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African swine fever is a hemorrhagic disease of pigs with high mortality rates. 
Since its first characterization in 1921, there has been sufficient information about 
African swine fever virus (ASFV) and related diseases. The virus has been found 
and maintained in the sylvatic cycle involving ticks and domestic and wild boars 
in affected regions. The ASFV is spread through direct and indirect contact with 
infected pigs, their products and carrier vectors especially Ornithodoros ticks. 
Severe economic losses and a decline in pig production have been observed in 
ASFV affected countries, particularly in sub-Saharan Africa and Europe. At the end 
of 2018, the ASFV adversely affected China, the world’s leading pork-producer. 
Control strategies for the disease remained challenging due to the unavailability 
of effective vaccines and the lack of successful therapeutic measures. However, 
considerable efforts have been made in recent years to understand the biology 
of the virus, surveillance and effective control measures. This review emphasizes 
and summarizes the current state of information regarding the knowledge of 
etiology, epidemiology, transmission, and vaccine-based control measures 
against ASFV.
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Introduction

African swine fever virus (ASFV) belongs to the family Asfarviridae is a double-
stranded DNA virus that causes African swine fever in Suidae (1, 2). In its ancestral 
African habitat, the ASFV evolved approximately 300 years ago in its arthropod vector in 
a sylvatic cycle, specifically involving common warthogs (Phacochoerus africanus) and 
the soft tick (Ornithodoros moubata) (3). The ASFV is epidemic in nature, causing large-
scale mortality in the infected pig population (4). Serious economic consequences 
accompany outbreaks of the disease and therefore require proactive surveillance and 
management (5). Horizontal transmission of ASFV occurs through the feeding of swill 
containing infectious pig meat, contaminated pig-related products, and competent vector 
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species, especially Ornithodoros ticks (6). Transmission of the 
ASFV occurs within warthog burrows, primarily between ticks and 
warthogs (7).

In the late 1800s, the swine industry became larger in Kenya 
under British colonization, which significantly contributed to the 
prevalence of ASF and its subsequent distribution in Africa (8). The 
virus spread out of Africa in two different instance. The first incursion 
occurred in 1957 in Portugal, where ASFV-infected and contaminated 
waste materials were thrown from airline to feed the pigs, leading to 
the virus spreading through Russia, Western Europe, the Caribbean 
and Brazil over three decades. However, except for Sardinia, the 
disease was eradicated from all these affected areas by the mid-1990s 
(9). In 2007, a second incursion occurred in Georgia, expanded to the 
Russian Federation and Eastern Europe, and then spread globally (3). 
Globally, China is the largest pork producing country that is adversely 
affected by ASFV. In Europe, successful precautionary measures were 
limited to the Czech Republic, Belgium, Sweden, and Germany. There 
are high risks of the ASFV introduction to the United States, which is 
the third largest pork producing country in the world after China and 
the European Union (10). In July 2021, the USDA confirmed the entry 
of ASF into the Dominican Republic which then reached Haiti by 
September, marking a considerable geographical invasion and 
emphasizing the risks of ASFV being introduced into mainland North 
America. Large-scale movements of humans and animals are the 
major threat to those countries, that are free from ASFV (11). The 
increase in global trade of various goods and animals within or outside 
the country, provides a favorable means in the transmission and 
expansion of ASFV (12). Reducing the risks of ASFV, it requires a 
global attention to limit further expansion of this havoc-transmitting 
agent. Comprehensive knowledge of ASFV is necessary to overcome 
and eradicate the disease; for this purpose, this review is designed to 
highlight the etiology, epidemiology, transmission sources, and 
current development in prevention and control measures 
against ASFV.

Microbiology of ASFV

Structure of the virus

The shape of ASFV is icosahedral, and has an average diameter of 
200 nm. There are four concentric layers in the structure of ASFV, an outer 
hexagonal membrane acquired by originating through the cell plasma 
membrane. The capsid is the outermost layer of the virion. The internal 
core of the ASFV particle is formed by the central genome and contains 
nucleoids, which are coated by a thick capsid in a layer called the core-
shell (Figure 1) (13). For immunological interactions with the host, viral 
genomes encode genes essential for the replication of virus assembly (1). 
The virus replication process occurs mainly in the cytoplasm of infected 
macrophages and monocytes; however, it has also been observed in the 
nucleus at the early stages of infection (14). The ASFV is enveloped by a 
two-membraned collapsed cisterna, which is originates from the 
endoplasmic reticulum (15). Four classes of viral genes have been 
identified comprising immediate-early, early, intermediate, and late 
transcripts. Viral genes are usually express before and after the onset of 
DNA replication (16, 17). Enzymes are required for the ASFV replication 
and are expressed after the entry of the virus into the cytoplasm (18).

Genomic aspects

The ASFV genome is a single linear molecule of double stranded 
DNA having covalently closed double stranded DNA (19, 20). The P72 
is the primary capsid protein, encoded by the B646L gene. The 
genotyping and sequencing of ASFV depend on a variable region of 
the B646L gene within the respective C-terminal of the gene. The 
ASFV genome ranges from 170 to 190 kilobases (kb) encoding 
150–200 viral proteins, and has predicted open reading frames 
ranging from 151 to 186 kb (21). The ASFV has low mutation rate due 
to the accurate DNA proofreading.

The sequencing of the ASFV genome has resulted in the 
generation of several ASFV genomes of viral and low pathogenic 
isolates. Genomic analysis of ASFV has provided important 
information on structure, variation, and precise phylogenetic 
reconstruction (22). The BA71V, first strain of ASFV sequenced in 
1995 (23), has been used as a comparative model for ASFV, which 
accumulates large scale information related to its biochemical, 
morphogenetic and genetic behavior (24). The genotyping and 
sequencing of ASFV depend on a variable region of the B646L gene 
within the respective C-terminal of the gene (25). Different virulent 
and pathogenic sequences have been identified and characterized 
from different origins and deposited in GenBank for information and 
experimentation (22). Until to 2018, 19 full-length sequences of ASFV 
were available which were generated using the Sanger sequencing; the 
number of sequences increased to 114 in October 2021 (27, 26). The 
multigene family (MGF) are responsible for the variation of ASFV 
genomes (1). The deletion and insertion of copied regions occur 
within these five MGF genes, suggesting the role of MGF in generating 
antigenic variability, thus helping the virus to evade host immune 
response (28). Based on the B646L gene, ASFV is categorized and 
divided into 24 different genotypes, the p72 capsid protein is coded by 
the B646L gene of ASFV (14).

Different isolates of ASFV can induce variable severity of infection. 
Although mild and moderate complications are caused by mutated 
strains (1). Pathogenic and virulent strains of ASFV are responsible for 
mild or severe infection accompanied by symptoms like hemorrhages 
in the skin and internal organs with a high fever and at the final stage 
causes death. Sudden deaths of animals can lead to 90% of fatalities 
(29). It has been suggested that the range of host and virulence of ASFV 
depend on the members of MGF 360 and 505. Some reports have 
demonstrated that the removal of eight genes from family 360 and two 
genes from family 505 affects its virulence to infect macrophages (30). 
The virulence of ASFV is due to four genes: the thymidine kinase 
coding genes, 9GL (B119L in BA71V), United Kingdom gene (DP96R 
in BA71V) and NL-S gene (DP71L in BA71V) (31). Therefore, further 
studies are necessary to understand the viral genome of ASFV as well 
as the genes associated with its pathogenicity: such genes will 
be supportive of the development for efficient diagnosis and treatment.

Genome sequences highlight variations between viruses in terms 
of insertions, deletions, or mutations. Comparative genomic analysis 
facilitates evolutionary studies. In this context, the first detected 
variation was the insertion of tandem repeat sequences (TRS), of the 
10-nucleotide “TATATAGGAA” present between 173R and 1,329. This 
insertion has been recognized for the first time in ASFV infecting wild 
boar in Poland and Lithuania in 2014, and now it is considered a new 
sub-genotype marker (14).
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In China, comparison of identified sequences of two strains, DB/
LN/2018 and Pig/HLJ/2018 indicated mutations due to the insertion 
and deletion of nucleotides at multiple positions in the genome (32). 
The length of the genome sequence of both viruses was found to 
be 189,404 bp, very similar to the genomes of PoL/2017, GA/2007/ and 
ASFV-SY18. A comparison of DB/LN/2018 and Pig/HLJ/2018 with 
GA/2007 revealed 16 inserted nucleotides and 9 deleted nucleotides 
at 15 and 5 positions, respectively. In the PoL/2017 viruses three 
deletions appeared, whereas no insertion or deletion is present in 
ASFY-SY18. Furthermore, five mutations observed in the ORFs of Pig/
HLJ/2018 and DB/LN/2018, ASFV-SY18 and PoL/2017 strain. 
However, these mutations were not observed in the GA/2007 genome. 
Due to mutations in ASFV, as a result of insertion and deletion of 
nucleotides, it is confirmed that changes and alterations occur in 
ORFs. Although the comparisons with the database provided clues 
about genes that may modulate the virus-host relationship. It remains 
to be examined how these alterations occur and affect the pathogenic 
properties of the ORFs of ASFV.

Epidemiological profiles of ASFV

Warthogs and domestic pigs are the main reservoirs for the 
ASFV. It is known from the last 10 years’ data on ASF in the global 
context that the country will be potentially at risk where pigs are 

commercially as well as having wild reservoirs. Ticks are responsible 
for the transmission of ASFV and act as “reservoirs.” Infected animals 
blood has the highest concentration of ASFV; therefore, virus 
transmission occurs through direct and close interaction with infected 
animals. Use of infected pork products and fomites or contact with 
them and the mechanical vectors, e.g., biting flies, may also aid in the 
transmission of the ASFV to the hosts which are uninfected from 
ASFV (33).

The ASF is not zoonotic; there are only reports of animal 
infections and transmission; the epidemiology of ASF reflects the 
circulation of the virus within animal and arthropod reservoirs. The 
prevalence of the disease varies from region to region due to 
epidemiological differences. Virus epidemics or outbreak situations 
have been observed based on the geographical conditions of the 
associated area. Large-scale outbreaks of ASFV usually occur between 
2007 (China, Thailand) and 2009 (Vietnam) (34).

Reservoirs of the ASFV

Although pigs are the most frequent reservoirs of ASFV, they 
exist in the sylvatic cycle between arthropod vectors specifically soft 
ticks, O. moubata and wild Suidae especially warthogs (35). 
Warthog burrows are the habitat of these ticks, where virus 
transmission occurs between warthogs and ticks (2). Recently, 

FIGURE 1

Structure and schematic presentation of African swine fever virus and mechanism of its entry into host cell, replication, and release.
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ASFV has been shown to grow within leeches (36), suggesting the 
participation of these hosts in the environmental perseverance of 
the virus (37).

Role of Suidae

Members of the pig family known to be  susceptible to ASFV 
include domestic pigs and wild boars (Sus scrofa), bush pigs 
(Potamochoerus larvatus and Potamochoerus porcus), warthogs 
(Phacochoerus spp.) and giant forest hogs (Hylochoerus spp.) (7, 38. 
Since wild boars and domestic pigs are the main reservoirs responsible 
for disease outbreaks, the prevention and control of infected pig herds 
are the main issues (39). Wild boars and domestic pigs show various 
clinical signs, from acute to chronic (40). Although death is the first 
indication of the disease in a per-acute form, loss of appetite, 
depression, cutaneous hyperaemia and elevated body temperature (> 
41°C) are other clinical manifestations associated with the per-acute 
form. The acute form of the disease is typically characterized by 
pulmonary edema, respiratory distress, abortion in pregnant females, 
nasal and conjunctival discharge, skin hemorrhages, splenomegaly, 
extensive necrosis and high mortalities (41). For the first time, the 
chronic form of the disease was reported in the Iberian Peninsula. The 
chronic form of ASFV has also been evidenced in experimental 
inoculation of animals with European isolates (14). Wild boar shows 
the same signs as domesticated pigs; however, no signs are observed 
before death in virulent strains. In warthogs and bush pigs, ASF is 
most frequently asymptomatic (42). It has been observed that 
survivors of ASFV may not only play a key role in ASFV perseverance 
in endemic regions but also contribute to periodic incidences, 
outbreaks, and invasions of ASFV to uninfected animals in the disease 
free zone (43).

Role of ticks

Following the classical epidemiological patterns of infectious 
diseases, ASFV circulates between animals and blood sucking 
arthropods. Hematophagy has been considered as a critical factor for 
the transmission and acquisition of ASFV by arthropods. Like other 
vector-borne diseases, the presence of an arthropod and blood sucking 
vector is important for the invasion and transmission of ASFV from 
the reservoir to healthy animals (44). An important aspect of the 
epizootic cycle of ASFV is the specificity of the vector. Among ticks, 
soft ticks are known competent vectors for ASFV. This pathogen has 
been isolated from 20 species of soft ticks and many other 
hematophagous arthropods, including competent louse and flies 
(Table  1). Even leeches have been considered susceptible to 
ASFV. Moreover, leeches were also able to transfer ASFV to 
experimental animals (36). Viral DNA has also been detected in hard 
ticks (Dermacentor reticulatus and Ixodes ricinus) collected from the 
bodies of dead ASFV positive wild boars and also in flies (54).

Ornithodoros ticks play a major role in the transmission of 
ASFV. All stages of their development can be easily infected with the 
virus, in the blood meal when the virus is taken from an infected pig. 
However, under experimental conditions, not all ticks that feed on 
infected pigs or artificial membranes become infected. For instance, 
in the case of the Ornithodoros erraticus infection model, an infection 

rate of ticks of 83.1% (pig-feeding ticks) and 53.4% (membrane-
feeding ticks) infection rate of ticks has been observed (48).

Localization within tick

Rock (55) performed the first experiment on the localization of 
ASFV in, Ornithodoros porcinus. Initial replication of ASFV was 
observed in hemocytes (types I and II), epithelium of the midget, 
phagocytic cell, connective tissue, salivary gland, coxal gland and 
reproductive tissue, which were the secondary sites of virus 
replication. Similarly, the highest viral titers were detected in salivary 
glands and reproductive tissue after 91 days of infection (28).

Survival of ASFV in ticks

It is known that ASFV once infects the tick, is capable of remaining 
viable within the tick’s body for a long period between 23 and 239 days, 
depending the tick species (56). Much longer survival has also been 
reported: 3 years in O. moubata, 5 years in O. erraticus and 502 days in 
Ornithodoros coriaceus (29, 50, 57). The data suggest that without 
contact with the swine population, the ASFV can survive within the 
tick population, therefore, making an alarming source of reinfection.

Transstadial and transovarial transmission

Ticks can transmit infectious agents, retained within their body, 
to their next stage (transstadial) or the next generation (transovarial 
transmission). Similarly, soft ticks are believed to transmit ASFV 
transstadially, as well as transovarially through sexual contact, and 
directly to susceptible animals (29, 58, 59). However, in the case of 

TABLE 1 Arthropods in which African swine fever virus has been 
detected.

Tick species References

D. reticulatus

I. ricinus

A. americanum

A. mixtum

(45)

O. porcinus (46)

O. erraticus (47, 48)

O. moubata (49)

O. coriaceus

O. parkeri

O. tunicate

O. puertoricensis

(50)

Other arthropods

Muscadomestica (House fly)

(36, 51)

Hirudomedicinalis (leech) (51)

Drosophila spp. (Fruit fly) (51)

Culicidae spp. (Mosquitoes)

Haematopinussuis (Swine lice)

Stomoxyscalcitrans (Stable fly)

(52, 53)
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transstadial transmission, the transmission rate of ASFV has been 
found to decrease with each molt (60).

Pig-to-pig transmission

Direct contact with infectious pigs has been established to 
be an effective mechanism of disease transmission. The domestic 
pig can transmit the virus through nasal fluid, secretion, and in 
excretion through urine. In a recent study, healthy pigs housed 
together with infected ones became infected after one to 9 days 
after exposure. Delayed infectivity of healthy pigs was also 
observed in those separated from infected ones (14). During the 
fights, environmental contamination occurs due to the shedding of 
the blood from the wounds of infected pigs or from fecal 
contamination by infected Suidae (38). The possibility of a “carrier” 
state persists in pigs as well as in other Suidae. In the Netherlands, 
carrier pigs recovered from an acute ASFV infection with the lower 
pathogenicity strain were found to transfer the disease by direct 
contact with the uninfected pig population. It is believed that the 
overcoming and disappearance of clinical signs and symptoms 
occur, and after a month the infected pigs shed the virus. However, 
the effect on transmission will depend on the survival and duration 
of the carrier status of the pig (61).

Transmission through the ingestion of 
contaminated feed

Direct contact with the environment or infected pigs can 
introduce the virus into their bodies through mucous membranes. 
However, some animals are infected via ingestion of infected food. The 
presence of ASFV has been confirmed in pork products such as pig 
fat, skin, meat, and other pig products used for different purposes (62). 
Similarly, seed contamination and fresh grass containing wild boars 
secretions are the key risks and threat for the transmission (63). 
Therefore, these sources should also be  considered to prevent 
transmission to naive pigs.

Wild boar-to-pig transmission

For ASFV transmissions, recent research has confirmed that wild 
boars act as a susceptible host for the transmission to domestic pigs. 
In domestic pigs, ASFV can develop nonspecific signs and symptoms 
(63). Several fields studies have confirmed the spread of ASFV from 
wild boars to domestic pigs. In this context, a study conducted in 
Russia detected several cases of ASFV primarily in wild boars before 
being observed in domestic pigs, and the death of wild boars caused 
by ASF was observed in the vicinity of ASF-affected farms (64). 
Similarly, the housing of susceptible pigs with ASFV-infected wild 
boars became infectious after 6 to 12 days post-exposure (65). The 
European Commission tasked the European Food Safety Authority 
(EFSA) to study and review the evolutionary ability and tendency of 
matrices, including arable crops, vegetables, wood chips, sawdust, hay, 
straw and other related agents that are the threats of transmitting 
ASFV (66).

Although ASFV is likely to transmit from wild boar to domestic 
pigs, long-range invasions of ASFV are mostly caused by 
anthropogenic activities such as improper disposal of carcasses of 
infected wild boars or infected pigs, disposed of by hunters and 
farmers. The sedentary nature of wild boars is considered the basic 
reason behind this issue. Generally, wild boars spend much time 
seated, up to 100 kilometers in 6 months; therefore, mostly they 
cannot cross long distances (67). Transmission of ASFV occurs during 
the migration of an adult male or female for reproduction purposes, 
the life span of the disease is short in this case ranging from five to 
7 days (63). We  assume that long-range ASFV incursions are not 
associated with wild boars; however, one cannot ignore their role in 
the transmission of ASFV to domestic pigs in close contact.

Movement of virus through fomites

Recent experiments have suggested that the ASFV can remain in 
the blood, feces and urine of infected pigs. As ASFV can easily 
contaminate the environment, therefore, anything that is contaminated 
may act as a virus source (68). An example of this type of incidence 
occurred in Europe, where the disease was introduced by ships 
containing ASFV-contaminated kitchen and catering waste used to 
feed pigs near the surrounding areas. Subsequently, the disease spread 
to the Caucasian region, the countries of the European Union (69). 
However, fomites are usually considered equipment, clothing, 
bedding, footwear, or transport which is contaminated and whereby 
the virus can be moved to a new area (70). From the observation of 
these experimental procedures, the transfer and movements of ASFV 
with fomites should be considered as a possible way for ASFV to 
spread to virus-free areas.

Anthropogenic factors

Human activities are important risk factors for ASFV transmission 
(26). Anthropogenic activities responsible for virus transmission 
include legal and illegal transport of pigs and pig’s products, 
insufficient biosecurity measures for pig holdings and noncompliance 
with hunting restrictions and control strategies during and after the 
ASFV outbreaks (71). The primary cause of ASFV transmission is 
anthropogenic activities that cause long-distance transmission events 
and the introduction of pig farms (72). In China an initial outbreak of 
ASFV was linked to the feeding of pigs with contaminated table scraps 
(73), and in Vietnam contaminated pork products were likely 
responsible for the first outbreak (74). In Asia, anthropogenic activities 
have played a key role in maintenance and transmission (74). Targeted 
interventions and advanced biosecurity measures are necessary to 
eradicate the transmission of ASFV due to human activities.

African swine fever in Asia

In Asia, ASFV is more prevalent, following a pathway from northeast 
to southeast. In these countries, the transmission of ASFV is favored by 
compromised safety measures related to human activities including the 
transport of infected and contaminated fomites and pig products (75).
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The introduction of ASFV in Asia and especially the invasion of 
China had a drastic impact on the pig industry (76). Despite these 
efforts, the virus has persistently crossed international borders rapidly. 
Subsequent introductions have occurred in Cambodia, Bhutan, 
Malaysia, India, China, Indonesia, Mongolia, Thailand, North Korea, 
South Korea, Myanmar, Vietnam, East Russia, Timor Leste, the 
Philippines, and Hong Kong (Figure 2) (3). In 2019, ASFV outbreak 
reported in Mongolia was confirmed by the Organization for Animal 
Health or Office International des Epizooties (OIE) (77). Many of 
these countries are characterized by rural pig farms and small-holder 
operations, making the resulting outbreaks particularly challenging to 
monitor and manage effectively. The dynamic nature of the virus’s 
spread necessitates ongoing scientific efforts to understand and 
address the complexities of ASFV transmission within diverse 
agricultural and economic contexts (26).

African swine fever in China

The rapid development of the Chinese economy has brought 
about significant changes in food consumption patterns. Similarly, 
demands for meat and meat products, especially pork, have shown a 
constant increase over the last few years (78). Taking this advantage, 
the swine sector of the country has integrated production systems to 
become an industry. Three types of pig farming have been practiced 
based on the number of pigs produced; small, medium and large 
farms. Farms close to large cities have been shifted from backyards to 
modern intensive farms (34).

In China, the first outbreak of ASFV was reported on August 3, 
2018, when 400 pigs on a farm near Shenyang City in the north-
eastern Liaoning province, developed acute clinical disease after 
consuming table scraps. The mortality rate was 100%, leading to 
abandonment of the farm. Subsequently, similar cases were observed 
on nearby farms (73). At the end of 2019, a total of 33 outbreaks were 
reported in eight provinces of the country, ASF has led to the deaths 
of more than 100,000 pigs with an estimated loss of USD 111.2 billion 
(79, 80). Without the availability of effective control measures, 
including vaccination, the resumption of production will 
be problematic. As a result, in China, pig production was reduced by 
40% in 2019 compared to 2018. Similarly, the price of pork was 
doubled in 2019 (81). Therefore, the spread of this disease has posed 
threats to the large population of domestic pigs and wild boars in 
China, as well as in neighboring countries.

A strategy to control the outbreak has been developed by Chinese 
authorities (Ministry of Agriculture and Rural Affairs; MARA) and 
implemented soon after the emergence of the first outbreak. Culling 
all pigs within 3 km of the infected area and capturing all infected pigs, 
their disposals, and contaminants became mandatory. For the 
prevention and control of the ASFV outbreak, the Ministry of 
Agriculture and Rural Affairs has taken several preventive measures 
to control the outbreaks. Several preventive biosecurity measures were 
implemented including restricted pig movement, complete biosecurity 
protocols both inside and outside of pig farms, and systematic 
monitoring and recycling of pig products and waste materials. 
Quarantine measures have been enforced on farms, and high 
temperatures were applied for the treatment of feed and other waste 

FIGURE 2

Geographical distribution of ASF in Asia.
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materials of pigs (82). Despite these measurements, the 
epidemiological status in China become worse after the occurrence of 
ASFV new cases (83). The alarming spread and expansion of ASFV 
necessitates a dynamic scientific approach to control ASFV in various 
regions (84).

African swine fever in Africa

In Africa, ASFV evolved through a sylvatic cycle between the soft 
tick O. moubata and warthogs (85). From 1989 to 2017, 5,134 ASFV 
outbreaks were recorded with 88.5% occurring in the domestic pig 
population and wild Suidae (33). The expansion and transmission of 
ASFV to new areas occurs due to the movement of infected pigs into 
ASFV free-areas, while warthogs and wild suids also play a major role 
in its transmission and propagation in Africa (9, 64). In Africa, the 
spread of ASFV to new areas beyond its endemic region causes severe 
losses (33). Outbreaks arise from transmission between domestic pigs 
and the sylvatic cycle, with warthogs being translocated into the 
southern part of the continent over the past four decades (7). In 2017, 
ASF outbreaks had been reported in Cabo  Verde, Côte d’Ivoire, 
Burundi, the Central African Republic, Chad, Kenya, Madagascar, 
Mali, Mozambique, Namibia, Niger, Sierra Leone, South  Africa, 
Zambia, Zimbabwe, Tanzania, Sahara, Zanzibar, Malawi, Angola, 
Botswana, Ethiopia, Djibouti, Liberia, Senegal, Mauritania, Morocco, 
Mali, and Tunisia [(Figure 3; (86)]. The rapid expansion of the African 
population has demanded an increase in meat production. This has a 
direct impact on the pig population, which constitutes approximately 
5% of the global pig population (33, 87). Some African countries, 
namely South  Africa, Madagascar, Mozambique, Namibia, and 

Nigeria, reported one to multiple outbreaks. Likewise, the unquantified 
presence of the disease has also been reported in countries like 
Cameroon and Cape Verde (33, 85). At the end of 2017, 69 cases of 
ASFV were confirmed in which warthogs act as a source of the 
outbreak that occurred in Kenya, Namibia, Botswana, Zambia, 
Zimbabwe, South Africa and Tanzania (33). Restriction of wild pigs 
to conservation areas has reduced their likely role in the epidemiology 
of ASFV (75).

African swine fever in Europe

In Europe, the past 6 years have seen the introduction of ASFV to 
Belgium, Bulgaria, the Czech Republic, France, Germany, Greece, 
Hungary, Italy, Lithuania, Malta, Moldova, the Netherlands, North 
Macedonia, Poland, Romania, Serbia, Slovakia, Spain, Sweden, 
Georgia, Portugal, Latvia, Estonia and Romania (Figure  4) (88). 
Recently, the Czech Republic and Belgium, in which domestic pigs 
were not infected, now appear to have eradicated ASFV via biosecurity 
measures. Elsewhere (including Bulgaria, Hungary, Poland, Romania, 
and Slovakia in particular), the virus generally appears to be beginning 
ground, with numerous outbreaks, especially on smallholder farms 
(86). Similarly, the introduction of ASFV in northeast Lithuania 
resulted in the death of more than 20,000 pigs (14). Epidemiological 
investigations have revealed some details of the ASFV transmission 
patterns unique to these countries (e.g., Poland, where wild boar 
infections are dominant, versus Romania, where domestic outbreaks 
are more common) and have also identified the apparent evolution of 
lower-virulence ASFV strains in Estonia and Latvia (89). The ASFV 
genotype I  was restricted to the African continent from its first 

FIGURE 3

Geographical distribution of ASF in Africa.
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recognition in 1920 until 1957, when the outbreak was reported in 
Portugal. Spain was the first European country to report ASFV cases, 
followed by Italy, France, Malta, Belgium, and the Netherlands (28, 
90). Pork meat imported directly from Spain was thought to be the 
source of the first ASFV case in Belgium in 1985. The first outbreak of 
ASF resulted in the slaughter of 34,000 pigs housed on 60 holdings 
(29). The pig population in the Netherlands was severely affected from 
1960 to 1995 due to ASF (29, 91). Although ASF was successfully 
eradicated from most European countries by 1995, a notable exception 
was the Mediterranean island of Sardinia (Italy). The main factors that 
were responsible for the persistence of the disease in that area were the 
keeping of more than 70% of the pig population in extensive systems 
and backyard farms, combined with the proximity of wild boars (92).

The lack of consistency in ASF contingency plans and preventive 
measures resulted in the second spread of ASFV in European 
countries (29). In this context, the first case was recognized in Georgia 
in 2007,followed by numerous outbreaks of domestic pigs and wild 
boars (28, 29, 64, 90). The specific origin of the virus responsible for 
the outbreak is still unknown; however, the virus genotype has been 
linked with that in Madagascar and Mozambique (90). The disease 
spread from Georgia to native European countries and was recently 
reported in Latvia, Estonia, Hungary, and the Netherlands (90). Not 
only in western Europe, the pig population was also severely affected 
in eastern Europe. Poland, a country where 66% of the pig population 
is kept on small farms, reported the first case of ASF in 2014 (90, 93). 
Since the first outbreak in Poland, authorities have reported several 
outbreaks, with a total of 5,333 cases of the disease being confirmed 
in wild boars (29).

Since the first appearance of ASF in Europe in (1960), it took 
30 years to successfully eradicate the virus from affected countries (94, 
95). The second spread of the disease (2007), contributed to virus 

migration in nearby regions, as well as a high probability of outbreaks 
in neighboring countries (90). Efforts to control disease in Europe 
have not been successful. Impediments to the development of 
successful eradication programs include low biosecurity (human 
factor), free-ranging wild boar populations, and a high prevalence of 
the virus in surrounding bordering countries (90). Low or non-existent 
biosecurity measures at small-scale pig holdings increase the risk of 
introducing viruses on the farm. Ticks, wild boar populations, and the 
illegal trade of infected meat products are the other factors responsible 
for maintaining and circulating the virus within pig populations (57). 
Despite the challenges, the European authorities have implemented 
multifaceted preventive and hygiene procedures. In addition, 
government institutions are strongly convinced of achieving the 
eradication of disease in a short period of time.

African swine fever in the United States and 
its future assessment

The United  States (United States) is believed to manage pig 
production under high biosecurity conditions. Economic losses due 
to ASFV introduction into the U. S are estimated in between $15 and 
$50 billion, depending on the disease spread in the feral swine 
population (96). Commercial swine production is a closed system 
from farrowing to slaughter as a means of reducing the risk of 
pathogen introduction (97). To limit cross contamination, transport 
vehicles, animal feed, personnel and other fomites are closely 
managed. Despite the high-profile biosecurity measures, transport 
equipment contributed to the spread of the porcine epidemic diarrhea 
virus (PEDV) in 2013 (59). This indicates that despite stringent 
biosecurity protocols, it can be difficult to control ASF. Keeping this 

FIGURE 4

Geographical distribution of ASF in Europe.
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in mind, the US has substantially contributed to the implementation 
of a series of preventive measures designed for the importation of live 
animals and their products.

Prevention and control strategies

The escalating intensification of animal movements and product 
exchanges have increased the risk of ASF in new regions, particularly 
those developing trade ties with new eastern EU member states (98). 
Despite of this threat, despite efforts, there is no effective vaccine available 
for global eradication. The developing of an effective vaccine becomes 
crucial to controlling one of the major pig diseases in Africa. Such a 
vaccine would offer an alternative to animal slaughter, mitigating the 
spread of ASF in both Africa and Europe (99). Challenges to eradication 
efforts include free-range production systems, interactions with 
Ornithodoros ticks and/or wild suids, and endemicity involving 
asymptomatic carriers (Wamwatila et al., 2015) (100). Success relies highly 
on effective communication between all involved parties in an outbreak, 
including diagnostic laboratories, farmers, field and official veterinarians, 
disease crisis centers, and media participation. Implementing 
improvements in pig housing to minimize contact with ticks and wild 
animals have proven highly efficient in reducing infection to eradication 
levels and should not be overlooked (1). A cost–benefit analysis should 
determine whether contingency efforts would be directed toward control 
or eradication (101).

In the absence of a vaccine and considering the role of the sylvatic 
cycle in the epidemiology of southern and eastern Africa’s disease, logical 
measures for ASF control include the physical separation of domestic pigs 
from wild hosts and treating pig premises with acaricides in areas where 
tick-infected by ASFV occurs (28). Control based on the physical 
separation between wildlife and pigs has been proven successful in 
controlling ASFV, even in animals from those regions where the virus 
circulates among infected warthog populations (7).

Control strategy based on genetically 
modified vaccines

Despite the implementation of strong biosecurity measures, it is a 
difficult task to control the spread of disease in the pig population. 
Control measures rely on prompt reporting, repeat testing, and culling 
infected and at-risk animals. Moreover, in underdeveloped countries 
these methods and their establishment are difficult to apply. As an 
alternative, researchers are now struggling to develop an effective 
vaccine against ASFV. For this purpose, several attempts have been 
made in recent decades. Different vaccine strategies such as DNA 
vaccines, adenovirus vector vaccines, subunit vaccines, and inactivated 
vaccines have been tested and proven to be unsuccessful (2). Similarly, 
extracts of infected cells, purified and inactivated virions, infected 
leukocyte blood supernatants, infected glutaraldehyde fixed 
macrophages, or infected alveolar macrophages have been used to 
produce immunity against ASFV (62). However, all of these attempts 
failed to produce desirable results. Meanwhile, it was observed that 
pigs infected with attenuated or virulent variants of ASFV may 
establish resistance to homologous virus challenge (102). These 
observations led scientists to develop an effective live attenuated virus 
by deleting genes not associated with ASFV replication. Virulent 

isolates of ASFV have been modified with deletions of genes to 
attenuate the virus. Keeping this in mind, the BeninΔDP148R virus 
was genetically modified by deleting the DP148R gene to isolate the 
virulent strain, Benin97/1. Deletion of the gene reduced the 
pathogenicity of the BeninΔDP148R virus in pigs. All the pigs 
immunized with the virus showed only mild transient clinical signs 
and survived infection. Moreover, high level of protection was 
observed against the parental virulent strain (103). The same level of 
safety and protection was observed after immunization of the pig with 
ASFV-G-ΔI177L. After immunization, the pig showed a strong and 
specific antibody response and low viremia titers (104) (Table 2).

Based on available knowledge, the use of genetically modified viruses 
is the most reasonable approach to establishing an effective ASFV vaccine. 
Genetic modification and deletion of one or more genes change the virus 

TABLE 2 Genetically modified ASFV by deletion of genes and their effects 
in immunized pigs.

Isolate
Gene 
deleted

Protection 
against 
parental 
virus

References

ASFV-G TK (thymidine 

kinase)

No (105)

ASFV-G 

(2007)

9GL (B119L) High (106)

NH/P68 A238L, A224L, 

EP153R and 

A276R

Moderate (14)

Benin 97/1 DP148R High protection (103)

ASFV-G I177L High (104)

ASFV-G 

(2007)

9GL and UK High (107)

HLJ/18 MGF505-1R, 

MGF505-2R, 

MGF505-3R, 

MGF360-12 L, 

MGF360-13 L, 

MGF360-14 L 

and CD2v.

High (81)

Benin 97/1 MGF360 and 

MGF530/505

High (103)

ASFV-G 

(2007)

MGF505-1R, 

MGF360-12 L, 

MGF360-13 L, 

MGF360-14 L, 

MGF505-2R, 

and MGF505-3R

High (106)

OUR T88/3 DP71L and 

DP96R

Moderate (106)

ASFV-G 

(2010)

8DR (EP402R) Failed to induced (104)

ASFV-G 9GL/NL/UK Failed to induced (104)

ASFV-G 

(2007)

9GL and MGF Failed to induce (106)
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from virulent to less virulent (104, 108). In domestic pigs ASAFV-G-
Δ8DR is responsible for disease state. Pigs infected with the ancestral 
virus ASAFV-G-Δ8DR show the same viremia values. More attention is 
needed for the selection of targeted genes. Attenuated viruses of different 
genotypes should be  tested to obtain strains that protect isolates 
circulating in different regions. Moreover, optimized targeted genes are 
used for safety standards. Similarly, the issue of the availability of a 
licensed cell line to grow live attenuated viruses for vaccine production 
needs to be resolved. For efficient control measures, immune responses 
induced by virus antigenic proteins are necessary to enhance the 
protection of infected animals (108). Therefore, the rational development 
of novel ASFV vaccines requires caution and more work to optimize 
commercial production.

Conclusion

The current situation of ASF signifies a constant risk to the 
livestock sector. Recent exploration and flourishing of ASFV have 
demonstrated the ability of the virus to spread over long distances. As 
a result, there is a tremendous decrease in both the production and 
farming of pigs. Furthermore, the implications of the trade related to 
ASFV in swine have severely affected the pork industry. Veterinary 
services need to perform rigorous surveillance in countries that 
consume pigs, as the inaccessibility to effective medication persists, 
leading to high mortality rates are the main reasons. Biosecurity 
measures are crucial to prevent the transmission of viruses. Inadequate 
biosecurity practices can create opportunities for the spread of viruses, 
which pose risks to human and animal health. Vaccines have given 
some favorable results; however, further investigation is required to 
prove them as the only choice to treat and control the disease.
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