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Introduction: Clinical reasoning in veterinary medicine is often based on 
clinicians’ personal experience in combination with information derived from 
publications describing cohorts of patients. Studies on the use of scientific 
methods for patient individual decision making are largely lacking. This applies 
to the prediction of the individual underlying pathology in seizuring dogs as 
well. The aim of this study was to apply machine learning to the prediction of 
the risk of structural epilepsy in dogs with seizures.

Materials and methods: Dogs with a history of seizures were retrospectively 
as well as prospectively included. Data about clinical history, neurological 
examination, diagnostic tests performed as well as the final diagnosis were 
collected. For data analysis, the Bayesian Network and Random Forest algorithms 
were used. A total of 33 features for Random Forest and 17 for Bayesian Network 
were available for analysis. The following four feature selection methods were 
applied to select features for further analysis: Permutation Importance, Forward 
Selection, Random Selection and Expert Opinion. The two algorithms Bayesian 
Network and Random Forest were trained to predict structural epilepsy using 
the selected features.

Results: A total of 328 dogs of 119 different breeds were identified retrospectively 
between January 2017 and June 2021, of which 33.2% were diagnosed with 
structural epilepsy. An overall of 89,848 models were trained. The Bayesian 
Network in combination with the Random feature selection performed best. 
It was able to predict structural epilepsy with an accuracy of 0.969 (sensitivity: 
0.857, specificity: 1.000) among all dogs with seizures using the following 
features: age at first seizure, cluster seizures, seizure in last 24  h, seizure in last 
6  month, and seizure in last year.

Conclusion: Machine learning algorithms such as Bayesian Networks and 
Random Forests identify dogs with structural epilepsy with a high sensitivity and 
specificity. This information could provide some guidance to clinicians and pet 
owners in their clinical decision-making process.
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1 Introduction

Medical decisions on diagnostic interventions, interpretation of 
results of diagnostic tests and treatment protocols in an individual 
case are currently heavily influenced by the attending clinician’s level 
of veterinary training, participation in continuing education courses, 
level of knowledge of pertinent scientific literature and personal 
experiences gained from prior cases. That may result in completely 
different decisions in cases that are presented with identical 
clinical signs.

There are first attempts to add more objective information to the 
medical decision-making process using artificial intelligence (AI) 
(1–8). Several of those are centered around forecasting seizures. A 
support vector machine algorithm was investigated to predict seizures 
in 5 dogs based on intracranial electroencephalography (EEG) 
tracings (4). Authors highlight the importance of correct feature 
selection. Another study describes the training of a subject-specific 
deep-learning convolutional neural network model to predict seizures 
in 4 dogs based on ambulatory intracranial EEG recordings (8). This 
model forecasted seizures with a mean sensitivity of 0.79. Similarly, a 
precision-recall genetic algorithm in line with a probabilistic support 
vector machine classifier was used for seizure forecasting in canine 
epilepsy, again based on intracranial EEG recordings in 3 dogs (2).

Another focus is the prediction of epilepsy types with the regard to 
the underlying etiology. Epilepsy can be  classified as idiopathic or 
structural. The latter is defined as epileptic seizures that are caused by a 
structural intracranial pathology, whereas the underlying cause is either 
genetic or not known yet in idiopathic epilepsy (9). Abani et al. (1) 
investigated the possibility to use ChatGPT to determine the underlying 
pathology causing seizures in dogs based on age, clinical signs, seizure 
characteristics and results of the neurological examination (2023). 
ChatGPT correctly identified dogs with idiopathic epilepsy based on 
the clinical history in 2 out of 5 cases. Adding results of the clinical 
examination improved the correct rate to 4 out of 5 dogs. Cases with 
structural brain abnormalities were correctly diagnosed in 1 out of 5 
cases just based on clinical history, which could again be improved to 2 
out of 5 cases by adding the results of the clinical examination. Cases 
with paroxysmal dyskinesia, however, were not identified by ChatGPT.

In this study we evaluated two machine learning algorithms to 
detect structural epilepsy in dogs.

2 Materials and methods

2.1 Data acquisition

This study is based on data that has been collected retrospectively 
and prospectively. In the first phase, the hospital database of the 
Department for Small Animals at Leipzig University was screened for 
dogs using the following search terms: astrocytoma, adenoma, 
adenocarcinoma, encephalitis, epilepsy, esthesioneuroblastoma, 
glioma, hydrocephalus, intoxication, lymphoma, meningioma, 
neoplasia, neuroblastoma, postictal, seizures, shunt, status, and cluster. 
The following information was extracted for dogs being identified: 

age, sex, breed, body weight, age at first seizure, first symptoms 
observed by the owner, type of seizure, number of seizures before first 
presentation, observed cluster of seizures, observed status epilepticus, 
results of neurological examination, results of diagnostic investigation, 
survival time, and final diagnosis. In a second phase, the features 
identified to be most relevant in the first phase based on the validation 
of different feature selection methods were collected prospectively for 
patients being presented to the hospital from this time point on.

2.2 Data preprocessing

Dogs were included retrospectively as well as prospectively. Data 
sets of both groups of dogs were not identical. In order to integrate the 
data from both groups of dogs, the following parameters were chosen 
for further analysis: age at presentation, body weight, sex including 
castration status, age at first seizure, duration of seizure history, seizure 
in last 24 h, seizures in last week (excluding those in the last 24 h), 
seizures in last month (excluding those in the last week), seizures in 
last 6 months (excluding those in the last month), seizures in last year 
(excluding those in the last 6 months), neurological deficits at 
presentation, history of cluster seizures, history of status epilepticus, 
lateralized neurological deficit at presentation, first clinical signs 
observed by the owner, and seizure type (generalized tonic–clonic, 
partial, both). Entries with missing values were removed. Table keys 
were adapted and unified, the values were cleaned. First clinical signs 
were grouped to paroxysmal events, abnormal behavior, vocalization, 
abnormal coordination, abnormal motor movements, gastrointestinal 
signs, recumbency, salivation and head tremor. All classes with less 
than 5 members were labeled with other clinical signs. The resulting 
table was extended by three further columns “age in days”, “structural 
brain disease” (yes or no) “and “weight groups” to represent breeds. 
The final resulting table was preprocessed in two different ways in 
order to allow further processing using two different algorithms, the 
Bayesian Network algorithm and the Random Forest algorithm. The 
Bayesian Network algorithm does not allow analysis of numerical 
data. Therefore, numerical parameters were grouped based on clinical 
relevance as shown in Table 1. The grouping is done separately for 
each numerical parameter.

For the Random Forest model, one hot encoding was used for the 
features “first clinical signs observed by the owner” and “type of 
seizure” in order to adapt categorical data. The column “sex” was 
subdivided in two boolean columns “sex” and “castrated”.

2.3 Feature selection

After data preprocessing, a total of 33 features for the Random Forest 
algorithm and 17 for the Bayesian Network algorithm were available for 
analysis. In general, a smaller number of features is advantageous to 
achieve better results, since this reduces overfitting and generates more 
robust and more explainable models. Non-informative features can 
distract the model and may cause poorer results. Therefore, we focused 
on identifying features that are most relevant for the prediction. The 
following four feature selection methods were used: Permutation 
Importance, Forward Selection, Random Selection and Expert Opinion.

Permutation Importance measures the decrease in model score 
when a single feature value is randomly shuffled. During Forward 

Abbreviations: AI, artificial intelligence; EEG, electroencephalography; MDI, mean 

decrease in impurity.
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Selection, a model is trained for every single feature. The feature that 
performed best and the corresponding accuracy score is stored. For 
the remaining features each is combined with the selected feature and 
a model is trained. The two features performing best are selected and 
the model score is stored. For the remaining features the process is 
continued until no feature is left. That way, the features performing 
best are added step wise. Finally, the scores of the model series are 
compared and the feature set of the model with the best score is 
chosen. In Random Selection, a subset of the features is randomly 
selected to train a model. The feature subset and the accuracy score 
are stored. The process is repeated 1,000 times and the feature subset 
with the best score is chosen. In Expert Opinion, the feature subset is 
selected by a clinician with 20 years of experience in this field.

For the Random Forest model, additional mean decrease in 
impurity (MDI), a feature importance score for tree models, was used 
for feature selection. MDI counts the times a feature is used to split a 
node, weighted by the number of samples it splits (10). Feature 
Selection based on MDI was utilized similar to Forward Selection, but 
the MDI score, previously calculated through training a model with 
all features, determined the order of the sequentially added features. 
For model selection, the accuracy score was used too.

2.4 Data analysis

For data analysis, we applied two machine learning algorithms, the 
Bayesian Network and the Random Forest. The Bayesian Network is a 
probabilistic graphical model that allows to compute probabilities 
between symptoms and diseases (11). Given clinical data (including 
symptoms), it allows to compute the probability of structural epilepsy. The 
Random Forest is a classifier which is based on multiple decision trees and 
is a widely used approach for this type of classification task (12).

We used the RandomForestClassifier from the package scikit-
learn in Python with its default parameters (100 trees, Gini criterion 
to measure the quality of a split, no maximal tree depth, at least two 
samples for a split, at least one sample in a leaf, initialization with the 
same random state 0).

For model validation, we performed a 10-fold cross validation. A 
k-fold-cross validation is a resampling method for model validation. 
For k = 10, the data is split into 10 parts, whereas 9 parts of the data is 
used for training and one part for testing. This is repeated 10 times, 

resulting in 10 different collections of disjoint training and testing data 
sets. Thus, it is guaranteed that the trained models are never tested on 
the same data. The accuracy metric was used for model comparison 
and the best model was chosen.

3 Results

A total of 444 dogs of 119 different breeds were identified 
retrospectively between January 2017 and June 2021. Some dogs had 
to be removed because of incomplete data, whereas 279 dogs have 
been used for further analysis. An additional 49 dogs were included 
prospectively resulting in a total number of 328 dogs included. The 
most frequent breeds that were represented by at least 5 individuals 
were: mixed breed dog (n = 90), French bulldog (n = 39), Labrador 
retriever (n  = 20), Chihuahua (n  = 11), Bolonka zwetna (n  = 9), 
Yorkshire terrier (n = 8), Beagle (n = 8), Pug dog (n = 7), Australian 
shepherd dog (n = 6), Jack Russell terrier (n = 6), Golden retriever 
(n = 5), and Great Swiss mountain dog (n = 5). The type and number 
of observed features in those 328 dogs are summarized in Table 2 for 
categorical features and Table 3 for numeric features. The statistics of 
the grouped features are in Table 1 of the supplementary.

In total, 89,848 models were trained. The following five features 
performed best for the Bayesian Network algorithm based on Random 
Selection: cluster seizures, grouped age of first seizure, seizure in last 
24 h, seizure in last 6 months, and seizure in last year. The mutual 
correlations of these features as well as the target variable structural 
epilepsy are shown in Figure 1. For the Random Forest based on MDI 
feature selection, the following five features performed best: age at first 
seizure, age at presentation, age, duration of seizure history, and body 
weight. The mutual correlations of these features as well as the target 
variable structural epilepsy are shown in Figure 2.

The performance of the applied feature selection methods to predict 
structural epilepsy in dogs is shown in Table 4. The best results were 
obtained for the Bayesian Network combined with Random Selection as 
well as the Random Forest combined with MDI. Both approaches 
reached an accuracy of 0.969. The Bayesian Network reached slightly 
better values for sensitivity (0.857) and AUC (0.971). The selected 
features for all feature selection methods can be find in Table 2.

By varying the thresholds inside the two best performing models, 
the receiver operating characteristic (ROC) curves of the models can 

TABLE 1 Grouping of numerical data based on clinical relevance in order to allow analyzes using the Bayesian Network algorithm.

Body weight [kg] 0–7; > 7–15; > 15–30; > 30

Grouped age / 

grouped age at presentation / 

grouped age at first seizure [years]

≤ 7 kg: a (0–0.5); b (> 0.5–9), c (> 9–12); d (> 12)

> 7–30 kg: a (0–0.5); b (> 0.5–6); c (> 6–10); d (> 10)

> 30 kg: a (0–0.5); b (> 0.5–5); c (> 5–9); d (> 9)

Boxer and French Bulldog: 

(0–0.5); b (> 0.5–4); c (> 4–6); d (> 6)

Number of seizures before first presentation within the last 24 h: 0; 1; 2–3; 4–10; > 10

with the last week: 0; 1; 2–3; 4–10; > 10

within the last month: 0; 1; 2–3; 4–10; > 10

within the last 6 months: 0; 1–4; 5–10; > 10

within the last year: 0; 1–4; 5–10; > 10

Duration of seizure history before first presentation [months] 0–1; > 1–3; > 3–12; > 12
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be obtained (Figure 3). The false positive rate (1 – specificity) on the 
x-axis is plotted against the true positive rate (sensitivity) on the 
y-axis. The ROC curves are both far away from the diagonal (dashed 
line), corresponding to a random classifier, and the Areas Under the 
Curve (AUC) are close to 1. By walking along the ROC curve (which 
is done by varying the threshold inside the model), a sensitivity of 
1.000 can be obtained at the cost of a lower specificity (0.800 for 
Bayesian network and 0.667 for Random Forest).

The Random Forest computes a feature importance based on the 
Gini index for each available feature as a side result. These feature 
importance are shown in Figure 4 (for the Random Forest combined 
with the MDI score). The five most important features (MDI value 
>0.75) were selected by the feature selection algorithm. After that, the 
feature importance drops considerably. The performance of the model 
would deteriorate if more than the five most important features were 
used by the model.

4 Discussion

By applying the machine learning algorithms Bayesian Network, 
a sensitivity of 0.857 and a specificity of 1.000 resulting in a total 

accuracy of 0.969 could be obtained when classifying dogs with and 
without structural epilepsy. Thus, dogs with structural epilepsy and 
those without were identified correctly in about 97% of cases. The 
Random Forest model with MDI feature selection performed similar 
to the Bayesian Network. It reached also an accuracy of about 97% but 
with slightly smaller values for sensitivity and AUC than the 
Bayesian Network.

There are hardly any studies for comparison in veterinary 
medicine. However, these accuracies are higher than previously 
reported results, where ChatGPT did accurately identified structural 
epilepsy in 2 out of 5 dogs (1). These differences may be caused by the 
different approach applied in this study. ChatGPT that was used for 
prediction is a language processing model, that largely depends on 
random input made by internet users. It was applied to data without 
previous training. In contrast, in the study presented here, we have 
trained two different algorithms for prediction and the results were 
validated. In addition, the differences in accuracy to identify dogs with 
structural epilepsy may result from the large number of 238 dogs 
included here, whereas the study using ChatGPT looked at the small 
number (5 dogs) with structural epilepsy only (1).

Using artificial intelligence is an important step to support clinical 
reasoning. So far, most clinical decisions were based on clinicians’ 

TABLE 2 Features selected for training both models (Bayesian Network and Random Forest).

All Structural epilepsy No structural epilepsy

n 328 102 226

Sex Female intact 90 29 61

Female spayed 45 18 27

Male intact 135 38 97

Male neutered 58 17 41

Neurological deficits on initial presentation 213 89 124

Lateralized neurological deficits on initial presentation 78 42 36

Cluster seizures 150 58 92

Status epilepticus 53 16 37

Clinical signs observed by 

the owner

Paroxysmal events 150 43 107

Recumbency 47 16 31

Abnormal behavior 38 14 24

Salivation 24 13 11

Gastrointestinal signs 15 4 11

Vocalization 9 2 7

Abnormal coordination 9 1 8

Abnormal motor movements 6 2 4

Head tremor 5 1 4

Other clinical signs 25 6 19

Seizure types Generalized seizures 279 86 193

Focal seizures 27 6 21

Generalized and focal seizures 22 10 12

Body weight ≤ 7 kg 70 22 48

> 7 - ≤ 15 kg 88 33 55

15 - ≤ 30 kg 107 26 81

> 30 kg 63 21 42
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FIGURE 1

Correlation of selected features for the Bayesian Network algorithm and the target variable “structural epilepsy”. Cramer’s V is used as metric.

TABLE 3 Comparison of numerical features between dogs with structural epilepsy and no structural epilepsy (n =  328) with median, range, and IQR 
(Q1–Q3).

All dogs Dogs with structural 
epilepsy

Dogs without structural 
epilepsy

p-value

Body weight [kg] m = 15.55 [0.46–90]

IQR: 8.3–27.5

m = 13.73 [1.77–49]

IQR: 8.39–26.6

m = 16.55 [0.46–90]

IQR: 8.21–27.6

0.6224

Age [days] m = 3,656 [459–8,438]

IQR: 2502–4,832

m = 4,781 [1275–7,969]

IQR: 3781–5,692

m = 3,210 [459–8,438]

IQR: 2317–4,170

1.65*10−12

(***)

Age at presentation [days] m = 2008 [50–6,197]

IQR: 939–3,287

m = 3,273 [79–5,866]

IQR: 2309–4,253

m = 1,586 [50–6,197]

IQR: 744–2,447

5.00*10−16

(***)

Age at first seizure [days] m = 1,646 [48–6,197]

IQR: 751–3,115

m = 3,214 [48–5,865]

IQR: 2176–4,074

m = 1,214 [50–6,197]

IQR: 521–2037

0.76*10−18

(***)

Seizures in last 24 h m = 1 [0–60]

IQR: 0–2

m = 1 [0–60]

IQR: 0–3

m = 1 [0–12]

IQR: 0–2

0.1468

Seizures in last week m = 0 [0–60]

IQR: 0–2

m = 1 [0–60]

IQR: 0–2

m = 0 [0–12]

IQR: 0–1

0.0003

(***)

Seizures in last month m = 0 [0–60]

IQR: 0–2

m = 0 [0–60]

IQR: 0–1

m = 0 [0–30]

IQR: 0–2

0.1402

Seizures in last 6 month m = 0 [0–60]

IQR: 0–2

m = 0 [0–60]

IQR: 0–1

m = 1 [0–60]

IQR: 0–2

0.0007

(***)

Seizures in last year m = 0 [0–60]

IQR: 0–2

m = 0 [0–60]

IQR: 0–0

m = 0 [0–50]

IQR: 0–1

0.0018

(**)

Duration of seizure history 

[days]

m = 29 [−271–3,249]

IQR: 1–189.25

m = 7.5[−223–3,249]

IQR: 1–52

m = 69 [−271–2,557]

IQR: 1–309

0.0002

(***)

Comparison of medians between both groups was performed using the Mann–Whitney-U-Test. (*) p < 0.05, (**) p < 0.01, (***) p < 0.001.
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expertise and personal experiences combined with knowledge derived 
from studies describing cohorts of patients. Attempts to predict the 
risk of certain intracranial pathologies in dogs with seizures were 
already made in the past. It was found that dogs having just one single 
seizure were less likely to suffer from a lateralized structural brain 
disease, whereas those dogs with abnormal findings on the 
neurological examination had a 16.5 times higher risk for such a 
lateralized lesion and a 12.5 times higher risk for a symmetrical 
structural lesion (13). However, that is a completely different approach 
than in our study, which was aiming for the prediction of the 
individual risk of dogs to suffer from structural epilepsy.

In the study presented here, two algorithms, the Bayesian Network 
and the Random Forest had been intentionally selected in order to 
make usage of the advantages of different algorithms. A Bayesian 
Network is a probabilistic graphical model. It treats uncertainty 
explicitly, and is thus suitable for small and incomplete data sets and 
inference with incomplete data. This algorithm provides a conditional 
probability distribution for every combination of variable values. 
However, the Bayesian Network requires discretization of continuous 
variables, hence it is poor in finding linear relationships, but it 
performs well if relationships between the variables are non-linear 
and complex.

FIGURE 2

Correlation of selected features for the Random Forest algorithm and the target variable “structural epilepsy.” The Pearson correlation coefficient is 
used as metric.

TABLE 4 Performance of the Bayesian Network and the Random Forest combined with the different feature selection methods to predict structural 
epilepsy (AUC: area under the curve; MDI: mean decrease in impurity).

Permutation 
importance

Forward 
selection

MDI Random 
selection

Expert 
opinion

Bayesian Network Sensitivity 0.857 0.857 ---- 0.857 0.800

Specificity 0.920 0.880 ---- 1.000 1.000

Accuracy 0.906 0.875 ---- 0.969 0.938

AUC 0.954 0.886 ---- 0.971 0.916

Random Forest Sensitivity 0.714 0.714 0.800 0.714 0.857

Specificity 0.960 1.000 1.000 0.960 0.960

Accuracy 0.906 0.938 0.969 0.906 0.938

AUC 0.923 0.909 0.937 0.957 0.911
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FIGURE 3

Receiver operating characteristics for both algorithms used (blue: Bayesian Network using Random Selection; orange: Random Forest using MDI 
Selection).

FIGURE 4

Feature importance using the Random Forest algorithms with Forward Selection in combination with the mean decrease in impurity (MDI).
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The Random Forest model is an ensemble method using decision 
trees. It is robust to outliers and overfitting, can deal with linear and 
non-linear relationships and offers feature importance as a byproduct. 
It can handle numeric and categorical variables. It is not necessary to 
construct artificial categories when transforming numeric variables 
into categorical ones. To use categorical variables with equal order, 
these variables can be transformed with one hot encoding to boolean 
variables. Strongly correlated features are often problematic, however, 
Random Forest can handle them much better than linear regression 
models. If there are two strongly correlated features, the Random 
Forest algorithm randomly picks only one of them in a split. Thus, the 
correlated features are less likely to show up together at the same 
position in a tree.

For the reasons explained, we considered those two algorithms to 
be  among the best for analyzing the data obtained in this study. 
However, it cannot be  excluded that other algorithms could have 
resulted in an even higher diagnostic accuracy. We used the standard 
parameters when training the models. A hyperparameter tuning 
might be applied to further improve the classification results.

For any of the algorithms available, the decision on which features 
to be included is crucial (4). Feature selection allows to identify and 
rank the clinical parameters according to their importance with respect 
to the classification. Therefore, different features selection methods have 
been tested here, all of which have advantages and disadvantages. The 
Random Selection method can identify feature subsets consisting of low 
ranked single features but it does allow double selection. Forward 
Selection, however, provides good performing feature sets, where 
multiple solo ranked features may perform potentially better, but it can 
be a relatively slow model, whereas Permutation Importance is fast, easy 
to use and it is readily available since it is included in scikit-learn, a 
freeware online library for machine learning tools.

The Random Selection methods provided best results here if 
applied to the Bayesian Network or Random Forest algorithm. 
However, it cannot be  excluded that other features that had been 
excluded during the initial phase of feature selection or features, that 
were not even collected could perform better. In addition, the number 
of dogs included, even though it appears relatively large for a 
veterinary study, was still not large enough to investigate certain 
features. Specifically, including the feature “breed” would have been 
very interesting, since clinical observation indicates that certain 
canine breeds are predisposed for specific structural intracranial 
diseases. For instance, Pug dogs and Yorkshire terriers are predisposed 
for necrotizing encephalitis, whereas Boxers and French bulldogs are 
more frequently affected by intracranial neoplasias (14–18). However, 
only 12 of the 88 different breeds were represented by at least 5 
individuals and only 5 breeds were represented by at least 10 
individuals. Therefore, a meaningful analysis of the feature “breed,” as 
interesting as it would have been, was not feasible.

Interestingly, the feature selection method Expert Opinion did 
not perform as good as the Random or MDI feature selection methods 
in identifying features to determine if dogs are affected by structural 
epilepsy, although an accuracy of about 94% was reached. It performed 
better than Forward Selection and Permutation Importance. This 
method is the closest of all methods to the current clinical decision-
making process, where intracranial neoplasias are commonly 
associated with neurological deficits (specifically lateralized 
neurological signs) and therefore those had been included as features 
into the Expert Opinion model (13, 19). This discrepancy between 

clinical experience and a slightly lower accuracy of the Expert 
Opinion model may be at least partially explained by the fact that 
neoplasias in certain brain areas such as the olfactory and frontal lobes 
rarely cause interictal neurological deficits (18). In addition, pituitary 
neoplasia may be  associated with rather unspecific signs such as 
disorientation or obtundation, that do not present any lateralization 
(20). Therefore, the importance of lateralized neurological deficits for 
prediction of structural epilepsy may have been overrated by the 
expert in the Expert Opinion feature selection method. That is 
supported by an only mid-range MDI of lateralized neurological 
deficits using the Random Forest algorithms with Forward Selection 
(Figure 4).

Of the 328 dogs, only 102 were diagnosed with structural epilepsy, 
therefore the target variable is slightly imbalanced. In order to also 
capture the performance of the model on the minority class, we used 
the metrics sensitivity, specificity, accuracy, did a ROC analysis, and 
computed AUC values. In some scenarios, a specificity of 1.000 was 
reached, but this often comes at the cost of lower sensitivity.

To avoid overfitting, feature selection and cross-validation were 
used. Feature selection acts as regularization, as only the most 
important features are selected for the final model. Cross-validation 
ensures that the trained model is always tested on test data that has 
not been used for training the model.

A weakness of this study is that some of the data was based on the 
observations made by the owners during collecting the clinical history 
of the pet. Different owners may have described the same clinical signs 
in a different way resulting in seemingly different observations. 
However, the data could only be extracted retrospectively from the 
patients’ files for most dogs based on the study designs. We have 
grouped some of this information during data processing in order to 
reduce the tremendous amount of different observations made by the 
owners for a meaningful analysis. Erroneous classification may have 
occurred in some cases during this grouping process that was done in 
order to transform individual verbal owner descriptions into repetitive 
clinical findings. That obstacle could be overcome in the future by 
providing pet owners and clinicians with a set of specific questions 
that have to be answered by selecting options from a predetermined 
menu. Another potential weakness of this study might be, that some 
data was based on the subjective assessment of the dogs’ neurological 
status by clinicians. Neurological examination performed by other 
clinicians may have resulted in slightly different findings. Therefore, 
the results presented here may not be safely applied to every other 
clinical setting. For further studies, it is desirable to identify features 
or feature expressions that can be repeatably and reliably obtained by 
different clinicians.

In conclusion, it can be  said that structural epilepsy can 
be predicted with high sensitivity and specificity in dogs with seizures 
using machine learning algorithms. This information is not meant to 
replace further diagnostic tests in affected dogs, but it may rather 
facilitate client communication. The knowledge of the likelihood of 
structural epilepsy could be  used as guidance to decide about 
appropriate diagnostic steps in dogs presented for seizures.
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