relative 
expression of IL-1β, IL-6, IL-10, and mPGES-1 on 14d were higher 
than that at the later stages, and the relative expression of COX-2 on 
21d were higher than that at other time points. The expression of 
TNF-α, IL-1β, IL-6, IL-10, COX-2, and mPGES-1 in the LPS + AEE 
group was significantly lower (p < 0.05) than that in LPS group, and 
the differences were obvious at each time point.

3.4 Effects of AEE on ileal microbiota 
composition and diversity in 
immune-stressed broilers

Alpha diversity analysis showed that there were no significant 
differences in the Simpson and Shannon indices of ileal microbiota 
among the four groups at 21d (Figures 4A,B). Venn diagram analysis 
(Figure 4C) of the composition of OTUs in the ileal microbiota at 21d 
showed that the number of OTUs shared by the four groups was 119. 
The number of unique OTUs in the saline, LPS, saline+AEE and 
LPS + AEE groups was 26, 4, 27, and 34, respectively. Principal 
Component Analysis (PCA) (Figure 4D) showed that the distribution 
of community composition among the samples of the four treatment 
groups was relatively concentrated. Community composition analysis 
showed that the predominant phyla in the ileum of the four groups 
(Figure  4E) were Firmicutes (84.77, 78.79, 79.59, 81.22%), 
Proteobacteria (8.51, 16.72, 14.04, 6.79%), and Actinobacteriota 
(6.50, 4.40, 6.28, 11.81%). Compared with the saline and LPS + AEE 
groups, the proportion of Firmicutes and Actinobacteriota in the LPS 
group was lower, while the proportion of Proteobacteria was higher. 
At the genus level (Figure 4F), the dominant genera in the ileum of 
the four groups were Lactobacillus (75.55, 73.61, 66.63, 69.43%), 

TABLE 2 Primers for RT-qPCR analysis.

Genea
Primer sequence (5′ to 3′)b GenBank 

number

occludin F: ACGGCAGCACCTACCTCAA

R: GGGCGAAGAAGCAGATGAG

XM_025144247.2

ZO-1 F: CTTCAGGTGTTTCTCTTCCTCCTC

R: CTGTGGTTTCA TGGCTGGATC

XM_021098886.1

claudin-1 F: CATACTCCTGGGTCTGGTTGGT

R: GACAGCCA TCCGCA TCTTCT

NM_001013611.2

claudin-2 F: CCTACATTGGTTCAAGCATCGTGA

R: GATGTCGGGAGGCAGGTTGA

NM_001277622.1

TNF-α F: GAGCGTTGACTTGGCTGTC

R: AAGCAACAACCAGCTA TGCAC

NM_214022.1

IL-1β F: ACTGGGCA TCAAGGGCTA

R: GGTAGAAGA TGAAGCGGGTC

NM_214005.1

IL-6 F: GCTGCGCTTCTACACAGA

R: TCCCGTTCTCA TCCA TCTTCTC

NM_204628.1

IL-10 F: AGAAATCCCTCCTCGCCAAT

R: AAATAGCGAACGGCCCTCA

NM_001004414.2

COX-2 F: CCGAATCGCAGCTGAATTCA

R: GAAAGGCCATGTTCCAGCAT

NM_001277664.2

mPGES-1 F: AGGCTCAGGAAGAAGGCATT

R: CACAGCTCCAAGGAAGAGGA

NM_001194983.1

GAPDH F: TGCTGCCCAGAACATCATCC

R: ACGGCAGGTCAGGTCAACAA

NM_204305

aTNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-10, 
interleukin-10; COX-2, cyclooxygenase-2; mPGES-1, microsomal prostaglandin E 
synthase-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
bF, forward primer; R, reverse primer.
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Escherichia-Shigella (7.71, 16.24, 12.94, 4.08%), Streptomyces (6.43, 
4.39, 6.20, 11.71%), Paenibacillus (3.66, 1.41, 2.76, 5.70%), 
Enterococcus (2.57, 1.79, 7.06, 1.04%), Bacillus (1.62, 0.52, 1.46, 
2.29%), Ralstonia (0.41, 0.19, 0.33, 0.50%), Burkholderia-
Caballeronia-Paraburkholderia (0.28, 0.11, 0.44, 0.31%), and 
Lactococcus (0.23, 0.16, 0.31, 0.35%). Compared with the saline 
group, the proportion of Lactobacillus, Streptomyces, Paenibacillus, 
Enterococcus and Bacillus in the LPS group was lower. The proportion 
of Escherichia-Shigella in the LPS group was higher than that in the 
saline group and the LPS + AEE group. The proportion of 
Streptomyces, Paenibacillus and Bacillus in the LPS + AEE group was 
higher than in the LPS group.

3.5 Line discriminant analysis effect size 
analysis of ileal microbiota

By LEfSe analysis of the saline and LPS groups, the saline group 
was enriched in Brevibacillales, Brevibacillus and Brevibacillaceae, 
while the LPS group was enriched in g_Clostridium_sensu_stricto_1, 
o_Clostridiales, f_Clostridiaceae (Figure 5A). Compared with the LPS 
group, the LPS + AEE group was enriched in Rhizobiales,  
Rhizobiaceae, Allorhizobium-Neorhizobium-Pararhizobium-
Rhizobium, Lachnoclostridium, Ruminococcaceae, Streptococcus, 
Faecalibacterium, Eisenbergiella, Blautia, DTU089, Negativibacillus, 
Tuzzerella, Oscillospiraceae, UCG-005, Shuttleworthia, 

FIGURE 1

Effects of AEE on ileal morphology in immune-stressed broilers. (A) Morphological structure of ileal tissue. (B) Villus height. (C) Crypt depth. (D) V/C, 
ratio of villus height to crypt depth. Each vertical bar represents the mean  ±  SEM (n  =  6). Bars with different letters differed significantly (p  < 0.05). Scale 
bar, 200  μm.

FIGURE 2

Effects of AEE on relative expression of tight junction protein mRNA in the ileum of immune-stressed broilers. Relative expression of occludin (A), ZO-1 
(B), claudin-1 (C), and claudin-2 (D) mRNA in ileum. The gene for GAPDH was used as a reference for normalization. Each vertical bar represents the 
mean  ±  SEM (n  =  6). Bars with different letters differed significantly (p  < 0.05).
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Clostridia_vadinBB60_group, Erysipelatoclostridium, Colidextribacter, 
Oscillibacter, Flavonifractor and UCG-009 (Figure 5B). Compared with 
the saline group, the saline+AEE group was enriched in Rhizobiales, 
Rhizobiaceae, Allorhizobium-Neorhizobium-Pararhizobium-
Rhizobium, Eisenbergiella, Faecalibacterium, Anaerotruncus, DTU089, 
Negativibacillus, GCA-900066575 and Tuzzerella (Figure 5C).

4 Discussion

The gut is not only a digestive organ, but also has a powerful 
immune function in the body (44). The normal structure of the intestinal 
mucosa is designed for digestion (45) and nutrient absorption, but also 
has immunoregulatory activity. Intestinal villus height, crypt depth and 
their ratio (V/C) are important indicators of intestinal health. The 
restoration of normal intestinal morphology and structure can help 
relieve stress and improve intestinal barrier function (46). The higher the 
villus height, the larger the surface area available for nutrient absorption 
(47). A shallower crypt depth indicates more mature cells (48) with 
superior ability to digest and absorb beneficial compounds (49). The 
V/C ratio reflects the comprehensive intestinal nutrient absorption 
capacity and the degree of development (50). Broilers under intensive 
production conditions are easily infected by pathogenic microorganisms, 
which often induce immune stress in the chickens (51), causing damage 
to the intestinal mucosa (52), intestinal villi atrophy (53), increased crypt 
depth and intestinal permeability (54). Nie et  al. (55) found that 
LPS-induced immune stress increased intestinal permeability, damaged 
mucosal structure, increased crypt depth, and decreased villus height 
and V/C in chickens. Similarly, in this study, peritoneal injection of 
broilers with LPS seriously damaged ileum morphology, and resulted in 
a significant decrease in villus height on 17d and 19d, a significant 

increase in crypt depth from 17d to 21d, and a significant decrease in 
V/C. However, dietary supplementation with AEE significantly reduced 
the morphological damage and the villus crypt depth, and increased V/C 
in the later stages of the experiment. This suggests that AEE has a 
potential protective effect on intestinal barrier function and can promote 
intestinal nutrient absorption by improving ileum villi morphology.

Tight junctions are the main connective structures between 
intestinal mucosal epithelial cells (56), and they play a critical role in 
maintaining the integrity of the intestinal mucosal structure and a 
strong intestinal barrier (57). The tight junctions between intestinal 
epithelial cells are formed by a number of specific proteins such as 
occludin, claudins, ZOs and the junctional adhesion molecule (58). 
Occludin and claudin-1 are mainly employed in the construction and 
maintenance of tight junction structures (59), while claudin-2 forms 
cell bypass pores and participates in water transport and ion transfer 
(60). ZO-1 is an important scaffold protein, which regulates adhesion 
junctions and signal transduction between cells by interacting with 
other tight junction proteins (61). When broilers are subjected to 
immune stress, the connections between the ileal epithelial cells 
weaken, allowing more inflammatory pathogen molecules and 
disease-causing bacteria to pass through and disrupt intestinal 
immune function (62). According to a report (63), LPS stimulation 
significantly decreased the expression of occludin, ZO-1 and claudin-1 
in the ileum of broilers, and induced intestinal barrier dysfunction. In 
this study, LPS-induced immune stress significantly reduced the 
relative expression of the tight junction genes occludin, ZO-1, claudin-
1, and claudin-2 in the ileum at 14d-4 h, 15d, and 17d, which is 
evidence of impaired intestinal barrier function. Dietary AEE 
supplementation significantly increased the expression of these tightly 
linked genes in the ileum of immune-stressed broilers, especially in 
the early stages of the experiment. Taken together, these results suggest 

FIGURE 3

Effects of AEE on relative mRNA expression of inflammatory cytokines in the ileum of immune-stressed broilers. Relative mRNA expression of TNF-α 
(A), IL-1β (B), IL-6 (C), IL-10 (D), COX-2 (E), and mPGES-1 (F) in ileum. The gene for GAPDH was used as a reference for normalization. Each vertical bar 
represents the mean  ±  SEM (n  =  6). Bars with different letters differed significantly (p  < 0.05).
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that AEE has a positive regulatory effect on intestinal tight junction 
gene expression, thereby improving intestinal barrier function.

Intestinal barrier damage is often associated with an inflammatory 
response (64), and signals from the inflammatory cytokines are key to 

the regulation of the inflammatory response (65). TNF-α and IL-1β are 
important pro-inflammatory cytokines in the intestine (66), and IL-6 
has both pro-inflammatory and anti-inflammatory regulatory 
properties, depending on the environment in which it is produced and 

FIGURE 4

Effects of AEE on ileal microbiota composition and diversity in immune-stressed broilers. Alpha-diversity indicated by observed Simpson (A) and 
Shannon (B) index. Venn diagram showing overlap of compositions of bacterial OTUs in different groups (C). Beta-diversity indicated by principal 
component analysis (PCA) on the phylum level (D). Average relative abundances of dominant bacterial phylum (E) and genus level (F) in ileum under 
different treatments.
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released (67). IL-10 is a critical anti-inflammatory cytokine with 
immunomodulatory functions (68), which can inhibit the expression 
of TNF-α, IL-6, and IL-1β (69). When pro-inflammatory cytokines are 

expressed in large quantities, the body can lower the inflammatory 
response by up-regulating the expression of anti-inflammatory 
cytokines (70), which jointly participate in maintaining the immune 

FIGURE 5

Cladograms and bar plots obtained by LEfSe analysis showed differences in microbiota between the treatment groups. LEfSe analysis of the saline and 
LPS groups (A). LEfSe analysis of the LPS and LPS  +  AEE groups (B). LEfSe analysis of the saline and saline + AEE groups (C). The different color nodes in 
cladogram represent the microbial groups that are significantly enriched in the corresponding group and have a significant effect on the difference 
between the groups. Light yellow nodes represent microbial groups that do not differ significantly between groups, or have no significant effect on 
differences between groups. The LDA scores represent the effect size of each abundant species. The bar plots show the microbiota with LDA score  >  2, 
which is a biomarker of statistical difference (LDA score threshold  =  2).
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balance and barrier function of the intestine. The results of this study 
showed that intraperitoneal injection of LPS significantly enhanced the 
mRNA expression of the ileal inflammatory factors TNF-α, IL-1β, IL-6, 
and IL-10 throughout the trial. However, increased levels of IL-10 
mRNA expression are not always beneficial. In some cases, the high 
expression of IL-10 may inhibit the effective clearance of pathogens by 
the immune system, leading to the persistence or aggravation of 
infection. In addition, in some autoimmune diseases, the regulatory 
function of IL-10 may be impaired, making inflammation still unable 
to be effectively controlled even when the IL-10 mRNA expression level 
is increased. Therefore, the results of this study fully confirmed the 
LPS-mediated intestinal inflammatory response in broilers. Consistent 
with our results, Liu et  al. (71) showed that LPS treatment led to 
increased mRNA expression of TNF-α, IL-1β, and IL-6 in the ileum of 
broilers. LPS can induce systemic inflammatory response in animals 
by regulating I-κB kinase/NF-κB, Toll-like receptors and downstream 
cytokine genes signaling pathways (72). In this study, the expression of 
ileal inflammatory factor genes in the LPS + AEE group was 
significantly down-regulated compared with the LPS group, suggesting 
that AEE had a significant alleviating effect on ileal inflammation in 
broilers exposed to immune stress. Similar studies have confirmed that 
AEE shows good anti-inflammatory properties both in vivo and in vitro 
(20). It can inhibit the formation of LPS-induced inflammatory 
mediators, and significantly reduce the expression and secretion of 
inflammatory cytokines such as IL-1β, TNF-α, and IL-6, thus alleviating 
the inflammatory response (18). Thus, our study strongly supports the 
anti-inflammatory potential of AEE in broilers and provides a 
theoretical basis for the role of AEE in resisting immune stress.

It is well known that stress can activate the Hypothalamic–
Pituitary–Adrenal (HPA) axis, and our previous studies have found 
that the HPA axis can be activated by up-regulation of the expression 
of the COX-2/mPGES-1/PGE2 signaling pathway in LPS-induced 
immune stress models (73). In this study, we obtained the same results: 
the expression of COX-2 and its downstream enzyme mPGES-1 in the 
ileum of broilers in the LPS group was significantly higher than that 
in saline group. COX-2 is only expressed at low levels in most tissues 
and organs in a healthy body. It is induced by cytokines at the site of 
inflammation and injury, causing the synthesis and accumulation of 
prostaglandins at the damaged site, promoting an inflammatory 
response leading to tissue damage (74), which is consistent with the 
above elevated expression of ileum inflammatory factor genes in 
broilers treated with LPS. These results suggest that ileal inflammation 
induced by peritoneal injection of LPS may also be  related to the 
increased mRNA levels of COX-2 and mPGES-1 in broilers. The 
COX-2-related signaling pathway can also regulate the expression of 
intestinal tight junction proteins (75). This would affect the integrity 
of the intestinal epithelial barrier, suggesting that the decrease in tight 
junction gene expression caused by LPS stimulation may involve the 
activation of the COX-2-related signaling pathway. Previous studies 
have confirmed that AEE can regulate the pathways associated with 
arachidonic acid metabolism and reduce the expression of COX-2 and 
other genes (20). Similarly, the data of this study showed that the 
addition of AEE significantly decreased the mRNA expression of 
COX-2 and mPGES-1 in the ileum of broilers under LPS-induced 
immune stress. Thus, we further confirmed the protective effect of 
AEE on intestinal health in immune-stressed broilers by alleviating 
ileal inflammation and improving barrier function through a 
mechanism that may involve COX-2-related signal transduction.

The current study also revealed that the composition of gut 
microbes can significantly affect the health of poultry (76). The intestinal 
microbiota plays an important role in inhibiting pathogen infection and 
regulating digestion and nutrient absorption (77). The beneficial 
microbes help to maintain homeostasis by protecting the intestinal 
barrier (78) and regulating the nervous, endocrine and immune 
systems, which are indispensable parts of the body (79, 80). Under 
normal conditions, the intestinal microbiota of broilers is in a relatively 
stable equilibrium, with the beneficial gut bacteria colonizing the 
intestinal mucosa, thus preventing the attachment and growth of 
pathogenic bacteria and promoting the optimal regulation of the 
immune system and other physiological processes (81, 82). However, 
when the body is stressed, the harmful bacteria in the intestine multiply 
rapidly and produce a large amount of bacterial endotoxin, which causes 
an imbalance in the normal microbial community in the gut (83), 
changes the normal physiological and biochemical environment of the 
intestine, negatively affects normal intestinal function, and can lead to 
host disease (84). In this study, immune stress reduced the relative 
abundance of beneficial bacteria, such as Firmicutes, and increased the 
relative abundance of harmful bacteria, such as Proteobacteria, in the 
ileum of broilers. Firmicutes are a common type of dominant bacteria 
in the intestines of broilers (85). They participate in the host’s material 
and energy metabolism processes (86), produce butyrate that promotes 
the development of intestinal epithelial cells and has anti-inflammatory 
effects (87), and they are capable of digesting dietary fiber and other 
food components, and interacting with the intestinal mucosa to protect 
health (88). There are many pathogenic microorganisms in the phylum 
Proteobacteria, such as Helicobacter pylori, Escherichia and Salmonella 
(89), and an increase in Proteobacteria is a sign of gut bacterial 
imbalance (90). On the genus level, the proportion of beneficial bacteria 
such as Lactobacillus in the ileum of the LPS group was lower than that 
in the saline group, while the proportion of Escherichia-Shigella was 
higher. Lactobacillus is a common probiotic in the phylum Bacteroidota 
(91), which can ferment in the intestine to produce lactic acid, reduce 
intestinal pH to inhibit the growth of harmful bacteria, and effectively 
maintain the acid–base balance of the intestine (92). It can also help to 
enhance immune function and provide nutritional support to promote 
intestinal health (93). Escherichia-Shigella can cause gastrointestinal 
infections such as diarrhea and food poisoning (94). This further 
suggests that LPS-induced immune stress can lead to intestinal 
microecological imbalance. In this study, the addition of AEE increased 
the proportion of Firmicutes and Lactobacillus in the ileum of broilers 
stimulated by LPS, and reduced the proportion of Proteobacteria and 
Escherichia-Shigella, which proves that AEE can regulate the ileum 
microbiota of broilers under immune stress, alleviate the microbial 
imbalance caused by LPS stimulation, and improve intestinal health. 
This is consistent with the findings of Ma et al. (25) and Lu et al. (26). 
LEfSe analysis showed that Brevibacillus was dominant in the saline 
group compared with the LPS group, and we  found that bacillus 
fermentation products could improve intestinal morphology and 
growth performance, increase short-chain fatty acid (SCFA) level, 
normalize gut microbial composition and maintain optimal intestinal 
health of broilers (95). Compared with the LPS group, the LPS + AEE 
group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, 
Faecalibacterium, Negativibacillus, Oscillospiraceae, Flavonifractor, and 
others that have also been shown to play an important role in 
maintaining health (96–99). β-glucan extracted from Rhizobium can 
promote growth and immune regulation and can control obesity (100). 
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Lachnoclostridium has important metabolic and immunomodulatory 
functions in the intestinal microbiota, and its abundance is positively 
correlated with the level of acetic acid in the intestine, which can 
effectively stabilize the intestinal environment through anti-
inflammatory and immunosuppressive effects (101). Ruminococcaceae 
can break down plant cellulose and other complex carbohydrates and 
produces short-chain fatty acids, such as butyric acid and acetic acid, 
which are essential for maintaining gut health (102). Faecalibacterium 
plays an important role in promoting intestinal barrier function and 
inhibiting inflammation (103). Taken as a whole, the results of these 
experiments demonstrate that the addition of AEE can improve the 
intestinal bacterial composition of broilers, thereby contributing to the 
improvement of digestion, absorption and immune function.

5 Conclusion

Supplementation of broiler diets with 0.1 g/kg AEE protected 
intestinal health by improving intestinal villus morphology, enhancing 
tight junction gene expression and reducing the inflammatory 
response and immune stress of broilers caused by LPS stimulation, 
and the mechanism may be related to COX-2 signal transduction and 
improved intestinal microbiota composition.
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