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Multi-omics unveils tryptophan 
metabolic pathway as a key 
pathway influencing residual feed 
intake in Duroc swine
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The genetic trait of residual feed intake (RFI) holds considerable importance in 
the swine industry. Recent research indicates that the gut microbiota of pigs plays 
a pivotal role in the manifestation of the RFI trait. Nevertheless, the metabolic 
pathways involved in the functioning of these microorganisms remain elusive. 
Thus, based on the ranking of the RFI trait in Duroc pigs, the present study selected 
the top 10 and bottom 10 pigs as the experimental subjects. The distribution and 
metabolite differences of cecal microbiota were analyzed using 16S rRNA gene 
sequencing and liquid chromatography–tandem mass spectrometry (LC–MS/
MS) techniques. The low RFI cecal group was named LRC, and the high RFI 
cecal group was named HRC. The results indicate that the LRC group had lower 
RFI, feed conversion ratio (FCR), average daily feed intake (ADFI) (p  <  0.001), and 
thinner backfat (p  <  0.05) compared with the HRC group. We  simultaneously 
recorded the foraging behavior as well, the LRC group had a significant increase 
in total time spent at the feeder per day (TPD) (p  <  0.05) and a significant increase 
in average feed intake per mins (AFI) and the number of visits to the feeder per 
day (NVD) compared to the HRC group (p  <  0.001). Clostridium_XVIII, Bulleidia, 
and Intestinimonas were significantly enriched in the LRC group (p  <  0.01), while 
Sutterella, Fusobacterium, and Bacteroides were significantly increased in the 
HRC group (p  <  0.01). In the metabolome, we detected 390 (248 metabolites up 
and 142 down in the LRC compared with HRC), and 200 (97 metabolites up and 
103 down in the LRC compared with HRC) differential metabolites in positive 
and negative ionization modes. The comprehensive analysis found that in the 
LRC group, Escherichia and Eubacterium in the gut may increase serotonin 
content, respectively. Bacteroides may deplete serotonin. We suggest that the 
RFI may be partly achieved through tryptophan metabolism in gut microbes. 
In individuals with low RFI, gut microbes may enhance feed efficiency by 
enhancing host synthesis and metabolism of tryptophan-related metabolites.
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1 Introduction

In animal production, the indicators we evaluate for animal feed 
efficiency (FE) are usually feed conversion ratio (FCR) and residual 
feed intake (RFI). FCR measures how much feed is required for each 
pound of weight gain, while RFI measures the feed intake of an animal 
compared to its expected feed intake based on its weight and rate of 
gain (1). However, FCR is a ratio-based metric, which means that pigs 
with different growth and development status can have the same value, 
leading to errors in breeding outcomes (2). This limits the effectiveness 
of using FCR as a sole measure of feed efficiency in swine production. 
A more comprehensive approach would be to use additional measures 
such as RFI, which evaluates an animal’s feed intake relative to their 
expected feed intake based on individual factors such as weight, 
backfat, and growth rate (3). By utilizing multiple metrics, a better 
understanding of feed efficiency in swine production can be achieved, 
resulting in more accurate and effective strategies.

The gut microbiome is a complex system that plays a crucial role 
in the overall health and well-being of mammals. This intricate 
ecosystem is made up of trillions of microorganisms that live within 
the gastrointestinal tract and form a symbiotic relationship with the 
host animal. The gut microbiome serves a myriad of functions within 
the body, including metabolism (4, 5) and immune system regulation 
(6), nutrient absorption (7), and protection from pathogens (8). In 
terms of feed efficiency, gut microbiota plays a crucial role by 
degrading complex compounds in the food, synthesizing vitamins (9), 
regulating amino acid metabolism (10), and facilitating mineral 
absorption (11), among other pathways, to provide the host with 
essential nutrients. Noteworthy findings have recently emerged 
indicating that the cecal microbiota of low RFI pigs displays increased 
prevalence of Escherichia/Shigella, Ruminobacter, and Veillonella, 
whereas high RFI pigs exhibit heightened colonization of 
Campylobacter (12). Among Duroc pigs, various members of 
Clostridia were found to be notably enriched in individuals with low 
RFI, while bacteria linked to inflammation, such as Prevotella, 
exhibited higher abundance in individuals with high RFI (13). These 
discoveries imply a correlation between gut microbiota and feed 
efficiency in pigs, although the exact mechanisms remain elusive.

The microbial population relies on the nutrient supply of the host 
to maintain its growth and population stability, while the host benefits 
from the metabolic activities of the microbial population and regulates 
its own functions by digesting and utilizing its metabolites. Previous 
investigations have elucidated that the cecal microbiota synthesizes 
diverse metabolites, which are subsequently absorbed by the cecal 
mucosal epithelial cells, thereby influencing the efficiency of 
nutritional absorption and resulting in phenotypic variations (14–16). 
After transplanting microbiota from low RFI chickens into high RFI 
chickens, a noticeable disparity in the profile of short-chain fatty acids 
in the cecal microbiome composition was observed (17). Nevertheless, 
there are limited studies on the complex relationship between the 
cecal microbial porcine RFI phenotype and the cecal microbiota 
and metabolites.

In addition, feeding behavior, one of the important cornerstones 
of life activities, has been found to affect representations with feed 
efficiency (18, 19). Yang et al. found that selection for decreased RFI 
has resulted in pigs that spend less time eating and eat faster (20). 
Research indicates that there is a positive genetic and phenotypic 
correlation (0.95 and 0.90, respectively) between daily average feed 

intake and RFI (21). Hence, exploring the correlation between feeding 
behavior and RFI can aid us in gaining profound insights into the food 
intake process and further optimizing feeding management measures 
to enhance animal growth efficiency and overall health status.

In the current commercial pig breeding systems, Duroc pigs are 
commonly selected as superior sires in the Duroc-Landrace-Yorkshire 
crossbreeding program. Compared to Landrace and Yorkshire pigs, 
Duroc pigs are known for their outstanding on feed efficiency and 
growth rate. Therefore, studying the functionality of their gut 
microbiota in relation to feed utilization efficiency holds significant 
importance. The objective of this study is to establish correlations 
between RFI phenotypes and cecal microbiota and metabolites in 
Duroc pigs, with a particular focus on differences in feeding behavior 
among individuals with extreme RFI. The aim is to provide insights 
that can contribute to enhancing feed efficiency.

2 Materials and methods

2.1 Animals

In this study, 209 Duroc gilts were generously donated by a 
commercial pig farm located in Sichuan, China, with an average age 
of 83.62 ± 5.37 days and an average weight of 33.68 ± 4.23 kg. The 
Duroc gilts were randomly allocated to 15 pens, with 12–14 pigs per 
pen, and each pen was equipped with a state-of-the-art Feed Intake 
Recording Equipment (FIRE) (RLX-096, Osborne, United States). 
Prior to the onset of the experiment, the pigs were allowed to 
acclimatize to the FIRE equipment over a duration of 1 week. The 
measurement process lasted for a total of 93 days, and each pig was 
assigned a unique radio frequency identification tag on the left ear for 
the FIRE system to detect. Upon entering the FIRE, the system 
automatically recorded pertinent parameters, including the number 
of visits to the feeder, feeding time, feed intake, and body weight. The 
swine resided within a climate-controlled environment, the 
temperature modulating between a mild 18 and a warm 25 degrees 
Celsius, accompanied by a relative humidity oscillating from 60% to a 
slightly damp 80%, with a 12 h light/dark cycle (lighting from 7 am to 
7 pm). Throughout the trial, all the pigs were fed with the same corn-
soybean commercial diet, conforming to the Chinese standard GB/T 
5915-2020, and were not administered antibiotics or drugs. The 
primary constituents of the feed comprise maize, soya bean meal, and 
bran. It boasts a composition of 15% crude protein, 1.6% crude fat, 5% 
crude fiber, and 7.5% crude ash, in addition to noteworthy amounts 
of lysine (0.9%), calcium (0.8%), phosphorus (0.6%), and a dash of salt 
at 0.3%. Adequate supplies of clean water were provided ad libitum 
during the entire study period, and regular veterinary inspections 
were conducted to ensure that only healthy animals were selected for 
the trial.

2.2 Data collection and RFI calculation

We performed data quality control on the information gathered 
by the FIRE system, which were evaluated based on certain 
parameters: daily feed intake ranging from 0.5 to 4.5 kg, the 
number of feed intakes per day of 2 to 20 times, and daily feeding 
time between 5 min to 2 h. Any data that fell outside of these 
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established ranges were identified as outliers and subsequently 
removed. After quality control, the dataset had reduced from the 
initial 105,202 entries to 92,305 entries. Each day’s weight was 
calculated based on the average measured body weight. Using the 
data that passed the quality control test, we then evaluated each 
pig’s total time spent at the feeder per day (TPD), number of visits 
to the feeder per day (NVD), average feed intake per minutes 
(AFI), measurement initiation body weight (W1), measurement 
termination body weight (W2), and average daily feed intake 
(ADFI). At the point when the pigs’ average weight reached 115 kg, 
their backfat thickness (BFT) in the tenth rib was determined using 
real-time B-mode ultrasound (MyLab™X7, ESAOTE, 
Genova, Italy).

The average daily gain (ADG), ADFI, FCR, and RFI were 
calculated by the following model (22, 23):
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Where TFI refers to total feed intake. AMW means average 
metabolic weight.

2.3 Sample collection

The HRC and LRC groups were comprised of the ten pigs with 
the highest and lowest RFI scores, respectively. Twenty select pigs 
were then transported to a commercial slaughterhouse for slaughter, 
where they remained on-site overnight, and fasted but with ad 
libitum access to water prior to being slaughtered the following 
morning. The selected live pigs were humanely slaughtered in 
accordance with the Live Pig Slaughter Guidelines (GB/T 17236-
2019), which are approved by the General Administration of Quality 
Supervision, Inspection, and Quarantine of the People’s Republic of 
China and the Standardization Administration of the People’s 
Republic of China. After being stunned with carbon dioxide, they 
were bled for slaughter. The cecum was opened with sterile 
ophthalmic scissors, and the cecal contents were carefully collected 
with sterile forceps, immediately transferred to a sterile 50 mL 
centrifuge tube, and preserved in liquid nitrogen. Separate utensils 
were employed for each sample to ensure that there was no 
cross-contamination.

2.4 16S rRNA gene sequencing

The QiAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) was 
employed to extract DNA from the cecal contents in line with the 
manufacturer’s instructions. Subsequently, approximately 30 ng of 
genomic DNA samples were taken and matching fusion primers were 
employed to establish an amplification PCR reaction system. The PCR 
amplification products were then purified with Agencourt AMPure 
XP magnetic beads (Beckman Coulter, Brea, CA), dissolved in Elution 
Buffer, labelled, and subjected to library construction. The fragment 
range and concentration of the library were determined using the 
Agilent 2,100 Bioanalyzer (Agilent, Santa Clara, CA, United States). 
Using the HiSeq platform, properly built libraries were sequenced 
based on the insert size. For sequence assembly, we used the Fast 
Length Adjustment of Short reads (FLASH) splicing program 
(v.1.2.11) to join the paired reads generated from paired-end 
sequencing into one sequence using overlapping relationships to 
produce tags of hypervariable regions (24). The splicing conditions 
were set such that the minimum match length was 15 bp, and the 
allowable mismatch rate in the overlapping region was 0. Afterwards, 
the spliced Tags were clustered into Operational Taxonomic Units 
(OTU s) (sequence similarity >97%) utilizing USEARCH (v.7.0.1090) 
software (25).

2.5 16S rRNA gene sequencing data 
analysis

Calculation of the Alpha diversity analysis (including Chao1 
index, Ace index, Shannon index, Simpson index and the Good’s 
coverage) was performed using MOTHUR (v.1.30.1) (26). Beta-
diversity was quantified through the utilization of the Bray–Curtis 
distance metric, which was computed as resemblances (ANOSIM). 
Furthermore, the visualization of the results was accomplished by 
employing the QIIME2 package in the R software, employing 
principal coordinates analysis (PCoA) (27). Linear discriminant 
analysis effect size (LEfSe) analysis was performed using LEfSe 
software (28). PICRUSt2 (v.2.2.0b) was used for functional 
annotation of microbial communities (29). The rest of the graphs 
were drawn using the R (v 4.1.0). Statistically significant variations 
in the abundance of microbiota were observed at the phylum and 
genus levels, distinguishing between the HRC and LRC groups. This 
discrimination was determined by employing Student’s t-test and 
controlling for false discovery rate (FDR). Based on the 16S 
sequencing data, functional predictions based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database were 
performed using the PICRUSt2 software (30).

2.6 Liquid chromatography tandem mass 
spectrometry (LC–MS/MS) analysis

In this experiment, approximately 60 mg of cecal contents were 
extracted from each of the cryopreserved HRC and LRC groups. 
Ground the samples into homogenate using a tissue grinder. Then, 
added 400 mL of extraction solvent (methanol: water = 4:1) for 
extraction. Collected the supernatant by centrifugation (13,000 g, 
15 min, 4°C) for further analysis. To separate and detect metabolites, 
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TABLE 2 Differences in the cecal contents microbial diversity of the two 
groups.

Parameter LRC (n  =  10) HRC (n  =  10) p-value

Chao1 723.45 ± 122.62 574.44 ± 73.00 < 0.01

Ace 713.56 ± 108.14 554.66 ± 68.16 < 0.01

Shannon 3.96 ± 0.63 3.40 ± 0.45 0.063

Simpson 0.07 ± 0.06 0.11 ± 0.06 0.315

Coverage 0.99 ± 0.00 0.99 ± 0.00 0.063

The data were expressed as the mean values ± standard deviation (SD). The P were 
determined using student’s t-test.

a Waters 2D UPLC system (provided by Waters Corporation, 
United  States) in combination with a tandem Q Exactive high-
resolution mass spectrometer (manufactured by Thermo Fisher 
Scientific, MA, United  States) was employed. The following 
chromatographic conditions were applied: employment of a BEH 
C18 column (100 mm length, 2.1 mm internal diameter, and 1.7 μm 
particle size; Waters, Milford, United States); the mobile phase for 
positive ion mode entailed an aqueous solution containing 0.1% 
formic acid (Solution A) and 100% methanol comprising 0.1% 
formic acid (Solution B). Conversely, the mobile phase for negative 
ion mode utilized an aqueous solution harboring 10 mM 
ammonium formate (Solution A) and 95% methanol containing 
10 mM ammonium formate (Solution B). The elution was executed 
along the following gradient: 0–1 min, 2% Solution B; 1–9 min, 
2–98% Solution B; 9–12 min, 98% Solution B; 12–12.1 min, a 
transition from 98% Solution B to 2% Solution B; 12.1–15 min, 2% 
Solution B. The sample injection volume was set at 5 μL, and the 
flow rate reached 0.36 mL/min. The column temperature was 
maintained at 45°C. Moreover, both positive and negative ion scan 
modes were employed to capture the signal emanating from the 
mass spectrometer analysis. Regarding the mass spectrometry 
settings, a stepped normalized collision energy protocol was 
utilized, employing values of 20, 40, and 60 eV respectively, while 
the spray voltage was set to 3.80 KV for positive mode and 3.20 KV 
for negative mode. Additional settings encompassed a capillary 
temperature of 320°C, an auxiliary gas heater temperature of 350°C, 
a sheath gas flow rate of 40 mL/min, and an auxiliary gas flow rate 
of 10 mL/min.

2.7 LC–MS/MS data analysis

The raw data were preprocessed by metaX software for data 
preprocessing, statistical analysis, metabolite classification 
annotation, and functional annotation (31). The analysis was 
conducted utilizing the free online platform MetaboAnalyst 5.01 
(32). Calculate the Variable importance in the projection (VIP) value 
from Partial Least Squares-Based Discriminant Analysis (PLS-DA). 
VIP ≥ 1.0, absolute fold change (FC) ≥ 2.0, p < 0.05 (Student’s t-test) 
were used as criteria for the selection of differential metabolites. The 
rest of the graphs were drawn using the R software (v.4.1.0). Pearson 
correlation analysis was used to determine the relationship between 
microbial communities and metabolites using the heatmap package 
(v.1.0.12) in R software.

2.8 Combined analysis of microbiome and 
metabolome

The prediction of the heat map relied on a genome-scale metabolic 
model (GEM)-derived prognostic model. This prognostic model was 
built upon a logical regression model, trained on a meticulously 
crafted, GEM. It holed the capacity to anticipate the potential synthesis 
of each metabolite across various categorical tiers.

1 www.metaboanalyst.ca

2.9 Statistical analysis

The data regarding growth performance and feeding behavior 
measurements were expressed as the mean ± standard deviation (SD). 
Statistical comparisons between groups were conducted using 
Student’s t-test with the aid of SPSS (v.22.0). For all results, the P 
criterion was as follows: *p < 0.05 was determined to be statistically 
significant, **p < 0.01 indicated a high level of statistical significance, 
and ***p < 0.001 denoted extremely significant.

3 Results

3.1 Growth performance and feeding 
behavior of pigs

First, we  conducted statistical analysis on the production 
performance of the selected pigs (Table 1). The significant differences in 
RFI phenotypes prove the success of our grouping (p < 0.05). The results 
revealed that the LRC group exhibited lower FCR, ADFI (p < 0.001), and 
lower thicker backfat (p < 0.05) compared to HRC group.

Additionally, we assessed the feeding behavior of both groups, 
primarily focusing on the following metrics: TPD, NVD, and 
AFI. Interestingly, the LRC group exhibited markedly elevated levels 
of TPD (p < 0.05), contrasted by considerably and highly significantly 
reduced measures of AFI and NVD (p < 0.001) when juxtaposed with 
the HRC group.

TABLE 1 Ranking pigs by RFI statistics on growth performance 
parameters and feeding behavior.

Parameter LRC (n  =  10) HRC (n  =  10) p-value

RFI (kg) −0.270 ± 0.020 0.353 ± 0.017 < 0.001

FCR 1.971 ± 0.104 2.422 ± 0.191 < 0.001

ADFI (kg/day) 1.863 ± 0.125 2.358 ± 0.190 < 0.001

ADG (kg/day) 0.946 ± 0.067 0.975 ± 0.052 0.328

BFT (mm) 8.365 ± 1.559 9.857 ± 1.225 0.037

TPD 65.413 ± 3.613 59.983 ± 4.549 0.015

NVD 5.685 ± 0.643 7.265 ± 0.486 < 0.001

AFI 0.029 ± 0.003 0.039 ± 0.004 < 0.001

Mean and standard deviation (SD) concentrations were given as the mean ± SD. RFI, residual 
feed intake; FCR, feed conversion ratio; ADFI, average daily feed intake; ADG, average daily 
gain; BFT, backfat thickness; TPD, total time spent at feeder per day; NVD, number of visits 
to the feeder per day; AFI, average feed intake per mins. The P were determined using 
student’s t-test.
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3.2 Sequencing analysis and alpha and beta 
diversity

A total of 1,111,597 readings were obtained from twenty 
specimens, averaging 55,579 readings per specimen. Following a 
thorough quality control and screening process, 1,288 OTUs 
were identified.

We have demonstrated the disparity in alpha diversity between 
the two groups, examining two facets: calculating the indices of 
bacterial richness estimators (Chao1, Ace) and computing the 
indices of bacterial diversity (Shannon, Simpson). The 
corresponding outcomes have been elaborated in Table 2. Notably, 
when comparing the LRC group to the HRC group, the flora’s 

abundance exhibited a significant difference (p < 0.01), whereas 
disparities in flora diversity were not statistically significant. 
Furthermore, the Good’s coverage analysis revealed a comprehensive 
coverage exceeding 99%, thus affirming the reliability of 
the findings.

In the beta diversity difference results, PCoA revealed distinct 
structural differences in the composition of the intestinal microbiota 
between the LRC and HRC group (p < 0.05) (Figure 1A). In light of the 
OTU analysis results derived from each sample, the widely utilized 
weighted unifrac index will be  implemented to measure the 
dissimilarity coefficient between two specimens. As depicted in 
Figure 1B, a pronounced separation had been observed amongst the 
samples from both groups.

FIGURE 1

Differences in beta diversity between the two groups. (A) Principal Co-ordinates Analysis (PCoA) at the OTUs level. Varied colors represent different 
classifications, and a closer proximity amongst the samples indicates a higher similarity in their microbial compositions, thereby inferring a diminished 
degree of variance. (B) Based on the distance matrix of beta diversity, hierarchical clustering analysis, utilizing the NPGMA (Unweighted Pair Group 
Method with Arithmetic Mean) algorithm, was performed to construct a dendrogram, yielding a tree-like relationship for visual analytical purposes.

FIGURE 2

Microbial composition of gut microbiota in experimental pigs at different taxonomic levels by 16S rRNA gene sequencing. (A) The overall compositions 
of the cecal contents microbiota of the LRC and HRC groups were represented as bar plots at the phylum level. (B) The overall compositions of the 
cecal contents microbiota of the LRC and HRC groups were represented as bar plots at the genus level.
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TABLE 3 Significant microbial differences in the cecal contents microbial 
of the two groups.

Level Name
p-

value
FDR

Statistics 
(LRC VS 

HRC)

Phylum

Firmicutes 0.000 0.000 6.255

Proteobacteria 0.017 0.041 2.813

Actinobacteria 0.019 0.041 2.809

Lentisphaerae 0.006 0.021 −3.479

Bacteroidetes 0.002 0.008 −3.652

Fusobacteria 0.001 0.008 −4.246

Class

Clostridia 0.000 0.002 5.954

Erysipelotrichia 0.004 0.019 3.762

Gammaproteobacteria 0.013 0.032 3.008

Actinobacteria 0.019 0.042 2.809

Deltaproteobacteria 0.008 0.022 −3.153

Betaproteobacteria 0.005 0.021 −3.349

Oligosphaeria 0.006 0.022 −3.479

Bacteroidia 0.002 0.011 −3.700

Fusobacteriia 0.001 0.011 −4.246

Order

Clostridiales 0.000 0.002 5.955

Erysipelotrichales 0.004 0.021 3.762

Enterobacteriales 0.013 0.036 3.000

Coriobacteriales 0.019 0.046 2.809

Desulfovibrionales 0.007 0.022 −3.251

Burkholderiales 0.005 0.022 −3.349

Oligosphaerales 0.006 0.022 −3.479

Bacteroidales 0.002 0.012 −3.700

Fusobacteriales 0.001 0.012 −4.246

Family

Ruminococcaceae 0.002 0.025 4.168

Erysipelotrichaceae 0.004 0.028 3.762

Lachnospiraceae 0.005 0.028 3.506

Eubacteriaceae 0.007 0.028 3.284

Enterobacteriaceae 0.013 0.045 3.000

Rikenellaceae 0.014 0.045 −2.835

Desulfovibrionaceae 0.007 0.028 −3.251

Sutterellaceae 0.005 0.028 −3.349

Oligosphaeraceae 0.006 0.028 −3.479

Fusobacteriaceae 0.001 0.021 −4.246

Bacteroidaceae 0.000 0.006 −5.584

Genus

Clostridium_XVIII 0.003 0.047 3.783

Bulleidia 0.002 0.047 3.748

Intestinimonas 0.002 0.047 3.689

Sutterella 0.004 0.047 −3.434

Fusobacterium 0.002 0.047 −3.872

Bacteroides 0.000 0.014 −5.584

The P were determined using student’s t-test. FDR values were determined by Benjamini–
Hochberg FDR correction. The sample size was n = 10.

3.3 Microbial composition

In the LRC group, three phyla, namely Bacteroidetes (22.53%), 
Firmicutes (51.28%), and Proteobacteria (19.19%), were dominant. 
Conversely, in the HRC group, Bacteroidetes (41.48%), Fusobacteria 
(32.45%), and Firmicutes (18.28%) played a pivotal role (Figure 2A). 
On a genus level analysis, the LRC group presented four prevailing 
genera: Escherichia (15.18%), Alloprevotella (7.69%), Eubacterium 
(6.78%), and Fusobacterium (5.26%). In comparison, the four 
dominant genera within the HRC group comprised of Fusobacterium 
(25.80%), Bacteroides (10.52%), Alloprevotella (5.51%), and Prevotella 
(4.64%) (Figure 2B).

As delineated in Table 3, we discerned six, nine, nine, and six 
markedly disparate microorganisms at the ranks of phylum, class, 
order, family, and genus correspondingly, each substantiating a FDR 
less than 0.05 (all differential microorganisms were shown in 
Supplementary Table S1).

Linear discriminant analysis scoring investigation has facilitated 
the detection of statistically substantial biomarkers amidst the groups, 
namely species exhibiting conspicuous dissimilarities across said 
groups. In the non-parametric Kruskal–Wallis rank sum test, the 
LEfSe analysis conducted at a threshold level of LDA ≥ 3.0 and p < 0.05 
revealed 78 pathways that explained the distinguishing features 
between HRC and LRC pigs (Figure 3).

3.4 Microbial functional enrichment 
analysis

To explore into the functionalities of these distinctive microorganisms, 
we  conducted KEGG pathway analyses using PICRUSt2. Results of 
considerable divergence were identified when mean relative abundances 
exceeded 1%, accompanied by P and FDR values below 0.05. A total of 18 
KEGG pathways exhibited noteworthy dissimilarities between the LRC 
and HRC groups, as illustrated in Table 4.

Importantly, the LRC group epitomized elevated activity throughout 
pathways encompassing annamycin, pantothenate, CoA, and folate 
synthesis, as well as the formation of fatty acids, phenylalanine, tyrosine, 
and tryptophan. Furthermore, a marked amplification was noted in the 
metabolism of D-glutamine and D-glutamate, tryptophan, histidine, 
selenocompound, cysteine, and methionine.

Conversely, within the HRC group, there was a conspicuous 
augmentation in the relative abundance of streptomycin, lysine, valine, 
leucine, and isoleucine biosynthesis, protein transport mechanisms, 
the genesis of vancomycin group antibiotics, biotin metabolism, and 
the pentose phosphate pathway.

3.5 Differential metabolite analysis

We performed a metabolomic analysis of cecal contents to 
understand how metabolites differed between the two groups. The 
6,838 and 1,667 m/z features were detected in positive and negative 
ionization modes, respectively. We  used the PLS-DA model to 
identify differential metabolites between the two groups. The 
parameters of the models: R2 = 0.664 Q2 = 0.382 for positive ionization 
mode; R2 = 0.671 Q2 = 0.426 for negative ionization mode 
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(Figures 4A,D). The results showed that there was a clear separation 
between the two groups. Based on the criteria of p < 0.05, |Log2FC| > 1, 
VIP > 1, we detected 390 (248 metabolites up and 142 down), 200 (97 
metabolites up and 103 down) differential metabolites in positive and 
negative ionization modes (Figures 4B,E).

The top ten metabolites, which expressed prominent divergence 
in their levels, were elucidated in Table  5. Detailed metabolite 
information was listed in Supplementary Table S2. In addition, we did 
cluster analysis on the differential metabolite, and the findings showed 
good cluster quality (Figures 4C,F).

3.6 Metabolite KEGG enrichment analysis

To delve deeper into the functionalities of these divergent 
metabolites, we  conducted a KEGG enrichment analysis on the 

metabolites that exhibited noteworthy upregulation and 
downregulation in the LRC group in comparison to the HRC group. 
Surprisingly, the upregulated differentials were primarily concentrated 
within metabolic pathways, tryptophan metabolism, alpha-linolenic 
acid metabolism, linoleic acid metabolism, thiamine metabolism, and 
biosynthesis of unsaturated fatty acids (p < 0.05) (Figure 5). The down-
regulated differential metabolites were mainly enriched in metabolic 
pathways, but not significantly (p > 0.05).

3.7 Correlation between the metabolome 
and gut microbiome

We compared the KEGG enrichment results of the two omics and 
found that they were both enriched in tryptophan metabolism. 
Specifically, six differential metabolites were identified as enriched in the 

FIGURE 3

LEfSe classification. LEfSe analysis revealed a histogram (A) and a dendrogram (B), depicting the gut bacteria of utmost biological significance in each 
group. In both the Kruskal–Wallis and paired Wilcoxon tests, p  <  0.05 and LDA  ≥  3.0 were considered significant at a significance level of 0.05. The 
sample size was n  =  10.
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TABLE 4 KEGG functional enrichment analysis in the microbiome.

Function Log2FC p-value

Biosynthesis of ansamycins 0.42 0.00

D-Glutamine and D-glutamate metabolism 0.20 0.01

Fatty acid biosynthesis 0.17 0.05

Phenylalanine, tyrosine and tryptophan biosynthesis 0.17 0.02

Tryptophan metabolism 0.16 0.00

Histidine metabolism 0.16 0.05

Selenocompound metabolism 0.08 0.00

Peptidoglycan biosynthesis 0.08 0.00

Pantothenate and CoA biosynthesis 0.08 0.01

Cysteine and methionine metabolism 0.08 0.00

Folate biosynthesis 0.07 0.00

Streptomycin biosynthesis −0.09 0.00

Protein export −0.16 0.03

Lysine biosynthesis −0.18 0.02

Biosynthesis of vancomycin group antibiotics −0.22 0.00

Valine, leucine and isoleucine biosynthesis −0.40 0.01

Biotin metabolism −0.41 0.00

Pentose phosphate pathway −0.53 0.00

The P were determined using Wilcoxon Rank-Sum Test. FC, fold changes (LRC VS HRC). 
Log2FC means taking the base 2 logarithm of FC.

tryptophan metabolic pathway. These metabolites include 
4-(2-aminophenyl)-2,4-dioxobutanoic acid, 5-hydroxyindole-3-acetic 
acid, xanthurenic acid, 4-hydroxy-2-quinolinecarboxylic acid, serotonin, 
and 5-methoxyindoleacetic acid (as listed in Table 6). In order to explore 
deeper into the relationship between metabolites and microorganisms, 
we conducted a Spearman correlation analysis between the metabolites 
enriched in the tryptophan metabolic pathway (identified through the 
KEGG analysis) and the differential microbial genera (identified with 
LDA score > 4 through LEfSe analysis). The correlation analysis revealed 
noteworthy associations, as illustrated in Figure  6. Specifically, 
4-(2-aminophenyl)-2,4-dioxobutanoic acid and 5-hydroxyindole-3-
acetic acid both correlated positively with Megasphaera and Gemmiger 
respectively, as did 4-hydroxy-2-quinolinecarboxylic acid and 
xanthurenic acid with Megasphaera. Conversely, serotonin showed a 
pronounced negative correlation with Bacteroides, underscoring an 
inverse relationship between them (p < 0.001).

4 Discussion

The act of nourishment is one of the most fundamental and 
conservative activities in the animal kingdom. Regulating the intake 
of food is an essential process for animal survival (33). A multitude of 
prior investigations have found associations between feeding behavior 
and social order (34–36). Steffen Hoy’s research revealed that swine of 
higher grades were bestowed with lesser frequency of feedings at 
automated nourishment stations, exhibiting prolonged presence at the 
trough and displaying a heightened consumption of feeding (37). In 
this experiment, we refrained from directly quantifying the social 
standing of the subjects. Nonetheless, based on the observed feeding 

behavior, we postulate that swine with lower RFI potentially occupy a 
higher social status, characterized by extended occupation of 
automated feeding stations but with decreased frequency and 
decreased efficiency of feeding. On the contrary, lower social status 
entails a contrasting scenario, where pigs are frequently displaced 
from the feeding trough, requiring more frequent visits to obtain 
sustenance. Interference from other pigs disrupts their feeding 
process, forcing them to consume food hastily and consequently 
resulting in an increased average intake per minute. Our findings align 
with those of Hoy et al. (37). However, divergent outcomes have been 
reported in other studies. Herrera-Cáceres et  al. (38) found that 
dominant animals fed more frequently. Nielsen et al. (39, 40) found 
no relationship between feeding behavior and social class. Hence, the 
relationship between feeding behavior and social class is not steadfast 
and can be  influenced by various factors such as group size (40), 
kinship (41), strain (42), and among others.

Accumulating evidence suggests that the microbiota within the 
gastrointestinal system may influence the eating behavior of animals. 
In an examination of human feeding behaviors, it was discovered that 
Clostridium XVIII exhibited an association with more salubrious 
dietary practices and diminished subjective feelings of hunger (43). 
Simultaneously, Fusobacterium was found to be linked to unfavorable 
dietary attributes and elevated subjective sensations of hunger (43). 
This observation aligns with our own findings, indicating that swine 
with lower RFI exhibit unique feeding habits and consume less feed. 
Gastrointestinal bacteria might also play a role in the physiological 
regulation of the host’s appetite. For instance, Escherichia has the 
ability to generate caseinolytic protease B, a bacterial protein that 
resembles the α-melanocyte-stimulating hormone, thereby directly 
promoting satiety (44). Peptide YY (PYY), synthesized by 
enteroendocrine L cells, possesses a prominent function in the 
regulation of gastrointestinal processes and satiety. Studies conducted 
on mice lacking PYY gene expression revealed an enhanced 
abundance of Firmicutes along with a reduction in Bacteroidetes 
when compared to their wild-type counterparts (45). The fermentation 
process of dietary fiber by Firmicutes within the intestinal tract yields 
short-chain fatty acids (SCFA), including butyric acid, propionic acid, 
and acetic acid. These SCFAs can induce PYY secretion and exert 
influence on the brain, thereby evoking a sensation of satiety (46). In 
the cecal microbial composition of pigs with lower RFI, there is an 
elevated level of Firmicutes and a lower level of Bacteroidetes 
compared to pigs with higher RFI. This could potentially result in 
differences in subjective hunger perception among pigs, with low RFI 
pigs experiencing a greater sense of satiety.

Omega-3 (ω-3) and Omega-6 (ω-6) polyunsaturated fatty acids 
(PUFAs) are indispensable to animals, known for improving 
reproductive performance, immune regulation, enhancing intestinal 
functionality and improving meat quality (47–49). They hold a 
breadth of research potential in the food additive industry. In our 
study, we  observed a significant increase of Alpha-Linolenic acid 
(ALA) (an ω-3 PUFA) and Linoleic acid (LA) (an ω-6 PUFA) in the 
LRC group. Both ALA and LA are indispensable fatty acids in swine 
nutrition, deriving exclusively from dietary sources. These fatty acids 
undergo conversion processes within the animal’s body, facilitated by 
the enzymatic actions of dehydrogenase and carboxylase, resulting in 
the synthesis of Arachidonic Acid, Eicosapentaenoic Acid, 
Docosahexaenoic Acid, and various other derivatives (50, 51). These 
highly active substances are capable of regulating physiological and 
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biochemical responses in the organism, hence influencing both the 
endocrine and digestive systems. It has been found that the 
incorporation of ALA in the daily feed of lactating sows can boost the 
immunity and intestinal health of the piglets (47). Moreover, the 
addition of 10% Perilla cake (mainly composed of 72.7% unsaturated 

fatty acids, with ALA constituting between 55–64%) to the feed of 
growing pigs can significantly enhance daily weight gain (52). Another 
investigation discerned that the incorporation of 10–15% flaxseed oil, 
abundant in ALA, could enhance the feed conversion ratio and the 
back-fat composition of growing-finishing swine (53). Moreover, ALA 

FIGURE 4

Significant differences in metabolites between LRC and HRC groups. (A,D) Scatter plot illustrating the scores of Partial Least Squares-Based 
Discriminant Analysis (PLS-DA). (B,E) Volcano plots portraying the differential accumulation of metabolites. (C,F) Heatmap featuring the differential 
expression of metabolites, where the color red represented high abundance in the HRC group, while blue represented high abundance in the LRC 
group. (A–C) in positive ionization mode and (D–F) in negative ionization mode.
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TABLE 5 Top 10 leading metabolites that have been identified with noteworthy disparities.

Name ESI p-value Log2(FC) VIP

4-(2-aminophenyl)-2,4-dioxobutanoic acid NEG 0.030 7.254 1.323

Xanthurenic acid POS 0.005 7.060 1.763

4-hydroxy-2-quinolinecarboxylic acid POS 0.024 6.848 1.460

2-(carboxyacetamido)benzoic acid POS 0.005 6.657 1.766

3-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl) propanoic acid POS 0.006 6.441 1.715

N-acetylsphingosine NEG 0.005 −2.308 1.646

5beta-scymnol POS 0.000 −2.392 2.170

Proscillaridin NEG 0.011 −2.408 1.507

Cedefingol POS 0.008 −2.505 1.663

3-hydroxy-cis-5-tetradecenoylcarnitine NEG 0.003 −3.440 1.720

ESI, electrospray ionization; POS, positive ions; NEG, negative ions. The P were determined using student’s t-test. FC, fold changes (LRC VS HRC). Calculate the variable importance in the 
projection (VIP) value from Partial Least Squares-Based Discriminant Analysis (PLS-DA).

can feasibly stimulate the expression of insulin like growth factor-1 
(IGF-1) via the peroxisome proliferators-activated receptors (PPARs) 
signaling pathway, insinuating a crucial role it might play in facilitating 
swine growth and development (54). Incorporating 1% of LA into the 
daily ration may uphold the health of squabs by enhancing their 
antioxidative capabilities and lipid metabolic functions (55). As a 
finale to our discourse, it emerges that polyunsaturated fatty acids 
could be instrumental in augmenting the efficaciousness of swine feed 
efficiency, within which Alpha-Linolenic Acid and Linoleic Acid 
might fulfill pivotal roles.

Serotonin, a significant neurotransmitter, is synthesized from 
tryptophan via tryptophan hydroxylase, transforming into 

5-hydroxytryptophan, which is subsequently converted within the 
enterochromaffin cells via 5-hydroxytryptophan decarboxylase. 
Although enterochromaffin cells are responsible for over 90% of 
serotonin production in the body, the gut microbiota is thought to 
influence the serotonergic system of the host gastrointestinal tract 
(56). For example, Reigstad et al. (57) demonstrated that intestinal 
flora promotes serotonin production through the effects of short-
chain fatty acids on enterochromaffin cells. The impact of serotonin 
on feeding behavior has been the subject of extensive research (58), 
Serotonin has been found to inhibit feeding behavior by amplifying 
satiety signals and prolonging their duration (59). Because of the 
blood–brain barrier, peripheral serotonin theoretically cannot directly 
affect the brain. Peripherally located serotonin may respond to 
chemical and mechanical stimuli by releasing it into incoming nerve 
terminals, thereby initiating gastrointestinal reflexes and regulating 
visceral perception (60). Empirical evidence suggests that a peripheral 
injection of serotonin can expedite the onset of satiety in rats in a 
behaviorally specific manner, a mechanism that necessitates the 
concurrent operation of gastrointestinal mechanisms (61, 62). 
Considering the low feeding frequency observed in the LRC group, it 
is plausible to suggest that the high expression of serotonin might 
be  associated with this phenomenon. Escherichia, Streptococcus, 
Candida, etc. are the main bacterial groups that make serotonin (63, 
64), while Bacteroides has been reported to deplete serotonin (65). 
Reportedly, Eubacterium evinces the ability to produce butyrate (66). 

FIGURE 5

KEGG results of significantly upregulated differential enrichment in 
LRC group. Y-axis: enriched KEGG pathways based on differential 
metabolites; X-axis: target metabolites enriched relative to the total 
number of target metabolites in the respective pathway; Bubble area 
size: number of metabolites enriched; Bubble color: reflecting the 
significance of enrichment, where the color intensity represents the 
P magnitude. Redder hues indicate larger P, while bluer hues indicate 
smaller P.

TABLE 6 Tryptophan metabolism-related metabolite.

Name ESI Log2FC VIP
p-

value

4-(2-aminophenyl)-2,4-dioxobutanoic 

acid
NEG 7.254 1.323 0.030

5-hydroxyindole-3-acetic acid NEG 4.431 1.345 0.027

Xanthurenic acid POS 7.060 1.763 0.005

4-hydroxy-2-quinolinecarboxylic acid POS 6.848 1.460 0.024

Serotonin POS 1.666 2.425 0.000

5-methoxyindoleacetic acid POS −1.450 1.732 0.006

ESI, electrospray ionization; POS, positive ions; NEG, negative ions. The P were determined 
using student’s t-test. FC, fold changes (LRC VS HRC). Calculate the variable importance in 
the projection (VIP) value from Partial Least Squares-Based Discriminant Analysis (PLS-
DA).
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This butyrate, in turn, instigates the binding between Zinc-binding 
protein-89 (ZBP-89) and Tryptophan hydroxylase 1 (THP1) gene 
promoters, escalating the expression of the THP1 gene and 
subsequently elevating the levels of serotonin within the intestinal 
tract (57, 67). Therefore, variations in serotonin concentration among 
different groups may be attributable to differences in gut microbial 
composition. In the LRC group, Escherichia and Eubacterium in the 
gut may contribute to higher serotonin levels, whereas Bacteroides 
may exert a depleting effect on serotonin levels. Serotonin can 
improve pigs’ satiety, thereby reducing feed waste and improving 
feed efficiency.

In summary, we found that there are differences in the feeding 
behavior of pigs with different RFIs. Pigs with lower RFI were 
characterized by occupying the feeding station for longer time, but 
feeding frequency and efficiency were lower. Clostridium_XVIII, which 
was related to satiety, was enriched in pigs with high FE, while 
Fusobacterium, which was related to hunger, was more abundant in 
pigs with low FE. Polyunsaturated fatty acids may help improve pig 
feed efficiency, with α-linolenic acid and linoleic acid likely playing key 
roles. We discerned a conspicuous correlation between the tryptophan 
metabolic pathway and FE, where divergences in serotonin levels could 
be attributed to individual gut microbiota variations. Such insights 
could better facilitate our comprehension of the interrelation between 
gut microbiota and feed efficiency, though the reasons and mechanisms 
engendering these interactions warrant further corroboration.
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FIGURE 6

Combined metabolome and microbiome analysis. The Spearman correlation analysis was conducted to calculate the correlations between microbial 
genera (LDA  >  4) and tryptophan metabolism-related metabolite. Positive correlations are depicted in red, while negative correlations are displayed in 
blue (***p  <  0.001, **0.001  <  p  <  0.01, and *0.01  <  p  <  0.05).
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