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Whole-genome resequencing of 
native and imported dairy goat 
identifies genes associated with 
productivity and immunity
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Understanding the differences in genetic variation between local Chinese 
dairy goat breeds and imported breeds can help germplasm innovation and 
molecular breeding. However, the research is limited in this area. In this study, 
whole-genome resequencing data from 134 individuals of both local and 
imported dairy goat breeds were analyzed, and their differences in genomic 
genetic variation, genetic diversity, and population structure were subsequently 
identified. We also screened candidate genes associated with important traits 
of dairy goats such as milk production (STK3, GHR, PRELID3B), reproduction 
(ATP5E), growth and development (CTSZ, GHR), and immune function (CTSZ, 
NELFCD). Furthermore, we examined allele frequency distributions for the genes 
of interest and found significant differences between the two populations. This 
study provides valuable resources for the study of genetic diversity in dairy goats 
and lays the foundation for the selective breeding of dairy goats in the future.
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Introduction

Goats (Capra hircus) were among the first animal species domesticated, providing humans 
with essential food and living resources including meat, milk, and fur (1–4). As a specialized 
milk-producing breed, dairy goats are an important part of many countries’ livestock and dairy 
industries (5–7). China plays a prominent role in global dairy goat breeding and goat milk 
production, contributing significantly to the global milk supply (8).

The history of breeding dairy goats in China can be traced back to the early 20th century, 
with a primary focus on improving the Saanen dairy goat and its hybrid offspring. After nearly 
a century of breeding, the current dairy goat breeds in China mainly consist of Xinong Saanen, 
Guanzhong, and Laoshan dairy goats (9, 10). As people’s living standards have improved in 
China in past decades, the demand for dairy products with high quality has increased. To meet 
such requirements, the breeding of dairy goats has primarily focused on traits associated with 
high yield and quality (11, 12). Currently, to improve the excellent characteristics of dairy goat 
breeds in China, most farms focus on improving dairy goat breeds through selective breeding 
and crossing with imported breeds. The imported breeds in China mainly come from 
New Zealand and Australia, which comprise Saanen, Alpine, and Toggenburg dairy goats (13, 
14). Among them, Saanen is the most commonly imported breed for milk production 
enhancement, while other breeds are primarily used to improve the milk quality of dairy goats 
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(15, 16). However, the traits remain unclear, which hinders the 
verification of the breeding process. Meanwhile, dairy goat import 
primarily relies on phenotype evaluation without genomic level 
selection, which is not accurate nor very effective.

With the completion of the goat reference genome, significant 
progress has been made in the study of genetic diversity in dairy goats. 
These studies not only reveal genetic variations in the goat genome, but 
also provide important clues for understanding genetic differences and 
adaptation mechanisms among different breeds (17). However, previous 
studies have revealed the association between genetic variation and 
specific traits in the goat genome, research on the genetic variation and 
trait association of this specific population of dairy goats is still relatively 
limited (18–20). The existing research mainly focuses on a few major 
breeds, and the understanding of genetic differences between a wider 
range of dairy goat breeds is not yet in-depth. Therefore, in-depth 
exploration of the genetic diversity, population structure, and genetic 
variations associated with important agronomic traits of dairy goat 
populations is of great significance for the sustainable development of the 
dairy goat industry. In this study, we resequenced 50 local dairy goat 
genomes at 17.01× coverage depth. Then it was combined with the data 
from another 84 individuals of local and imported dairy goat species for 
further analysis to identify their differences in genomic genetic variation, 
genetic diversity, and population structure. Analysis of runs of 
homozygosity (ROH) islands and selective scanning identified specific 
regions and genes impacted by selection, associated with various 
significant morphological and agronomic traits. Additionally, 
we examined allele frequency distributions for the genes within selective 
signatures. Our findings contribute to the understanding of the genetic 
diversity and population genetic structure of dairy goats. Moreover, it 
revealed candidate genes that are associated with various phenotypes, 
which is valuable for future importation and breeding selection of 
dairy goats.

Materials and methods

Sample collection and sequencing

This study collected two populations of Xinong Saanen Dairy 
Goat (XNG, n = 40) and Guanzhong Dairy Goat (GZG, n = 10) from 
Shaanxi Province. Each goat had 5 mL of blood collected from the 
jugular vein, and DNA was extracted using the standard phenol-
chloroform method. Samples with determined DNA concentrations 
were subjected to whole-genome sequencing by Huada Company, 
with paired-end libraries constructed using the Huada T7 platform 
having an average insert size of 500 bp per individual and an average 
read length of 150 bp. In addition, the resequencing data of 84 
individuals were downloaded from public databases, including 8 
breeds as follows: Australian Alpine Dairy Goat (AAG, n = 2), 
Australian Saanen Dairy Goat (ASG, n = 6), Guanzhong Dairy Goat 
(GZG, n = 26), New  Zealand Saanen Dairy Goat (NSG, n = 6), 
New Zealand Alpine Dairy Goat (NAG, n = 4), Laoshan Dairy Goat 
(LSG, n = 9), Nubian Dairy Goat (NBY, n = 15), Tugenburg Dairy Goat 
(TGB, n = 16). Resulting in a total of 134 samples in the study.

Read mapping and variant calling

The study utilized Trimmomatic v0.38 (21) for filtering the 
paired-end sequences. Next, BWA-MEM (v0.7.15-r1140) (22) aligned 

the clean data with the goat reference genome ARS1.2 
(GCF_001704415.2, https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_001704415.2/). Subsequently, samtools (23) was utilized to 
construct a BAM file index for mapping. The BAM files were then 
sorted and potential duplicate reads were removed utilizing the 
Picard1 tool. After mapping, SNP calling was performed using the 
“Haplotype Caller,” “Genotype GVCFs,” and “Select Variants” 
modules in the GATK genomic analysis tool package (GATK, version 
3.8-1-0-gf15c1c3ef) (24). The initial SNPs were filtered with the 
“Variant Filtration” module based on the parameters: “QD < 2.0, FS 
> 60.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < −8.0, 
and SOR > 3.0,” and an average sequencing depth of variants within 
the range “<1/3× and >3×” for all individuals. Lastly, the ANNOVAR 
(25) software was utilized for functional annotation of the SNPs.

Genetic diversity analysis

After applying linkage disequilibrium (LD) to prune SNPs, the 
PLINK (26) program is utilized to compute runs of homozygosity 
(ROH) with specific parameters as follows: (a) 100 consecutive 
homozygous SNPs, (b) minimum of 50 SNPs per window, (c) 500 kb 
of contiguous homozygous length, (d) minimum density of 1 SNP per 
50 kb, (e) window overlap rate of 0.05, and (f) each window containing 
1 heterozygous and 2 missing calls. The subsequent analysis results are 
categorized into 0.5–1 Mb, 1–2 Mb, and 2–4 Mb for visualization. The 
heterozygosity of the SNPs is calculated to estimate the inbreeding 
coefficient (Fhom). VCFtools (27) are used to analyze nucleotide 
diversity for each breed in non-overlapping 50 kb windows. Next, the 
PopLDdecay (28) software is used to calculate the decay of LD to assess 
the physical distance between SNPs within haplotype blocks of 
different breeds. Finally, the frequencies of runs of homozygosity 
(ROH) islands for Xinong Saanen dairy goats and Guanzhong dairy 
goats are calculated, and regions with frequencies above 20% are 
determined as ROH hotspot islands.

Population genomic analysis

Three methods are used for Variant Call Format (VCF) filtering 
and population structure estimation: (a) constructing a neighbor-
joining tree with MEGA v10.2.6 (29) and visualizing it using iTOL 
(30); (b) principal component analysis (PCA) with EIGENSOFT v5.0 
(31) software; and (c) conducting population structure analysis using 
ADMIXTURE v1.3.0 (32). Cross-validation is employed to calculate 
the cross-validation error and determine the optimal K value 
(assuming the ancestral population K value ranges from 2 to 8).

Detection of selective sweeps

Based on the characteristics and origins of the dairy goat breeds, 
we categorized 134 dairy goats into native dairy goat (NDG) and 
imported dairy goat (IDG) breeds. We then compared the genomes of 
these two dairy goat breeds and estimated the signal scanning regions 
using a combination of nucleotide diversity (θπ NDG/IDG) and 

1 http://broadinstitute.github.io/picard
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fixation index (FST) with a VCFtools, employing 50 kb sliding 
windows and 25 kb sliding steps. Additionally, Tajima’s D (33) statistic 
and cross-population composite likelihood ratio test (XP-CLR) (34) 
were employed to identify potential regional differences between 
different breeds. XP-CLR is a likelihood method for detecting selective 
sweeps by jointly modeling multi-locus allele frequency differences 
between two groups. The scanned regions detected from the 
intersection of the two parameters with the highest 5% threshold were 
annotated to identify candidate genes. Lastly, Bedtools (35) was used 
to annotate the selected regions for subsequent analysis.

Enrichment analyses and visualization

The enrichment module in KOBAS (36) was utilized to identify 
pathways and Gene Ontology (GO) terms that showed statistically 
significant associations (at a significance level of p ≤ 0.05). 
Subsequently, the results were visualized through the OmicShare tool.2

2 http://www.omicshare.com/tools

Results

Sequencing and variation calling

To identify the genomic difference between local (XNG, GZG, LSG) 
and imported breeds of dairy goats (AAG, ASG, NSG, NAG, TGB, 
NBY), we  compared 134 sets of whole-genome resequencing data, 
including 40 genomes of XNG and 10 genomes of GZG, combined with 
84 published genome data that includes both local and imported breeds 
(GZG, LSG, AAG, ASG, NSG, NAG, TGB, NBY) (Figure 1). The data 
was aligned to the goat reference genome ARS1.2 (GCF_001704415), 
achieving an average alignment rate of 97.74% and a mean sequencing 
depth of 11.3×. After the removal of low-quality sequences, the average 
clean reads for each sample were 373,568,004 bp, with GC content 
ranging from 41.82 to 42.33%. The average alignment rate for the studied 
populations (XNG, GZG) is 97.5%, accompanied by an average 
sequencing depth of 17.01×. The imported breed populations (AAG, 
ASG, NSG, NAG, TGB) exhibited an average alignment rate of 97.04% 
and an average sequencing depth of 22.51× (Supplementary Table S1).

After SNP variation detection and statistical analysis of the 
obtained 134 dairy goat genome data sets, a total of 33,011,806 SNPs 

FIGURE 1

The geographic distribution of native dairy goat (NDG) and imported dairy goat (IDG) breeds. Xinong Saanen dairy goat (XNG, n  =  40) and Guanzhong 
dairy goat (GZG, n  =  10), Australian Alpine dairy goat (AAG, n  =  2), Australian Saanen dairy goat (ASG, n  =  6), Guanzhong dairy goat (GZG, n  =  26), 
New Zealand Saanen dairy goat (NSG, n  =  6), New Zealand Alpine dairy goat (NAG, n  =  4), Laoshan dairy goat (LSG, n  =  9), Nubian dairy goat (NBY, 
n  =  15), Tugenburg dairy goat (TGB, n  =  16).
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were detected. Among them, the proportion of intronic SNPs was the 
highest (32,705,301), accounting for 55.04% of the total; the 
proportion of exonic SNPs was approximately 1.142%. There were 
283,685 synonymous SNPs and 227,235 missense SNPs. The 
transition/transversion ratio (Ti/Tv) was computed and analyzed, 
revealing a ratio of 2.344, consistent with the general value for goat 
populations. These findings indicate a high quality of sequencing, thus 
the obtained data meet the requirements for subsequent analysis 
(Supplementary Table S2).

Genetic diversity analysis

The LD analysis shows that GZG and XNG exhibit the fastest 
decay rate (Figure 2A), suggesting lower domestication levels and 

higher genetic diversity. Nucleotide diversity analysis (Figure  2B) 
reveals higher diversity in local breeds compared to imported ones. 
ROH is an indicator of kinship proximity and inbreeding history, and 
the analysis reveals the genomic patterns of recent demographic 
history. Short ROH indicates that ancient inbreeding is much more 
prevalent in the XNG and GZG compared to other imported breeds. 
In addition, XNG exhibits a higher value of ROH, indicating a longer 
breeding history (Figure 2C). Meanwhile, the coefficient of inbreeding 
due to recent inbreeding is highest for each individual genome in 
TGB, with a range from 0.1 to 0.51 (Figure 2D).

This study conducted ROH island analysis on XNG and GZG. In 
the XNG samples, 16 ROH islands with a frequency of 20% were 
identified on chromosomes 12, 13, and 19 (Figure 3A), annotating to 
31 genes. Similarly, on chromosomes 1, 7, 12, 13, and 18 of the GZG, 
15 ROH islands with a frequency of 20% were identified (Figure 3B), 

FIGURE 2

Genetic diversity among 134 samples from 10 populations. (A) Genome-wide average LD decay estimated from each group. (B) Density plots and Box 
plots of the nucleotide diversity for each group. (C) Estimation of the total number of ROH for each group. (D) Inbreeding coefficient for each 
individual.
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annotating 25 genes. The Venn diagram (Supplementary Figure S1) 
illustrates 4 common genes between the two breeds (MPHOSPH8, 
LOC108637296, PSPC1, NBEA). In addition, the GO and KEGG 
enrichment analyses (Supplementary Figure S2) indicate enrichment 
of those identified genes in 23 biological processes (BP), 9 molecular 
functions (MF), and 2 cellular components (CC). The enriched 
pathways primarily include biological regulation, metabolic processes, 
immune system processes, and transcriptional regulation. 
Furthermore, the KEGG analysis reveals enrichment in valine, leucine, 
and isoleucine degradation, apoptosis, PI3K-Akt signaling pathway, 
and Rap1 signaling pathway.

Phylogeny and population genetic 
structure

To comprehend the population structure of local dairy goats in 
China, we looked into the SNP results derived from the resequencing 
data. Employing imported breeds as outgroups, we constructed SNP 
differentiation clustering based on various populations, the results of 
which can be used to mutually verify with other clustering methods. 
The percentages of PC1, PC2, and PC3 are 7.91, 5.61, and 3.60%, 
respectively, (Figure 4A; Supplementary Figure S3). There are three 
major clusters that AAG, ASG, LSG, NAG, NSG, and TGB are closely 
clustered, XNG and GZG form another cluster, while NBY is away 

from both of them. The result indicates that local breeds can 
be differentiated from imported breeds, and there are differences in 
clustering patterns among the 9 populations. The genetic data of the 
populations were utilized to calculate the degree of kinship between 
individuals, construct a genetic distance matrix, and build a 
phylogenetic tree utilizing the distance matrix. Although GZG and 
XNG are partially overlapped in the phylogenetic tree, the XNG group 
is clustered on its own, and imported breeds can be differentiated from 
local breeds, which is consistent with the PCA results (Figure 4B). In 
addition, for the 9 population, the number of subgroups (value of K) 
was preset to 2–9 for clustering, and the clustering results were cross-
validated. The optimal number of subgroups was identified based on 
the minimum cross-validation error rate. K = 4 was identified as the 
optimal number of subgroups, and there were significant genetic 
differences among the XNG, NBY, NAG, and TGB populations. 
Regardless of the value of K, it consistently displayed genetic 
differentiation between local and imported breeds, indicating different 
genetic compositions among the populations, and relatively consistent 
genetic backgrounds among the different 9 populations (Figure 4C).

Genome-wide selective sweep test

To identify the regions of selection among the native dairy goat 
breeds and imported dairy goat breeds, we  further conducted a 

FIGURE 3

Manhattan plots of ROH frequencies. (A) Manhattan plots of ROH frequencies in Xinong Saanen dairy goat (XNG). (B) Manhattan plots of ROH 
frequencies in Guanzhong dairy goat (GZG).
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comparative analysis using the resequencing data. Next, using the 
top  5% of both FST (Figure  5A) and θπ ratio (Figure  5B) cutoffs 
(Figure 5C), we observed that the native dairy goat breeds exhibited a 
total of 41.25 Mb across 607 selectively scanned regions. These regions 
encompassed 549 genes (Figure  5D) and showed significant 
enrichment in pathways such as the calcium signaling pathway, 
MAPK signaling pathway, fatty acid metabolism, and the PI3K-Akt 
signaling pathway (Figure 5E). On the other hand, imported dairy 
goat breeds displayed 25.05 Mb in 385 selective scanning regions, 
which encompassed 387 genes (Figure  5D). Pathway enrichment 
analysis revealed that those genes are involved in oocyte meiosis, cell 
senescence, calcium signaling pathway, GnRH signaling pathway, and 
the synthesis and secretion of growth hormone pathway (Figure 5F). 
These findings emphasize the genetic functional differences between 
local and imported breeds (Supplementary Figure S4).

Selective signatures for traits

To further explore the traits corresponding to selection signals, 
we  performed FST, PI, and XP-CLR assays to discover positive 
selection in dairy goats. Meanwhile, for a more comprehensive 

annotation of genes We integrated and annotated the QTLdb database 
and a previously published genome-wide association analysis on 
important traits of dairy goats into our selection signaling results 
(Figure 6A). We found a large number of genes associated with milk 
production traits on chromosomes 5, 13, and 19 (Figure 6A), which 
were mainly involved in the monoacylglycerol biosynthetic process 
(GO:0006640), the long-chain fatty-acyl-CoA metabolic process 
(GO:00353336), monoacylglycerol metabolic process (GO:0046462), 
and fatty acid homeostasis (GO:0055089) (Figure 6B). In addition, 
these genes were also significantly enriched in the PI3K-Akt signaling 
pathway, glycerolipid metabolism, Fat digestion and absorption, and 
Regulation of lipolysis in adipocyte signaling pathways 
(Supplementary Figure S5). Integrative analysis (Fst, PI, XP-CLR) 
revealed two overlapping genes (Supplementary Figure S6), ASIP and 
STK3, respectively. Notably, integrative analysis (Fst, PI, XP-CLR, 
ROH_island) of the genes obtained from the above analytical methods 
revealed seven overlapping genes, including PRELID3B, ATP5E, 
CTSZ, NELFCD, LOC108637417, TRNAF-GAA, and TRNAN-GUU 
(Figure 6C). We then analyzed the allele frequency distribution of 
selected regions for STK3, GHR, and PRELID3B since many methods 
have detected these three genes, which showed that the gene 
frequencies of the selected genes differed between the local and 

FIGURE 4

The structures of 134 samples from 10 populations. (A) PCA. Principal components 1 (7.91%) and 2 (5.61%) for the 134 dairy goats. (B) Phylogenetic tree. 
Phylogenetic relationships were estimated using the neighbor-joining method. (C) Genetic structure of cattle using ADMIXTURE when K ranged from 2 
to 4.
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imported breeds (Figure 6D; Supplementary Figure S7). Through the 
selection feature, we found that some regions were strongly selected. 
Some candidate genes were associated with milk production traits, 
growth and development, and immune traits.

Discussion

Detecting recent positive selection signatures in domesticated 
animals that have gone through both artificial and natural selection 
can provide information on genomic sites that can contribute to the 
identification of beneficial mutations and underlying biological 
pathways for economically important traits. In this study, we analyzed 
the whole genome of 134 dairy goats from both native and imported 
breeds. In addition, the samples were obtained from populations that 

were also widely distributed in China, a feature that is absent in 
previous studies, which provides a more reliable background for the 
study. The detection of genetic variation, genetic diversity, and 
population structure showed that local dairy goat breeds are more 
genetically diverse than imported breeds. Previous studies in cattle 
(37, 38) and sheep (17) have shown similar results. This phenomenon 
suggests the local breeds have undergone less intensive selection, 
which may explain why their milk production performance is not 
outstanding. Therefore, crossing with imported breeds plus selection 
could be  a promising way to improve the local breeds. However, 
detailed genetic information is needed to guide such a breeding process.

Milk quality traits are a complex biological issue that involves 
the interaction of multiple genes and biological pathways. Fatty 
acids, as one of the main components of milk fat, have a significant 
impact on the quality and characteristics of milk (39). By analyzing 

FIGURE 5

Selective sweep analysis of NDG and IDG. (A) Manhattan plot showing the FST. (B) Manhattan plot showing the θπ. (C) Distribution of log2 (θπ ratios) 
and FST values calculated in 50  kb sliding windows between NDG and IDG. (D) Venn diagram showing the gene overlaps among FST_PI_NDG and 
FST_PI_IDG. (E) KEGG pathway enrichment analysis based on genes across significant selective regions from NDG. (F) KEGG pathway enrichment 
analysis based on genes across significant selective regions from IDG.
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the selection signals of local and imported breeds for positive 
selection. we identified four genes that are involved in fatty acid 
metabolism (HSD17B12, ACOX3, CPT1B, and CBR4) in the 
selection signals of local dairy goats. The HSD17B12 gene is 
involved in the synthesis of unsaturated fatty acids (40) and is also 
associated with reproductive performance (41). The ACOX3 gene is 
associated with milk fat traits (42) and is a novel candidate for milk 
production traits (43). The CPT1B gene regulates long-chain 
saturated fatty acids and is involved in lipolysis (44, 45). The 
synthesis of fatty acids may involve CBR4 (46). Notably, different 
pathway enrichments were observed in the imported breeds. 
ACADS, AGPAT4, PTDSS2, and SMOX are mainly involved in lipid 
metabolism and amino acid metabolism pathways. ACADS is 
involved in the fatty acid metabolism pathway (47), AGPAT4 
promotes triacylglycerol synthesis and fatty acid composition (48), 
PTDSS2 is involved in the glycerophospholipid metabolism pathway 
(49), and SMOX is a candidate gene for growth, carcass composition 
traits, and milk production traits (50, 51). In addition, previously 
reported traits associated with immunity (BPIFA3, LRRC66) (52, 
53), coat color (ASIP) (54), milk composition (CSN1S1, DGAT2, 
PLIN4, PLIN5, IGF2R) (55), and milk production (AMPD1) (56) 

were also found in imported breeds. Together, the results, suggest 
that the traits under selection were mainly associated with milk 
production, reproduction, and immunity for both the local and the 
imported breeds of dairy goats despite the difference in genes.

Milk production traits are the most important economic traits of 
dairy goats. This study includes milk production traits-associated gene 
markers from the QTLdb database for selection signal analysis. A large 
number of selected genes on chromosomes 13, and 19 were identified, 
which is similar to the results of a previous Genome-wide association 
study in dairy goats (15, 57). Through Fst, PI, and XP-CLR analysis, 
two genes with the highest selection signals showed up including ASIP 
and STK3. ASIP is responsible for regulating pigmentation and is 
associated with fat deposition and fatty acid composition in sheep (58, 
59). The gene was identified as strongly selected due to the coat color 
difference between Alpine dairy goats (black) and native dairy goats 
(white). Whereas the STK3 gene was identified as a new candidate gene 
for milk production traits (60), it also showed a strong selection signal 
in this study. We incorporated the results of the ROH_island analysis 
into the selective signaling analysis and identified seven genes that 
overlapped, including PRELID3B, ATP5E, CTSZ, NELFCD, 
LOC108637417, TRNAF-GAA, and TRNAN-GUU. PRELID3B has an 

FIGURE 6

Genome-wide annotations during NDG and IDG. (A) Manhattan plot showing the θπ, FST and XP-CLR. (B) GO pathway enrichment analysis based on 
genes across significant selective regions. (C) Venn diagram showing the gene overlaps among FST, XP-CLR, PI and ROH_island. (D) FST value and 
Tajima’s D values around the STK3 locus. Allele frequencies of SNPs within the STK3 gene across the NDG and IDG, respectively.
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important role in excessive melanin deposition (61) and regulates lipid 
accumulation in mitochondria (62). In lamb MII oocytes, down-
regulation of ATP5E and up-regulation of CUL1, MARCH7, and 
TRIM17 might cause low competence of lamb embryos (63). 
Furthermore, it has been reported that ATP5E is a promising candidate 
biomarker for oocyte viability after IVM (64), so the gene might 
be associated with reproductive traits in female animals. Many studies 
have demonstrated that CTSZ is linked to various traits, including 
immunity (65), pregnancy (66), regulation of thermogenesis in brown 
adipocytes (67), growth, carcass, and production (68). NELFCD may 
serve as a novel candidate gene for early immunomodulation (69) and 
it is strongly linked to CTSZ (70). TRNAF-GAA and TRNAN-GUU are 
tRNA-related genes, which might associated with immune (71) and 
reproductive traits (72, 73). The function of the gene LOC108637417, 
however, remains unclear. It is worth noting that the GHR is not only 
strongly selected, and also associated with various economic traits 
[milk production (74), growth (75), and milk quality traits (76)]. In 
summary, the identified genes in this study could be new candidate 
genes of milk production, reproduction, and immune traits in 
dairy goats.

To further investigate the differences of the genes associated with the 
selected regions in different breeds, the key genes STK3, GHR, and 
PRELID3B were subjected to allele frequency analysis. it was found that 
the genotypic frequencies of the strongly selected genes differed 
significantly among different populations. Similar results were found in 
chicken (77) and sheep (17) genomic research. By comparing the genetic 
differences between different varieties, we can better understand the 
genetic mechanisms behind these differences, providing guidance for 
future variety improvement and genetic resource protection.

Conclusion

This study analyzed the genetic diversity, population structure, 
selection signals, and allele frequencies of local and imported dairy 
goats in China. It was found that there were significant genomic 
differences between the two populations. Moreover, candidate genes 
related to milk production (STK3, GHR, PRELID3B), reproduction 
(ATP5E), growth and development (CTSZ, GHR), and immune 
(CTSZ, NELFCD) traits were identified. It provides valuable insights 
into the genetic diversity of dairy goats and thus lays, the data support 
for future dairy goat breeding and selection in China.
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