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Canine distemper virus (CDV) is a highly contagious and potentially lethal virus 
that affects dogs and other members of the Canidae family, including wolves, 
foxes, and coyotes. Here, we present a fluorescent lateral flow immunoassay 
(FLFA) platform for the detection of CDV, which utilizes fluorescent 
microspheres - fusion protein monoclonal antibody (mAb)-labeled monoclonal 
antibody. The assay detected CDV within 5  min, with a detection limit threshold 
of 3  ×  102 TCID50/mL. Notably, the assay demonstrated no cross-reactivity with 
canine parvovirus, canine coronavirus, canine adenovirus, feline calicivirus, feline 
herpesvirus, or feline parvovirus. Field and clinical applicability of the assay was 
evaluated using 63 field samples, including 30 canine fecal samples, 18 swab 
samples, and 15 blood samples. The coincidence rate between the detection 
results of clinical samples obtained through FLFA and reverse transcription 
polymerase chain reaction (RT-PCR) was 96.83%. Thus, this assay offers a 
significant advancement for the rapid diagnosis of CDV at the point of care.
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Introduction

Canine distemper virus (CDV) is an enveloped, non-segmented, negative-stranded, 
negative-sense RNA virus classified in the Morbillivirus genus of the Paramyxoviridae family. 
CDV infections can lead to systemic disease involving the central nervous system as well as 
the respiratory and gastrointestinal tracts (1). The CDV genome spans 15,690 nucleotides in 
length and consists of six motifs encoding six structural proteins, including the nucleocapsid 
(N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins.

Canine distemper (CD) is a multisystemic disease impacting a wide variety of animal 
families, including members of Canidae, Felidae, Mustelidae, Procyonidae, Ursidae, Phocidae, 
Viverridae, Hyaenidae, Ailuridae, Mephitidae, Muridae, Cricetidae, and Cercopithecidae (2). 
The pathogenesis and progression of the disease manifest through biphasic fever, systemic 
involvement of the respiratory and gastrointestinal systems, and neurological symptoms. 
Consequently, the development of rapid and accurate detection methods for CDV is crucial 
for clinical diagnosis.
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While lateral flow immunoassays are widely used for on-site 
detection because of rapid time-to-result readout and ease of 
operation (3–5), it is a challenge to generate sufficient signal 
intensity and a high degree of sensitivity (6, 7). Because the optical 
signal can be  amplified remarkably by doping microspheres. 
Fluorescent lateral flow immunoassay (FLFA) has a great advantage 
in terms of sensitivity (8, 9). Techniques for virus isolation, specific 
antibody detection and immunochromatography assay have been 
established for the diagnosis and management of CDV (10, 11). 
However, there remains a pressing need for rapid and accuracy 
diagnostic methods, including point-of-care testing, for effective 
disease management, especially in wildlife, where signs and 
symptoms may not be  readily apparent. In the current study, 
we  introduce a fluorescent lateral flow immunoassay (FLFA) 
platform for the detection of CDV. This method is sensitive and 
specific for CDV determination in both clinical settings and various 
research contexts.

Materials and methods

Ethics statement

No animals were sacrificed specifically for this study. Samples of 
feces, blood, and swab were collected by the veterinary hospital in 
Changchun and Guangzhou. The owner of each dog took the initiative 
to send the sick animal to the veterinary hospital for treatment, and 
the samples were collected and diagnosis by the laboratory.

Reagents and antibodies

The fusion protein monoclonal antibodies (F-mAb) for CDV were 
purchased from HyText Co., Ltd. An immunochromatographic strip, 
including sample pad, absorbent pad, PVC pad, and nitrocellulose 
(NC) membrane, was purchased from Jiening Bio Co., Ltd. The 
fluorescence microsphere, 1-ethyl-3-(3-dimethylaminopropyl) 
carbodiimide (EDC), N-hydroxysuc-cini-mide, bovine serum 
albumin (BSA) and 2-(N-morpholino) ethanesulfonic acid (MES) 
were purchased from Sigma (St. Louis, MO, United States).

Construction of fluorescent 
microspheres-monoclonal antibody 
(mAb)-labeled probe

A fluorescent microspheres-monoclonal antibody (mAb)-labeled 
probe was prepared as follows steps. Briefly, microsphere was 
suspended in 1 mL 0.01 M sodium dihydrogen phosphate solution 
(NaH2PO4) with pH 6.0. After centrifugal at 8,000 × g for 2 min, 1 mL 
of activation solution (10 mg EDC and 6 mg NHS dissolved in 1 mL of 
0.01 M NaH2PO4) was resuspended the microspheres for 15 min. After 
that the microspheres were activated. Then, 100 μL 50 mM pH 5.0 
MES were added into the activated microspheres and coupled with 
100 μg ~ 500 μg antibodies as labeled antibodies for incubation 2 h, 
then blocked with 1 mL blocking solution (pH 7.4 0.01 M PBS, 1% 
BSA). The fluorescent microspheres-monoclonal antibody (mAb)-
labeled probe was finally resuspended in 1 mL of storage solution (pH 

7.4 0.01 M PBS, 1% BSA and 0.1% sodium azide) and stored at 4°C for 
further use. All experiments were performed in triplicate.

Preparation of standard CDV fusion 
antigen

Recombinant CDV fusion antigen samples of various 
concentration (10, 20, 30, 40 and 50 ng/μL) were prepared by diluting 
an appropriate amount of the antigen with diluent buffer (PBS 
containing 1% bovine serum albumin) into 100 μL in PBS. These 
standard antigen samples were measured in triplicate by the CDV 
fusion assay.

Fabrication of F lateral flow strip

The immunochromatographic test strip was composed of a 
sample pad, a conjugate pad, a NC membrane, and an absorption pad. 
The F-mAb-BSA and goat anti-mouse immunoglobulin G (IgG) were 
spotted on the NC membrane using the BioDot XYZ platform 
(California, United States) as the test (T line) and control lines (C 
line), respectively. The prepared NC membranes were dried at 37°C 
for 12 h. The absorption and conjugate pads were used without 
treatment. All experiments were performed in triplicate.

Sensitivity of F-FLFA

The CDV reference strain (Snyder Hill, Accession No. GU138403) 
was cultured in VERO cell stored in our laboratory. Serial 10-fold 
dilutions of CDV (1 × 103 TCID50/mL to 1 × 101 TCID50/mL) were used 
to assess the detection limit of the F-FLFA.

Specificity of F-FLFA

The specificity of F-FLFA was assessed using CDV, canine 
parvovirus (CPV), canine coronavirus (CCoV), canine adenovirus 
(CAV), feline calicivirus (FCV), feline herpesvirus (FHV), and feline 
parvovirus (FPV). Sterile phosphate-buffered saline (PBS, 0.01 M, pH 
7.4) was used as a negative control for RNA and DNA extraction (12). 
In brief, Viral RNA was extracted using TRIzol reagent (TaKaRa 
Biotechnology, Dalian, China) and viral DNA was extracted using the 
DNA Mini Kit (50) (Omega Bio-tek, Norcross, GA, United States), 
following the manufacturers’ protocols. The F-FLFA reaction was 
carried out under optimized conditions. All samples were tested 
in duplicate.

Testing of field samples

In total, 63 field samples collected by pet hospitals were derived 
from different individuals and agreed with owers, including 30 canine 
fecal samples, 18 oral and nasal mixed swab samples, and 15 blood 
samples, were tested using F-FLFA and then compared to RT-PCR 
based on the P gene (13) to evaluate for any nonspecific amplification. 
The nucleic acid of CDV served as a positive control in these tests.
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Statistical analysis

GraphPad Prism software version 8.0 (GraphPad, Inc., La Jolla, 
CA, United States) was used to determine the means and SDs. The 
Coincidence rate (CR) = (positive amount + negative amount) / total 
amount × 100%.

Results

F-FLFA mechanism

Mouse anti-CDV F-mAb was prefixed on the test line (T) of the 
lateral flow strip, while the control line (C) was coated with goat 
anti-rabbit IgG polyclonal antibodies. The reaction tube contained 
fluorescent microspheres-mAb and rabbit IgG. Initially, the 
supernatant of tissue homogenate, serum, and anticoagulation 
blood samples were tenfold diluted with dilution buffer for lysing 
and the releasing viral particles were bound to fluorescent 
microspheres -mAb. The resulting complex flowed along the 
sample pad and NC membrane towards the absorbent pad under 
capillary force. As the complex passed the T line, it was captured 
by the F-mAb, leading to the generation of a fluorescent signal. At 
the C line, fluorescent microspheres -bound rabbit IgG was 
captured by the goat anti-rabbit IgG, resulting in a control signal 
(Figure 1 and Supplementary Figure S1). For F-FIFA assay, the 
linearity range (R2 = 0.9690) was extended up to 50 ng/
mL (Figure 2).

Specificity and sensitivity of F-FLFA

Seven relevant canine and feline pathogens, including that of CPV, 
CCoV, CAV, FCV, FHV, FPV, and CDV, were tested in this study. As 
shown in Figure 3, only CDV-positive samples presented obvious 
immunocomplexes, with the six other pathogens and control (PBS 
buffer) displaying negative reactions, thus illustrating high specificity 
of the established F-FLFA (Figures 3A,B).

To evaluate the sensitivity of F-FLFA, CDV was serially diluted to 
concentrations ranging from 103 to 101 TCID50/mL. As shown in 

Figures 3C–E, the limits of detection (LODs) for CDV by RT-PCR and 
F-FLFA were 101 TCID50/mL and 3 × 102 TCID50/mL, respectively. 
Thus, these results suggest that the LOD of F-FLFA is comparable to 
that of RT-PCR.

Clinical application of F-FLFA

To further assess its performance, 63 field samples, including 
30 canine fecal samples, 18 oral and nasal mixed swab samples, 
and 15 blood samples, were tested using F-FLFA and then 
compared with RT-PCR for the detection of nonspecific 
amplification. As shown in Table 1, twenty of 30 fecal samples, 10 
blood samples and 2 oral and nasal mixed swab samples were 
identified to be  positive by F-FLFA, 29 of negative samples 
detected by F-FLFA were also negative for RT-PCR. However, only 
32 of the 34 CDV-positive samples as determined by F-FLFA were 
also identified by RT-PCR. The amplicons from those two samples 
(blood samples) were purified and cloned into the pMD18-T 
vector for sequencing. Results demonstrated that the two samples 
were positive for CDV. The coincidence rate between RT-PCR and 
F-FLFA was 96.83% (Table 1). To determine the authenticity of the 
F-FLFA results, the PCR products of 32 positive samples were 
sequenced, revealing a 99% identity with the fusion gene of  
CDV.

Discussion

CDV affects dogs and wildlife across various geographical regions, 
posing a considerable threat to both endangered and vulnerable 
species, such as Siberian tigers, Ethiopian wolves, red pandas, 
cheetahs, and lions (10, 14–17). Consequently, rapid and convenient 
diagnosis of CDV is crucial for clinical applications and the 
implementation of effective preventive measures. In the present study, 
we developed a rapid and sensitive assay (F-FLFA) for the successful 
detection of CDV.

Traditional diagnostic methods, with virus isolation regarded 
as the “gold standard” for CDV detection, utilize antigens, nucleic 
acids, and antibodies for clinical diagnosis in whole blood, serum, 

FIGURE 1

Structure and principle of the F-FLFA test strip.
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and cerebrospinal fluid (18–22). However, there is a demand for 
point-of-care diagnostic tests for CDV that can facilitate field 
diagnosis through isothermal amplification (23–25). FLFA analysis 
surpasses conventional tests in simplicity, enabling straightforward 
execution. Furthermore, FLFA based on the F and N proteins can 
detect antigens under visible light, thereby enabling preliminary 
diagnosis in pet hospitals (11, 26). To address the sensitivity 
constraints inherent in traditional LFA, previous research 
developed the F-FLFA approach utilizing fluorescent microspheres. 
These beads are distinguished by their exceptional magnetic 
properties, fluorescence, and capacity for biological modification, 
features that have found extensive application in the biomedical 
field (27–30).

In this study, we developed an effective assay (F-FLFA) for the 
detection of CDV based on the fluorescent-nanoparticle-labelled 

FIGURE 2

The relationship between the detected fluorescence intensity and 
different fusion concentration (10  ng/mL, 20  ng/mL, 30  ng/mL, 
40  ng/mL, and 50  ng/mL).

FIGURE 3

Specificity of F-FLFA assay for the detection of CDV, CPV, CCoV, CAV, FPV, FCV and FHV (A) and readout of fluorescence intensity of test and control 
lines (B); sensitivity RT-PCR assay based on the P gene for the detection of CDV, PCR results confirmed by 2% agarose gel electrophoresis. The 
amplicon size of PCR production is 116  bp. Lane 1, DL-2000 DNA marker (TAKARA, Dalian, China). Lanes 2 to 5, corresponding to the concentrations of 
1  ×  103 TCID50/mL, 3  ×  102TCID50/mL, 1  ×  102TCID50/mL, 1  ×  101TCID50/mL. Lanes 6, NC indicates a negative control (C) and sensitivity F-FLFA assay for 
the detection of CDV, Lanes 1 to 4, corresponding to the concentrations of 1  ×  103 TCID50/mL, 3  ×  102TCID50/mL, 1  ×  102TCID50/mL, 1  ×  101TCID50/mL. 
Lanes 5, NC indicates a negative control (D) and readout of fluorescence intensity of test and control lines (E).
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monoclonal antibodies. This assay offers considerable 
improvements over traditional detection methods, showing 
several advantages: (1) The assay showed excellent specificity and 
sensitivity, which has stability for antigen detection; (2) The assay 
required less than 5 min detection time, offering substantial time 
savings compared to the RT-PCR assay; (3) The assay required 
only mild reaction conditions, operating at room temperature 
with less complex equipment. Furthermore, according to the 
detection of clinical samples, it is demonstrated that F-FLFA is 
ideally suited for the rapid detection of clinical samples in 
veterinary clinics and field settings. There are potentially to 
improve the accuracy of detection. We hypothesized that a few 
unknown impurities affect the binding of antigens to antibodies. 
It is imperative for us to lyse the blood cells thoroughly or to 
optimize buffer composition.

Molecular diagnostic techniques, including polymerase chain 
reaction (PCR), quantitative PCR methods, loop-mediated 
isothermal amplification (LAMP), and recombinase polymerase 
amplification (RPA), have been developed and widely applied for 
pathogen diagnosis. However, these diagnostic methods can 
be impeded by a variety of reaction inhibitors, such as alkaline 
lysis, high genomic DNA concentrations, and lysis reactions, 
which can suppress enzymatic activity (31, 32). In contrast, 
F-FLFA allows for the direct testing of original samples, such as 
blood, nasal swabs, or culture media, without requiring nucleic 
acid purification, thus facilitating on-site detection. Moreover, the 
application of fluorescent labels in F-FLFA is anticipated to 
improve quantitative analysis performance (33). Our findings 
demonstrated that F-FLFA demonstrated high accuracy and 
reproducibility at various concentrations and correlated well with 
the RT-PCR in clinical samples, suggesting that this assay holds 
considerable promise for the development in point-of-
care diagnosis.

In conclusion, we  developed an effective assay (F-FLFA) 
utilizing fluorescent microspheres for detecting the fusion protein 
of CDV. Notably, the assay allowed for sensitive in detection of field 
samples and demonstrated no cross-reactivity with CPV, CCoV, 
CAV, FCV, FHV, or FPV. Thus, this assay provides an effective and 
rapid means for the clinical detection and field diagnosis of 
CDV infections.
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