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Introduction: Understanding multi-pathogen infections/exposures in livestock 
is critical to inform prevention and control measures against infectious diseases. 
We  investigated the co-exposure of foot-and-mouth disease virus (FMDV), 
Brucella spp., Leptospira spp., and Coxiella burnetii in cattle in three zones 
stratified by land use change and with different wildlife-livestock interactions in 
Narok county, Kenya. We also assessed potential risk factors associated with the 
transmission of these pathogens in cattle.

Methods: We identified five villages purposively, two each for areas with 
intensive (zone 1) and moderate wildlife-livestock interactions (zone 2) and 
one for locations with low wildlife-livestock interactions (zone 3). We sampled 
1,170 cattle from 390 herds through a cross-sectional study and tested the 
serum samples for antibodies against the focal pathogens using enzyme-
linked immunosorbent assay (ELISA) kits. A questionnaire was administered to 
gather epidemiological data on the putative risk factors associated with cattle’s 
exposure to the investigated pathogens. Data were analyzed using the Bayesian 
hierarchical models with herd number as a random effect to adjust for the 
within-herd clustering of the various co-exposures among cattle.

Results: Overall, 88.0% (95% CI: 85.0–90.5) of the cattle tested positive for at least 
one of the targeted pathogens, while 41.7% (95% CI: 37.7–45.8) were seropositive 
to at least two pathogens. FMDV and Brucella spp. had the highest co-exposure at 
33.7% (95% CI: 30.9–36.5), followed by FMDV and Leptospira spp. (21.8%, 95% CI: 
19.5–24.4), Leptospira spp. and Brucella spp. (8.8%, 95% CI: 7.2–10.6), FMDV and C. 
burnetii (1.5%, 95% CI: 0.7–2.8), Brucella spp. and C. burnetii (1.0%, 95% CI: 0.3–2.2), 
and lowest for Leptospira spp. and C. burnetii (0.3%, 95% CI: 0.0–1.2). Cattle with 
FMDV and Brucella spp., and Brucella spp. and Leptospira spp. co-exposures and 
those simultaneously exposed to FMDV, Brucella spp. and Leptospira spp. were 
significantly higher in zone 1 than in zones 2 and 3. However, FMDV and Leptospira 
spp. co-exposure was higher in zones 1 and 2 than zone 3.

Discussion/conclusion: We recommend the establishment of a One Health 
surveillance system in the study area to reduce the morbidity of the targeted 
zoonotic pathogens in cattle and the risks of transmission to humans.
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1 Introduction

Livestock production is a significant economic activity that 
employs about 1.3 billion people worldwide (1). In Kenya, livestock 
production contributes approximately 42% to the agricultural gross 
domestic product (GDP) and about 12% of the national GDP (2). 
While livestock production is carried out across Kenya, the arid and 
semi-arid lands (ASALs) that are also inhabited by wildlife provide 
good rangelands for livestock farming. An example is the Maasai Mara 
ecosystem (MME) in Narok County including the Maasai Mara 
National Reserve (MMNR) and bordering areas. Livestock are critical 
resources in these areas as they contribute directly to the households’ 
income and food security (3). The local inhabitants in these locations 
also obtain environmental products such as firewood, medicinal 
plants, wild foods, and water for livestock and domestic use. 
Communities living near the MMNR boundary extract more of these 
environmental benefits than those in far-off areas (4).

The existence of the MME is facing a myriad of challenges 
including the unprecedented land use shifts attributed to high 
population growth, land privatization, climate change, and 
urbanization (5, 6). These anthropogenic influences have also been 
linked with the significant reduction of wild ungulate species 
populations in the area (7). The emerging land use transitions in the 
area include the creation of wildlife conservancies in private and 
communal lands near MMNR to conserve wildlife and foster tourism 
and also generate income for the local communities and revenues for 
the country (8). These conservancies also have well established 
management arrangements that allow the local inhabitants to graze 
their livestock in these environments. As previously reported (9), 
other land use modifications in MME are shown by the change from 
the semi-nomadic livestock farming practice in the areas around 
MMNR to sedentary or pure/mixed crop-livestock farming in lands 
distant from MMNR. Although posited as a sustainable approach that 
allows livestock and wildlife co-existence, the new land use strategies 
present unique challenges to farmers and their livestock in this area. 
The challenges reported in the area include the competition for 
ecological resources between livestock and wildlife, crop destruction, 
livestock predation, and human injuries or death due to attack by 
wildlife (10). Cross and/or within species transmission of infectious 
agents can also occur indirectly in these environments through 
contaminated surface water, fomite and forage or as a consequence of 
intensified effective contact rates between infected and susceptible 
hosts (11). For instance, earlier studies in the area have documented 
zoonotic pathogens such as anthrax (12), Leptospira spp. and Brucella 
spp. in livestock (13). These pathogens also infect diverse wildlife 
including the African buffalo (Syncerus caffer), notable species in the 
study area, that can modify the transmission patterns of the 
considered pathogens.

Most of the past epidemiological studies implemented in MME 
among livestock populations concentrated more on single pathogen 
infections or exposures (9, 14, 15) or had a very narrow focus on 

co-exposure (13). Therefore, investigations on the simultaneous 
infections and/or exposure of livestock to multiple infectious agents 
are limited in the study area. We  used FMDV, Brucella spp., 
Leptospira spp., and C. burnetii as pathogens of interest to understand 
their co-exposure and identify associated risk factors among cattle 
kept in three confluent zones stratified by land use types and with 
low to high wildlife-livestock interactions. Compared to the other 
study pathogens, there is also limited data on the burden, 
distribution and epidemiology of C. burnetii in livestock in the area. 
FMDV within the genus Aphthovirus causes foot-and-mouth disease 
(FMD), a transboundary viral disease of the cloven-hoofed domestic 
and wild animals (16). Brucella spp., Leptospira spp., and C. burnetii 
are globally spread bacterial zoonotic pathogens that cause 
brucellosis, leptospirosis and coxiellosis or Q fever, respectively, in 
diverse hosts including livestock, wildlife and humans (17–19). In 
Kenya, these zoonotic agents cause high morbidities in both 
livestock and humans (20), and extensive economic consequences 
(21). All the targeted pathogens also cause multiple common 
reproductive disorders in infected livestock such as abortions, 
reproductive failures, stillbirths and weak offspring, besides case 
fatalities (17, 19, 22, 23). The findings of this study will inform the 
development of integrated prevention and control strategies for 
these pathogens in the area including the establishment of an active 
biosurveillance system. Our results also shed more light on the 
ecology and epidemiology of the investigated pathogens in a 
livestock-wildlife interaction area.

2 Materials and methods

2.1 Study area

We implemented this study in the MME within Narok County in 
Kenya (Figure 1). The study area has been previously described (9). 
The MME, an area of about 6,000 km2, includes the MMNR and the 
surrounding areas. The MMNR (1,530 km2) is a protected area that is 
continuous with the Serengeti National Park in Tanzania. The study 
area receives bimodal rainfall ranging from 500 to 1,300 mm annually 
(5). From the MMNR boundary, the study area was stratified into 
three contiguous zones with changing land use types. Zone 1 was 
located 20 km from MMNR and represented areas with high wildlife-
livestock interface, while zone 2 (between 20 and 40 km from MMNR) 
were the areas with moderate wildlife-livestock interactions. Areas 
more than 40 km from MMNR represented zone 3 with low wildlife-
livestock interactions. In zone 1, cattle are mainly grazed illegally in 
the MMNR and surrounding wildlife conservancies in semi-nomadic 
pastoral systems, while in zone 2, they are pastured in fenced farms in 
sedentary husbandry systems although the entire area is not fenced 
and livestock still interact with wildlife. Crop cultivation, mainly 
maize and wheat, and/or livestock production are carried out in zone 
3. Five representative villages, two each for zones 1 and 2 and one for 
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zones 3, with comparable characteristics to those of the above-
explained zones were purposively selected for sampling.

2.2 Study design and sample size 
estimation

Cattle sampling was carried out between September 2016 and July 
2017 through a cross-sectional study as previously reported (9, 13). 
Briefly, the calculation of sample size (n) was done using the formula, 

n Deff
P P
d

= ×
× × −( )1 96 1
2

2

.
where Deff denotes the design effect, d 

is the acceptable standard error of 5%, and p is the expected 
seroprevalence for each targeted pathogen in the cattle population in 
the area (24). As mentioned in the introduction, there are studies on 
single pathogens done in the same area and different seroprevalence 
estimates for some of these pathogens exists. Nevertheless, in our 
study, the expected apparent seroprevalence for each target pathogen 
was assumed to be 50% to generate maximum possible sample size. 
The initially calculated sample size of 384 cattle based on the above 
parameters was corrected for design effect since in our sampling 
scheme, households and cattle were primary and secondary sampling 
units, respectively. We calculated the design effect using the formula 
deff = 1 + ICC(b–1), where ICC denoted the intra-cluster correlation 
coefficient and b the number of cattle sampled per herd (24). We used 
an ICC estimate of 0.1 for all pathogens as informed by a comparable 

study implemented in a pastoral area (25). Blood was collected from 
a random sample of three cattle in each herd. The computed design 
effect was 1.2 and it gave a corrected target sample size of 465 cattle 
from 155 (465/3) herds in each zone. Nevertheless, we sampled a total 
of 1,170 cattle from 390 herds in the three zones, allocated 
proportionately between zones based on the number of herds. The 
distribution of sampled animals by zones were as follows; 465 animals 
from 155 herds, each for zones 1 and 2, and 240 animals from 80 herds 
in zone 3.

2.3 Household selection, animal sampling, 
and sample processing

Before animal sampling, we  compiled a list of cattle-keeping 
households for each selected village assisted by the respective area 
chiefs. Simple random sampling was then applied to select households 
(representing cattle herds) for sampling. Only cattle aged 1 year and 
above were sampled as these animals regularly interact with wild 
animals and/or livestock from other herds at shared resources such as 
watering points or grazing fields compared to calves that are grazed 
on pastures within household surroundings. Given this, we assumed 
that cattle aged ≥1 year had a higher probability of exposure or 
infections with the investigated pathogens than calves. Up to 10 mL of 
blood was drawn into plain barcoded vacutainer tubes from the 
jugular vein of each animal. The samples were carried in cool boxes 
filled with dry ice to the Kenya Wildlife Service (KWS) laboratory 

FIGURE 1

Map showing sampling zones within the Maasai Mara ecosystem.
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within MMNR for processing on the same day of collection. The blood 
samples were centrifuged for 6 min at 5,000 revolutions per minute 
(rpm) and obtained serum aliquoted into two barcoded cryovials. 
These samples were transported in a portable freezer to the 
International Livestock Research Institute (ILRI), Nairobi, where they 
were stored at −20°C in the Biosciences laboratory facility before 
being tested for immunoglobulins against the targeted pathogens.

2.4 Data collection

During cattle sampling, a questionnaire was administered in each 
selected household to gather epidemiological information on potential 
animal and herd level risk factors for the transmission of the study 
pathogens in cattle. This information included animal sex, age, herd 
size, sampling sites (villages and zones), herd management practice, 
source of breeding bulls, history of abortions in sampled herds in the 
past year, purchase of livestock in the past year, cattle contact with 
others from a different herd at watering points or during grazing; 
whether cattle shared watering points within or between villages, and 
grazing strategies such as cattle utilizing a common grazing reserve, 
grazing of cattle in the MMNR, on pastures shared within villages or 
those shared between villages. In addition, we also collected data on 
whether livestock interacted with wild animals and the wildlife species 
they interacted with in each study location.

2.5 Testing of serum samples

All the 1,170 serum samples were tested using commercial 
immunological assays to detect antibodies against FMDV, Brucella 
spp., and Leptospira spp. as earlier described (9, 13). The testing of 
samples for specific antibodies to these three pathogens was done 
between 2017 and 2018. Due to logistical challenges, only 589 (50.3%, 
n = 1,170) randomly selected samples and approximately proportionate 
to the number of cattle sampled per zone were screened for antibodies 
against C. burnetii later in 2023. Briefly, the samples were tested for 
antibodies against FMDV non-structural proteins (NSPs) using two 
anti-NSPs based ELISA kits to differentiate convalescent animals from 
vaccinated. Specifically, the samples were tested using PrioCHECK 
FMDV NS blocking ELISA (Prionics, AG, Netherlands) and FMDV 
3ABC-trapping ready-to-use kits [Istituto Zooprofilattico 
Sperimentale della Lombardia edell’Emilia Romagna (IZSLER), Italy] 
as per manufacturer’s guidelines. Animals were categorized as 
seropositive based on the parallel interpretation of the two anti-NSPs 
results. The samples were screened for immunoglobulins (IgG1) 
against Brucella abortus using PrioCHECK Brucella Antibody 2.0 
indirect ELISA kit, while the testing of Leptospira interrogans serovar 
hardjo antibodies was carried out using PrioCHECK Leptospira hardjo 
indirect ELISA, all from Prionics AG, Netherlands. Tested animals 
were classified as either seropositive or seronegative for the above 
pathogens based on the manufacturers’ cut-off values of the respective 
ELISA kits for each pathogen.

The screening of samples for IgG antibodies against C. burnetii 
was conducted using an indirect serological kit (IDEXX laboratories, 
Westbrook ME, United States), as per the manufacturer’s instructions. 
In each 96 well test plate, the serum samples together with the positive 
and negative control sera were tested in duplicates. The optical 

densities (ODs) recorded at 450 nm for all wells were used to compute 
percentage positivity (PP) ratio for each tested serum as follows; mean 
sample OD – mean OD of negative control divided by mean positive 
control OD  - mean OD of negative control multiplied by 100%. 
According to manufacturer’s recommendations, cattle were considered 
as positive, borderline (suspect) and negative if the PP was more than 
40%, between 30–40%, and <30%, respectively. Repeated testing of 
samples with borderline results was conducted.

2.6 Data analyses

2.6.1 Descriptive analyses
Prior to data analyses, we merged laboratory and questionnaire 

epidemiological metadata into a single file in the R software 
environment, version 4.1.3 (26). The dependent variables of interest 
were based on the various possible combinations of the selected 
pathogens. We categorized animals that tested positive to any two 
target pathogens as having co-exposure while those with antibodies 
against more than two pathogens were considered to have multiple 
pathogen exposure. The preliminary descriptive results computed 
were the overall seroprevalence estimates for the above-mentioned 
outcome variables. Cross-classification tables with χ2-test being 
incorporated were created using the CrossTable command in the 
gmodels package (27) to generate these results and assess the crude 
associations between the various outcomes and categorical factors. 
The epi.conf function in the epiR package (28) was then used to 
estimate adjusted 95% confidence intervals for seropositivity estimates 
due to the design effect given the cluster sampling scheme. Cattle herd 
size being a quantitative variable was first checked using the Shapiro–
Wilk test to determine if the residuals were normally distributed 
before further analyses.

2.6.2 Statistical modeling
Risk factor analyses were conducted using Bayesian hierarchical 

models that are more flexible and robust than the classical “frequentist” 
methods as they permit inclusion of multiple response variables and 
prior information on the distribution of the parameters (24). Although 
these modeling approaches also differ in many other aspects including 
how the model parameters are estimated (24), Bayesian statistical 
approaches are useful when maximum likelihood estimation 
procedures in the classical methods reach their limits and fail to 
generate model outputs as was the case in our study. While fitting the 
Bayesian models, only six dependent variables with overall 
seropositivity estimates of ≥1.0 were considered. Outcome variables 
including the exposure of cattle to at least one, two and three 
pathogens were excluded in the analyses as we  aimed to identify 
potential risk factors associated with the seropositivity of specific co- 
or multiple pathogens. In our analyses, we first fitted two exploratory 
univariate models for outcome variables based on sample sizes of 589 
and 1,170, respectively, to allow simultaneous predictions of 
parameters. These models were fitted with an auto-correlated 
specification for the dependent variables. We  further carried out 
univariable Bayesian analyses to assess the unconditional associations 
between the selected outcomes and independent variables. From both 
univariate and univariable Bayesian models, variables with mean 
posterior distributions above zero and 95% credible intervals without 
a zero were considered significant (24). Statistically significant 
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variables in the univariate analyses were selected to fit global 
multivariate models following the same procedure described for the 
univariate models above, while those significant for each outcome of 
interest by the univariable models were used to fit respective 
multivariable Bayesian models. All the Bayesian models were 
implemented with a varying effect for herd ID using the mvbind 
function in brms package (29), an interface to stan probabilistic 
programming language (C++) (http://mc-stan.org/) for implementing 
full Bayesian inference (30). While fitting data to these models, each 
dependent variable being a Bernoulli random variable Y with binary 
outcomes drawn from {0,1}, where 0 denoted failure (seronegative) 
and 1 success (seropositive) was defined by the probability density 
function; fY y p py y( ) = −( ) −1 1  (31). The logit link function was also 
specified in the models. The models had four chains, each with 2,000 
iterations, 1,000 warms up, and 4,000 post-warm up draws. Due to the 
variability of seroprevalence estimates of the investigated pathogens, 
we  used standard non-informative flat and vectorized student’s T 
distributed priors centered on zero for fixed and varying effects, 
respectively, all default in the brms package. The Hamiltonian Monte 
Carlo and No-U-Turn (NUTS) sampling algorithms were used to 
estimate the posterior distributions of the parameters (32). These 
algorithms converge rapidly, especially for complex hierarchical 
models, relative to Markov-Chain Monte-Carlo (MCMC) (33). The 
final multivariable Bayesian models were derived through backward 
stepwise deletion method. Initially, global models were fitted for each 
dependent variable using significant variables from the respective 
univariable Bayesian analyses. Non-significant correlates were then 
removed through single stepwise deletions to obtain final reduced 
models. The variance partition coefficient (VPC), a variance ratio 
comparable to ICC in the classical statistical methods, was obtained 
from the simulated random effect variance of the posterior predicted 
distribution of each final model using the variance_decomposition 
function in performance package (34). The final models were also 
evaluated for the convergence of the algorithms by checking the Rhat 
diagnostic values and trace plots. The adequacy of each final model 
was checked graphically using posterior predictive checks 
implemented using the pp_check function in brms package. Lastly, 
we fitted null intercept-only models for each selected outcome and 
compared these models with the corresponding global and reduced 
competing models using Watanabe Akaike Information Criterion 
(WAIC) and leave-one-out-cross-validation (LOO-CV) approach. A 
flowchart summarizing the above statistical analyses steps is presented 
as Figure 2.

3 Results

3.1 Descriptive results

A total of 920 (78.6%) female and 250 (21.4%) male animals were 
sampled from 390 cattle herds. All the sampled cattle herds were 
indicated to interact with wildlife. Although the diversity of wildlife 
species that interact with livestock was indicated to decrease with 
distance from the areas bordering the MMNR (zone 1), the African 
buffalo (Syncerus caffer), Grevy’s Zebra (Equus grevyi), elephants 
(Loxodonta africana), blue wildebeests (Connochaetes taurinus), 
giraffe (Giraffa spp.) and impala (Aepyceros melampus) were noted as 
examples of common species in the high interface area, while in the 

moderate and low interface areas, Grevy’s Zebra and blue wildebeests 
are prevalent. The overall median cattle herd size was 50 (range; 
4–570). The median cattle herd sizes disaggregated by zones were 70 
(5–570), 50 (4–300) and 45 (6–300) for zones 1, 2 and 3, respectively, 
while based on the livestock production system, these estimates were 
49 (4–300) and 70 (5–570) for sedentary and pastoral systems, 
respectively.

The overall seropositivity estimates of the various co- or 
multiple pathogen exposures in cattle and their distributions by 
zones are given in Table 1. Overall, 88.0% (95% CI: 85.0–90.5) of 
the cattle were seropositive for at least one of the targeted pathogens, 
while 41.7% (95% CI: 37.7–45.8) were exposed to at least two 
pathogens. The highest co-exposures were observed between 
FMDV, Brucella spp. and Leptospira spp. since a small percentage of 
the sampled cattle (1.87%, 95% CI: 0.94–3.32) tested positive for 
C. burnetii. FMDV and Brucella spp. co-exposure was highest at 
33.7% (95% CI: 30.9–36.5), followed by FMDV and Leptospira spp. 
at 21.8% (95% CI: 19.5–24.4), Leptospira spp. and Brucella spp. at 
8.8% (95% CI: 7.2–10.6), FMDV and C. burnetii at 1.5% (95% CI: 
0.7–2.8), Brucella spp. and C. burnetii at 1.0% (95% CI: 0.3–2.2), 
and lowest for Leptospira spp. and C. burnetii at 0.3% (95% CI: 
0.0–1.2). Results of the analyses conducted using subset data for 
samples tested for all pathogens (n = 589), showed that 7.8% (95% 
CI: 5.7–10.2) of the cattle were seropositive to at least three 
pathogens. Those that were simultaneously seropositive for FMDV, 
Brucella spp., and Leptospira spp. were 8.4% (95% CI: 6.9–10.1), 
while 0.3% (95% CI: 0.0–1.2) tested positive for Brucella spp., 
Leptospira spp., and C. burnetii. Only two animals (0.3%, 95% CI: 
0.0–1.2) had antibodies to all pathogens.

The co-exposure of FMDV and Brucella spp. differed significantly 
by zones (p < 0.001). Highest co-exposure was found among cattle 
raised in zone 1 (high interface area) than those in zone 3 (Table 1). 
The co-exposure of cattle to FMDV and Leptospira spp.; simultaneous 
exposure to FMDV, Brucella spp. and Leptospira spp.; and to at least 
one, and two pathogens also varied statistically by zones and were all 
higher in zone 1 than the other zones. The other co- or multiple 
pathogen exposures did not vary significantly by zones (Table 1).

3.2 Risk factors associated with the 
co-exposures of the targeted pathogens

3.2.1 Univariable results
Univariate and multivariate analyses did not yield many 

significant factors compared to the univariable and multivariable 
Bayesian models, respectively. Consequently, we did not report these 
results. From the univariable Bayesian models, the co-exposure of 
cattle to FMDV and Leptospira spp. was significantly associated with 
animal sex (female), raising of cattle in moderate (zone 2) and high 
interface areas (zone 1); pastoral herd management practice, animals 
sharing a common grazing reserve, grazing of animals in the MMNR 
and on pastures shared between villages as well as a positive history 
of abortions in sampled herds (Table 2). The factors that predicted 
FMDV and Brucella spp. co-exposure included animals’ sex (female), 
zones (moderate and high interface areas), pastoral herd 
management practice, grazing of animals on pastures shared within 
and between villages; and in the MMNR, contact of animals with 
others from a different herd during grazing, utilization of watering 
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points shared between villages and mixing of cattle with others from 
a different herd at watering points. For Leptospira spp. and Brucella 
spp. co-exposure, animal sex (female), zones (high interface area), 
pastoral herd management practice, grazing of cattle in pastures 
shared between villages and in the MMNR; and also contact of 
animals with others from a different herd during grazing were all 
identified as significant predictors of cattle co-exposure to these two 
pathogens. The co-exposure of Brucella spp. and C. burnetii in cattle 
was positively associated with pastoral herd management practice, 
grazing of animals on pastures shared within and between villages; 
contact of animals with others from a different herd during grazing, 
sharing of watering points within and between villages; and mixing 
of animals with others from a different herd at watering points. 
FMDV and C. burnetii co-exposure was significantly associated with 
grazing of animals on pastures shared between villages. Lastly, the 
significant factors found to be  associated with the concurrent 
exposure of cattle to FMDV, Brucella spp. and Leptospira spp. were 
animal sex (female), zones (high interface area), pastoral herd 
management practice, and grazing of animals on pastures shared 
within villages and in the MMNR. Cattle herd size included in the 
models as a log-transformed or categorical factor was not 
significantly associated with any of the outcomes of interest and was 
not considered in further analyses.

3.2.2 Multivariable results
The multivariable Bayesian results are summarized in Table 3. 

From these results, the co-exposure of cattle to FMDV and Leptospira 
spp. was associated with animal sex, with more female cattle being 
seropositive than males. Cattle raised in moderate (zone 2) and high 
interface areas (zone 1) also had a higher probability of co-exposure 
to these pathogens than those in low interface areas. FMDV and 
Leptospira spp. co-exposure was also positively associated with 
pastoral husbandry practices and animals sharing a common grazing 
reserve. For FMD and Brucella spp.; and Leptospira spp. and Brucella 
spp. co-exposures, and also for animals with simultaneous exposure 
to FMDV, Brucella spp. and Leptospira spp., female cattle were also 
likely to test seropositive than males. Raising animals in high interface 
areas (zone 1) was also identified as an important predictor for 
these outcomes.

In the analyses of factors associated with the concurrent exposure 
of cattle to FMDV, Brucella spp. and Leptospira spp., alternative final 
multivariable Bayesian models comprising various pairs of significant 
covariates from the univariable models (i.e., animal sex and herd 
management practice; animal sex and zones; animal sex and animals 
sharing a common grazing reserve; animal sex and grazing of cattle in 
the MMNR) could be fitted to the data. However, a final model with 
animal sex and zones as the fixed effects was selected over the others 

FIGURE 2

A flowchart showing the steps followed during data analysis.
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as a proxy to explain some predictors in the alternative final models 
mentioned above. In this case, zone 1 was used to explain pastoral 
production system and grazing of cattle in the MMNR, predominant 
livestock husbandry practices in this area. The significant predictors 
of Brucella spp. and C. burnetii co-exposure were grazing of animals 
on pastures shared within villages, contact of cattle with others from 
a different herd during grazing, mixing of cattle with others from a 
different herd at watering points and sharing of watering points 
between villages. For FMDV and C. burnetii co-exposure, sharing of 
watering points within villages and use of a breeding bull from another 
farm were revealed as significant factors associated with cattle 
seropositivity to these pathogens.

The results from the model fit diagnostics revealed that the Rhat 
values were 1.0 for five of the six final models (Table 3), a confirmation 
that the algorithms for these models reached stationary distributions 
and converged. Slightly large Rhat values, though not exceeding the 
recommended limit of 1.1, were obtained from the final model for 
Brucella spp. and C. burnetii co-exposure, showing that some parts of 
this model failed to converge. The gradual increase of the number of 
iterations up to 50,000 and the adapt_delta (within the brms package) 
up to 0.999 to minimize divergent transitions that affect the validity of 
posterior draws, all did not improve the results. The estimated VPCs 
for the converged final models together with their corresponding 
random effect variances for the posterior predicted distributions are 
presented in Table  3. For these models, the fairly symmetrical 
histograms of the posterior samples and the trace plots of the standard 
deviation for the residuals, intercept and slope of the fixed effects, with 
a random scatter above and below the mean values also depicted 
convergence of the algorithms (Supplementary Figures S1–S5). 
Furthermore, the posterior predictive checks for all the final models 
demonstrated similar density plots for observed (y) and predicted data 
(y rep), implying fit of the models to the data 
(Supplementary Figures S6–S11). Comparison of the competing (null, 
global and final) Bayesian models showed that all the final models had 
better fit of the data as they had the lowest leave-one-out information 
criteria (LOOIC) and WAIC values.

4 Discussion

This study confirmed cattle’s concomitant exposure to the targeted 
pathogens in the wildlife-livestock overlap areas of Narok County and 
revealed that a large percentage of these hosts (41.7%) were 
seropositive for at least two of the investigated pathogens. This finding 
aligns with results of other studies elsewhere that have shown mixed 
infections and/or co-exposures as a common phenomenon among 
livestock animals raised in different production systems (35–37), since 
these hosts could be continually exposed to heterogeneous pathogens 
present in their habitats. Except for FMDV, vaccination of cattle 
against the other targeted pathogens has not been adopted in the area 
hence the observed co-exposures are associated with natural infections 
with these pathogens.

As depicted by the computed VPCs, most co-exposures were 
either moderately or highly correlated among cattle within herds 
(VPCs range: 0.15–0.48) except for Brucella spp. and C. burnetii 
co-exposure that was not calculated and FMDV and Leptospira spp. 
co-exposure that was considerably low (0.08). This finding illustrates 
a considerable degree of transmission of the investigated pathogens T
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TABLE 2 Univariable Bayesian mixed model results showing factors that were significantly associated with at least one of the considered outcomes.

Variables 
and 
categories

FMDV  +  Leptospira spp. FMDV  +  Brucella spp. Leptospira spp. + 
Brucella spp.

Brucella spp. + C. 
burnetii

FMDV + C. burnetii FMDV  +  Brucella spp. + 
Leptospira spp.

Mean* 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95%

Sex

Male (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Female 0.70 0.30 1.13 1.00 0.61 1.41 1.20 0.52 1.97 −0.47 −2.24 1.48 −0.55 −2.06 1.03 1.06 0.37 1.81

Zones**

Zone 3 (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Zone 2 0.74 0.30 1.22 0.41 −0.02 0.87 0.41 −0.23 1.10 −0.61 −3.97 2.77 −1.19 −3.34 0.74 0.52 −0.20 1.30

Zone 1 0.78 0.33 1.27 1.22 0.78 1.68 0.70 0.05 1.39 1.11 −1.08 4.17 −0.34 −2.12 1.39 0.91 0.22 1.68

Herd management practice

Sedentary (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Pastoral 0.49 0.18 0.81 0.84 0.52 1.17 0.58 0.17 1.01 2.10 0.06 5.05 0.51 −0.93 1.96 0.68 0.23 1.16

Shared a common grazing reserve

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.68 0.36 1.02 0.29 −0.07 0.67 0.34 −0.12 0.78 1.77 −0.05 3.79 0.79 −0.72 2.20 0.49 −0.01 0.99

Grazed animals on pastures shared within village

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.41 −0.08 0.94 0.92 0.38 1.47 0.83 0.08 1.68 30.40 0.40 160.09 0.55 −1.58 3.68 0.96 0.11 1.96

Grazed animals on pastures shared between villages

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.54 0.21 0.87 0.37 0.02 0.75 0.25 −0.22 0.74 1.84 0.04 3.91 0.83 −0.73 2.32 0.40 −0.09 0.90

Grazed cattle in the MMNR

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.44 0.12 0.77 0.74 0.42 1.05 0.51 0.11 0.92 1.05 −0.71 3.15 0.01 −1.50 1.47 0.61 0.14 1.09

Contact with other cattle from a different herd during grazing

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.35 −0.12 0.83 0.53 0.07 0.99 0.73 0.05 1.51 21.27 0.38 96.69 −0.95 −2.50 0.71 0.69 −0.04 1.50

Shared watering points within village

No (Ref.) (Ref.) (Ref) (Ref) (Ref) (Ref)

Yes 0.63 −0.30 1.65 0.96 −0.02 2.02 0.40 −0.77 1.87 68.24 0.15 299.52 64.49 0.86 299.93 0.89 −0.56 2.87

(Continued)
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Variables 
and 
categories

FMDV  +  Leptospira spp. FMDV  +  Brucella spp. Leptospira spp. + 
Brucella spp.

Brucella spp. + C. 
burnetii

FMDV + C. burnetii FMDV  +  Brucella spp. + 
Leptospira spp.

Mean* 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95% Mean 
(SE)

l-95% u-95%

Shared watering points between villages

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.63 −0.30 1.65 0.68 0.36 1.02 0.32 −0.14 0.77 10.08 0.97 39.06 0.49 −0.91 2.03 0.38 −0.09 0.80

Mixed cattle with others from a different herd at watering points

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.38 −0.00 0.79 0.44 0.06 0.84 0.37 −0.16 0.94 23.03 0.60 216.58 −0.29 −1.74 1.33 0.39 −0.16 0.99

Bought livestock in previous year

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes −0.05 −0.41 0.31 0.10 −0.26 0.48 −0.06 −0.54 0.43 0.97 −1.26 3.88 1.44 −0.55 4.37 −0.09 −0.61 0.42

History of abortions in sampled

No (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)

Yes 0.41 0.08 0.88 0.22 −0.10 0.54 0.07 −0.34 0.49 −0.03 −1.79 1.72 −0.80 −2.46 0.65 0.20 −0.25 0.64

*Mean of posterior distribution; SE, standard deviation of the posterior distributions; Ref., Reference category; l-95% and u-95% represents the lower and upper Bayesian credible intervals, respectively. MMNR, Maasai Mara National Reserve. The bolded Bayesian 
credible intervals are for variables that were statistically significant. **Zone 3, low interface area; Zone 2, moderate interface area; zone 1, high interface area.

TABLE 2 (Continued)
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TABLE 3 Results of the multivariable Bayesian mixed models showing variables found to be significantly associated with the considered outcomes.

Targeted 
pathogens 
co-
exposures

Variables and categories Mean* SE l-95% 
CI

u-95% 
CI

Rhat Bulk 
ESS

Tail 
ESS

aVariance VPC

FMDV and 

Leptospira spp.

Animal sex 0.16 0.08

Male (Ref.)

Female 0.81 0.21 0.40 1.21 1.00 6,891 3,260

Zones

Zone 3 (Ref.)

Zone 2 0.58 0.25 0.11 1.07 1.00 4,291 2,795

Zone 1 0.02 0.38 −0.72 0.76 1.00 3,359 2,670

Herd management practice

Sedentary (Ref.)

Pastoral 0.57 0.28 0.00 1.14 1.00 4,047 2,648

Shared a common grazing reserve

No (Ref.)

Yes 0.60 0.19 0.22 0.99 1.00 5,585 3,210

FMDV and 

Brucella spp.

Animal sex 0.21 0.15

Male (Ref.)

Female 1.16 0.21 0.77 1.58 1.00 6,771 3,124

Zones

Zone 3 (Ref.)

Zone 2 0.48 0.25 −0.00 0.96 1.00 5,396 3,118

Zone 1 1.45 0.25 0.96 1.97 1.00 4,334 3,360

Leptospira spp. 

and Brucella spp.

Animal sex 0.07 0.30

Male (Ref.)

Female 1.30 0.38 0.62 2.08 1.00 4,929 2,566

Zones

Zone 3 (Ref.)

Zone 2 0.47 0.35 −0.19 1.17 1.00 3,328 2,839

Zone 1 0.86 0.34 0.23 1.54 1.00 3,259 2,428

Brucella spp. and 

C. burnetii

Grazed of animals on pastures shared 

within villages

_ _

No (Ref.)

Yes 666.64 984.01 3.78 3681.01 1.04 94 111

Contact with other cattle from a different 

herd during grazing

No (Ref.)

Yes 566.58 769.45 0.12 2807.61 1.02 85 112

Shared watering points between villages.

No (Ref.)

Yes 248.37 434.91 258 1397.81 1.04 82 105

Mixed cattle with others from a different 

herd at watering points

No (Ref.)

Yes 289.83 469.09 1.73 1760.70 1.06 68 73

(Continued)
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within herds in the area. The targeted pathogens are highly contagious 
and share transmission routes thus within herd contact rates between 
sick and healthy cattle could lead to a substantial number of animals 
being infected.

The highest co-exposures were recorded between FMDV, Brucella 
spp. and Leptospira spp. which is attributable to the high animal-level 
seroprevalence estimates reported for these pathogens among cattle 
in the area (9, 13, 15), hence a high likelihood of concurrent exposures 
in the same animal. For C. burnetii, the estimated seroprevalence 
(1.87%) was very low. There are limited published studies on this 
pathogen among livestock populations in the area, but this value 
aligned with the seroprevalence estimates documented by other 
studies implemented within Kenya in areas with comparable livestock 
production systems to MME (38–40). Those studies reported 
significantly lower seropositivity estimates for C. burnetii among cattle 
relative to small ruminants (sheep and goats), although the latter were 
not sampled in our study. Even so, a recent systematic review also 
documented different seroprevalence estimates of C. burnetii among 
livestock species across Africa (41), presumably due to varied 
epidemiological drivers in these contexts or the use of serological tests 
with different specificity and sensitivity estimates.

The specific impacts of multiple infections and/or exposures of 
cattle with the investigated pathogens remain poorly understood, but 
serious animal health consequences ascribed to the synergistic effects 
of these pathogens could be manifested among infected cattle. This, 
for instance, could include high morbidity and death rates; severe 
illness, increased animal susceptibility to secondary pathogens due to 
immune depression and clinical misdiagnosis as all manifest 
non-specific syndromes (37). Cattle infections with the focused 

pathogens cause significant reproductive disorders. In mixed 
infections, infected animals could manifest worse health outcomes 
leading to serious economic losses. Such economic losses can 
be compounded by trade restrictions of livestock and their products 
during FMDV outbreak (23). These pathogens also cause a significant 
decline in milk yields among infected animals which could affect the 
food security of the local farmers. The detection of the three zoonotic 
pathogens in cattle is also a major food safety concern to the local 
communities as they can get exposed through the consumption of raw 
animal products including milk and meat. Livestock keepers, herders 
and individuals in the livestock value chain including those working 
in abattoirs in these locations are also at risk of infections with 
multiple zoonotic pathogens. While we could not confirm humans’ 
exposure to the targeted zoonotic agents as they were not sampled, 
brucellosis has been reported among these hosts in the area (15).

FMDV and Brucella spp., Leptospira spp. and Brucella spp., 
co-exposures and the simultaneous exposure of cattle to FMDV, 
Brucella spp., and Leptospira spp. were all recorded highest among 
animals sampled in zone 1 compared to those from zones 2 and 3. 
These findings may be due to grazing of cattle in wildlife inhabited 
locations, particularly, the MMNR and surrounding conservancies. 
Indeed, grazing of cattle in MMNR was significantly associated with 
the above outcomes. The investigated pathogens infect a great 
diversity of wildlife including the African buffalo (Syncerus caffer), 
notable self-sustaining reservoir hosts found in the area that could 
inadvertently transmit these pathogens to livestock through “spill 
over” (42–45). Even though wildlife were not screened for the focal 
pathogens, earlier studies conducted in the area revealed exposure 
of various wildlife species including the African buffalo to Brucella 

TABLE 3 (Continued)

Targeted 
pathogens 
co-
exposures

Variables and categories Mean* SE l-95% 
CI

u-95% 
CI

Rhat Bulk 
ESS

Tail 
ESS

aVariance VPC

FMDV and C. 

burnetii

Shared watering points within village 0.02 0.28

No (Ref.)

Yes 75.45 102.36 0.93 372.52 1.00 895 490

Source of breeding bull

Own bull (Ref.)

Bull from another farm 1.51 0.77 0.00 3.02 1.00 6,663 2,726

FMDV, Brucella 

spp. and 

Leptospira spp.

0.07 0.48

Animal sex

Male (Ref.)

Female 1.18 0.37 0.51 1.95 1.00 5,729 2,910

Zones

Zone 3 (Ref.)

Zone 2 0.57 0.39 −0.17 1.37 1.00 3,840 2,370

Zone 1 1.06 0.39 0.35 1.88 1.00 3,758 2,508

*Mean of the posterior distribution; aVariance of the varying effect (herd ID); VPC, variance partition coefficient; SE, standard error of the posterior distribution; Ref, reference category; l-95% 
CI and u-95% CI denote the lower and upper Bayesian credible intervals, respectively. Bulk and Tail ESS are effective sample size measures. The variance and VPC for Brucella spp. and C. 
burnetii co-exposure final model (both marked with dashes) were not computed as some parts of the model did not converge.
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spp., C. burnetii among other zoonotic pathogens (46) and FMDV 
(47), further supporting the above hypothesis. The different land 
use types embraced by farmers in the area could also account for 
the variations in co-exposures by zones. Semi-nomadic pastoral 
system is the primary livestock grazing strategy used in zone 1 and 
was also identified as an important predictor of the above co- or 
multiple pathogen exposures. This livestock production system 
permit close interactions of animals within and between herds as 
they share pasture or congregate at watering points which could 
promote the transmission levels of infectious agents between hosts. 
Livestock movement that is characteristic of this system could also 
increase the spread of infectious pathogens via environmental 
contamination, further enhancing the indirect transmission 
pathways of the targeted pathogens. FMDV and Leptospira spp. 
co-exposure was significantly higher among cattle raised in zones 1 
and 2 compared to zone 3, but not between those in zones 1 and 2. 
This finding suggest that cattle co-exposure to these two pathogens 
could have been influenced by several other factors further to the 
effects of land use differences by zones evaluated in this study. 
Other epidemiological studies should identify the ecological drivers 
of these two pathogens in the area.

The sharing of common grazing reserves among cattle and 
watering points within villages were identified as significant 
predictors of FMDV and Leptospira spp., and FMDV and 
C. burnetii co-exposures, respectively. The co-exposure of cattle 
to Brucella spp. and C. burnetii was also significantly associated 
with grazing of animals on pastures shared within villages, animals 
sharing watering points between villages and mixing of cattle with 
others of a different herd at watering points. Given that the 
targeted pathogens are excreted by infected animals in urine and 
feces among other secretions (17, 19, 48, 49), all these findings are 
related to environmental contamination which could act as a long 
term source of infections for animals with shared husbandry 
practices owing the long persistence nature of these pathogens in 
the environment, a period estimated to last for weeks to months 
or even years and strongly influenced by climatic, geographical 
and edaphic factors including temperature, humidity, 
precipitation, soil moisture, ultraviolet light, pH and salinity 
(50–55).

The association between the use a breeding bull from another farm 
and cattle co-exposure to FMDV and C. burnetii could be because 
both pathogens are excreted in semen in large quantities (22, 53) 
which could facilitate their transmission to naïve cattle within herds 
via sexual contact. Also, Brucella spp. and C. burnetii co-exposure was 
predicted by cattle contacts with others from a different during grazing 
which could promote the transmission of these pathogens between 
infected and susceptible hosts as earlier explained.

This study also showed that female animals were more co-exposed 
to FMDV and Leptospira spp., FMDV and Brucella spp., and Leptospira 
spp. and Brucella spp. than males as with the case of the concurrent 
exposure of cattle to FMDV, Brucella spp. and Leptospira spp. This 
finding might be due to continual infections of females with the above 
pathogens since compared to males, these animals are kept by 
livestock producers over many years as a source of nutrition, income 
and breeding purposes.

There were also several limitations in our study. For instance, 
cattle co-exposures to the targeted pathogens were determined by 
screening for the presence of specific immunoglobulins against these 

pathogens that remain detectable from months to years following 
infection (56–59), thus we could not ascertain if these outcomes 
were as a result of concurrent, secondary simultaneous or 
consecutive infections or determine when cattle got exposed. Cattles’ 
exposure to FMDV was also determined using anti-NSP tests that 
are limited since non-detectable immunoglobulins against NSP 
antibodies could be induced among previously vaccinated and later 
infected cattle having little or without systemic infection (60), 
potentially leading to false negative reactions. The currently used 
FMDV vaccine in Kenya are purified (61), but the use of non-purified 
FMDV vaccines could also induce anti-NSPS (62), thus affecting 
animals’ exposure interference based on these results. Cattle were 
also exclusively tested for antibodies against Brucella spp., Leptospira 
spp. and C. burnetii using commercial ELISA kits instead of bacterial 
culture, microscopic agglutination test (MAT) and complement 
fixation test (CFT), gold standard tests for these pathogens, 
respectively (63–65). Nonetheless, these reference tests are less 
sensitive compared to ELISA tests (19, 66, 67). Samples were also not 
tested for anti-Brucella spp. using the Rose Bengal test (RBT) 
because of logistical constraints. In spite of this, indirect ELISA tests 
have been found to be more sensitive than RBT in pastoral areas (25, 
68). Additionally, immunological cross-reactions between C. burnetii 
and other Gram negative bacteria including Legionella spp., 
Bartonella spp. and Chlamydia spp. is also recognized (69, 70). 
Similarly, Salmonella spp., Campylobacter spp., Francisella tularensis, 
Yersinia enterocolitica 0:9, Pasteurella spp. and Escherichia coli O116 
and O157, all cross-react with Brucella spp. due to antigenically 
related lipopolysaccharide epitopes (71). This could have led to false 
positivity and slight over-estimation of the co-exposures. We also 
sampled cattle in confluent zones which could have affected the 
estimated co-exposures by zones since cattle could have moved 
between these sites.

5 Conclusion

Our study provides immunological evidence of cattle 
co-exposure with the investigated pathogens. We observed highest 
co-exposures between FMDV, Brucella spp. and Leptospira spp. 
Based on study locations, more cattle with FMDV and Brucella 
spp., and Brucella spp. and Leptospira spp. co-exposures and those 
concurrently exposed to FMDV, Brucella spp. and Leptospira spp. 
were recorded in zone 1 compared to zones 2 and 3. In contrast, 
FMDV and Leptospira spp. co-exposure was higher among cattle 
raised in both zones 1 and 2 than zone 3. Since some of the 
targeted pathogens are zoonotic and have been previously detected 
in wildlife and humans as earlier discussed, there is a need to 
develop an integrated One Health biosurveillance control 
intervention for these pathogens rather than focusing on single 
pathogens to reduce their transmission and morbidities in 
livestock and risks of “spillover” to humans. Vaccination of 
livestock against the targeted zoonotic pathogens should also 
be considered because these hosts are the critical sources of human 
infections. While a previous study showed that FMDV significantly 
affect livestock-sourced livelihoods in the area (3), we recommend 
further studies to understand the incidence and economic impacts 
of Brucella spp., Leptospira spp. and C. burnetii in livestock and 
human populations.
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