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Introduction: The use of implantable antibiotic beads has become a frequent 
treatment modality for the management of surgical site infections in human and 
veterinary medicine. The objective of this study is to describe the elution kinetics 
of five antibiotics from a commercially available calcium sulfate antibiotic 
delivery kit. A secondary goal was to compare elution concentrations with 
minimal inhibitory concentrations (MIC) for commonly encountered bacteria 
from the University of Florida’s veterinary microbiology laboratory database.

Methods: Calcium sulfate powder was combined with amikacin, cefazolin, 
gentamicin, ampicillin/sulbactam, and meropenem. Triplicates of three 
antibiotic-loaded beads were immersed in 5 mL of phosphate-buffered saline 
(PBS) and kept at 37°C under constant agitation. Antibiotic-conditioned PBS 
was sampled at 14 time points from 1-h to 30 days and analyzed by liquid 
chromatography to determine the antibiotic concentration.

Results: All beads eluted concentrations of antibiotics for the 30-day sampling 
period, except for ampicillin/sulbactam, with the most antibiotics being eluted 
within the first week. The concentration of antibiotics within the eluent within 
the first 3–9 days (3- and 5-mm beads, respectively) was greater than the MIC of 
common isolates. The 5 mm bead samples were superior in maintaining higher 
concentrations for a longer period, compared to the 3-mm beads.

Discussion: CSH beads eluted antibiotics over the 30-day course of the study. Most 
of the antibiotic elution occurred within the first week and was maintained above 
the MIC of commonly encountered isolates. This information may be useful for 
clinical decision making for treatment of local infections encountered in practice.
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1 Introduction

The use of implantable antibiotic beads has become a frequent treatment modality for the 
management of both soft tissue and orthopedic infections in human and veterinary medicine 
(1–7). Placement of antibiotic beads into an infected site facilitates delivery of a high 
concentration of antibiotics locally, while reducing toxicity associated with long-term systemic 
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administration of high doses of antibiotics (6, 8–10). This makes it 
possible to deliver and maintain an antibiotic concentration in local 
tissues above the minimal inhibitory concentration (MIC) of bacteria 
in the diseased tissue for extended periods by use of a single surgical 
application (2, 6, 11–13). Previous research has suggested that high 
concentrations of an antibiotic have the ability to infiltrate a biofilm 
(1, 14). For orthopedic periprosthetic joint infections (PJI), the 
formation of biofilm was determined to be the key virulence factor as 
it relates to their resistance to antibiotics (5, 15). McConoughey et al. 
and Fux et al. reported that the most common pathogens that formed 
biofilms in PJI were Pseudomonas aeruginosa and Staphylococcus 
aureus (5, 15, 16). A method that was researched and tested in effacing 
these biofilms was the application of antibiotic-loaded, synthetic 
calcium sulfate beads (CS-B). The CS-B, containing tobramycin and 
vancomycin, were placed into already flourishing biofilm colonies in 
controlled Petri and agar plates. With time, the CS-B was shown to 
prevent bacterial colonization and reduce lawn biofilms grown on the 
plates drastically (5, 17, 18).

Calcium sulfate has been considered an ideal delivery vehicle for 
antibiotics, as it is biodegradable, cost effective, and aids in filling dead 
space (19). It also decreases the potential risk of inflammatory 
reactions that can result from implantation of inert foreign material 
and does not require removal via a secondary surgical procedure, as 
do many other antibiotic delivery vehicles, such as 
polymethylmethacrylate (PMMA) (2, 6, 11–13). It has been known to 
be osteoconductive when placed in areas of osteomyelitis and fracture 
sites, providing a basis for new bone formation (2, 7, 11–13, 20). As 
the calcium sulfate beads dissolves, there is sustained release of 
antibiotic over time.

The primary objective of this study was to (1) describe the in vitro 
elution kinetics of five antibiotics (amikacin, cefazolin, gentamicin, 
ampicillin/sulbactam, and meropenem) from a commercially available 
calcium sulfate local antibiotic delivery kit over 30 days and (2) to 
compare elution concentrations with Clinical Laboratory Standards 
Institute’s (CLSI) MIC for commonly encountered bacteria from the 
University of Florida’s veterinary microbiology laboratory database. 
The hypothesis is that a biphasic elution of antibiotic is expected in all 
antibiotics with maximum release in the initial 24 h followed by 
gradual release that occurs concurrently with dissolution of the 
calcium sulfate beads over 30 days. Additionally, the authors 
hypothesize that concentrations of antibiotics in the eluent will 
be greater than the MICs for commonly encountered bacteria.

2 Materials and methods

2.1 Bead preparation

All antibiotic-impregnated and control beads were created using 
a novel kit of resorbable high purity alpha hemihydrate calcium sulfate 
(Kerrier Local Antibiotic Delivery, Palm Beach Garden, FL, 
United States). This kit is marketed specifically for veterinary medicine 
and use in  local delivery of antimicrobials. Pharmaceutical-grade 
calcium sulfate alpha-hemihydrate powder (CSH) and antibiotics were 
mixed according to the manufacturer’s guidelines, forming a paste. 
15 g of CSH was mixed with the following amount of antibiotics 
separately: 500 mg of amikacin (West-Ward Pharmaceutical, now 
Hikma Pharmaceuticals USA Inc., Berkeley Heights, NJ) with 2 mL of 

mixing solution (saline), 1 g of cefazolin powder (Apotex Inc., Weston, 
FL) with 4 mL of mixing solution, 400 mg of gentamicin liquid 
(VetOne, Boise, ID), 750 mg of ampicillin/sulbactam powder (Mylan 
Institutional LLC, Rockford, IL) with 4 mL of mixing solution, and 
500 mg of meropenem powder (Auromedics Pharma LLC, East 
Windsor, NJ) with 4 mL of the mixing solution. A control group was 
also prepared using 15 g of CSH and 4 mL of mixing solution. Standard 
and nonstandard instructions, provided by Kerrier LLC, were followed 
according to the type and formulation of the antibiotic. Each antibiotic 
mixture was mixed thoroughly for 30–60 s until a paste was formed. 
The paste was spread into the 3- and 5-mm cavities in each mold from 
the kit. The paste was spread smoothly over the mold to ensure an 
adequate amount of paste was used to produce a bead shape 
(hemisphere). Controlled tapping of the molds on a table surface was 
implemented to reduce air trapping in the cement. Molds were set 
aside to allow beads to harden (between 20 and 50 min) according to 
the manufacturer’s instructions.

2.2 Elution testing

After the beads were set, they were procured by bending the mold 
and allowing the beads to fall out. The beads were separated based on 
their size (3- and 5-mm). Eighteen beads were chosen from each batch 
and weighed. Beads that were not fully formed or had deficits from air 
pockets were excluded. Similar weight beads were placed in six sterile 
10 mL tubes in triplicates (three from the 3-mm mold, three from the 
5-mm mold) for each antibiotic and the control group. The antibiotic-
loaded and control beads were immersed in 5 mL of phosphate-
buffered saline (PBS) and maintained at 37°C under constant agitation 
with an orbital shaker at 100 rpm. Antibiotic-conditioned PBS was 
sampled at 14 time points (1, 3, 6, 12, 24 h; 3, 6, 9, 12, 15, 18, 22, 26, 
30 days). At each time point, 5 mL of PBS were extracted from each 
tube and placed into 5 mL cryovials for further analysis. The cryovials 
were placed in the freezer at −80°C until they were analyzed at the end 
of the study. The tubes were replenished with the 5 mL of sterile PBS 
and placed back under constant agitation in the orbital shaker. The 
pipettes were changed with each antibiotic and between each bead size 
within each antibiotic, except for the control group. High-performance 
liquid chromatography (HPLC) was used to measure the antibiotic 
concentration in the eluent samples, apart from amikacin and 
gentamicin. Samples were prepared in triplicate and concentrations 
were averaged.

2.3 Antibiotic analysis

Beta lactam-antibiotics (cefazolin, ampicillin, sulbactam, and 
meropenem) were analyzed by HPLC with ultraviolet (UV) detection. 
The method was a modification of a protocol previously described 
(21–23). The HPLC system consisted of an Alliance Waters 2695 
separation module (Waters Corporation™, Milford, MA, 
United  States), and a Waters 2489 Dual λ Absorbance Detector 
(Waters Corporation™, Milford, MA, United States). Separation was 
achieved with a XSelect CSH C18, 5 μm, 4.6 mm × 150 mm 
chromatographic column (Waters Corporation™, Milford, MA, 
United  States) (21–23), protected by a Sunfire C18, 5 μm, 
4.6 mm × 20 mm guard cartridge (Waters Corporation™, Milford, 
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MA, United States). The mobile phase consisted of 50 mM sodium 
dihydrogen phosphate dihydrate pH 2.4 Buffer: Acetonitrile (VWR®, 
Radnor, PA, United States) (21) 90:10 v/v, 85:15 v/v, and 80:20 v/v for 
ampicillin sodium/sulbactam sodium, meropenem, and cefazolin, 
respectively, with a flow rate set to 1.5 mL/min. The standard curves 
for the beta lactam-antibiotics were generated ranging from 25 to 
500 μg/mL, and from 1 to 15 μg/mL by fortifying PBS 1X with known 
amounts of meropenem (USP™, Rockville, Maryland, United States), 
ampicillin, sulbactam, and cefazolin (Sigma-Aldrich® company, 
Round Rock, TX, United States) reference standards. The standard 
curves were accepted if the coefficient of determination (r2) was at 
least 0.999 and the predicted concentrations were within ±10% of the 
actual concentrations. The sample was monitored at 210 nm (21–23). 
Once the beta lactam-antibiotic samples were received, they were 
thawed and 1.5 mL of solution was centrifuged at 16,000 × g for 5 min 
at room temperature, and then 25 μL of the supernatant was injected 
into the HPLC System in duplicate.

The HPLC assay was validated for beta lactam-antibiotics in 
beads. The linear correlation coefficient for all of them was at least 
0.999, the limit of detection (LOD) for the beta lactam-antibiotics was 
0.5 μg/mL. The lower limit of quantification (LOQ) for the beta 
lactam-antibiotics was 1 μg/mL. The precision (CV %) for cefazolin, 
ampicillin, sulbactam, and meropenem in PBS 1X was measured in 
the concentration range of 1 to 500 μg/mL, and the results were 
between 0.1 and 14.9%. The accuracy (CV%) for cefazolin, ampicillin, 
sulbactam, and meropenem in PBS 1X was measured in the 
concentration range of 1–500 μg/mL, and the results were between 0.2 
and 0.08%. The % recovery in PBS 1X was measured in the 
concentration range of 1–500 μg/mL, and the results were between 92 
and 103.2%.

Amikacin and gentamicin were detected and quantitated in PBS 
1X using a Siemens Dimension® Xpand® Plus Integrated Chemistry 
System (Siemens, Malvern, PA, United States). Amikacin was detected 
and quantitated using a Siemens Syva® Emit® homogenous enzyme 
immunoassay (10445383). The assay is calibrated in reconstituted 
lyophilized human serum with concentrations ranging from 2.5 to 
50 μg/mL. Gentamicin was detected and quantitated using a Siemens 
Dimension® GENT gentamicin particle enhanced turbidimetric 
inhibition immunoassay (PETINIA) (10444927). The assay is 
calibrated in a synthetic bovine serum albumin matrix using the 
Siemens Dimension® DRUG Calibrator II (10445005) with 
concentrations ranging from 0.0 to 12.7 μg/mL. Prior to analysis of 
samples, both assays were tested using Thermo MAS™ PAR™ TDM 
controls (PTD1-1001) and confirmed to be  in working order. 
Gentamicin and amikacin samples exceeding the assay’s upper limit 
of quantitation (12.7 and 50 μg/mL, respectively) were repeated at a 
dilution to bring the concentration within the assay range.

For the gentamicin, the precision (CV%) was 2.74%, and the 
linear correlation coefficient was 0.997. For the amikacin, the precision 
(CV%) at the 10 μg/mL and the 15 μg/mL was 8.6%, and 3.9, 
respectively. The correlation coefficient was 0.961.

2.4 Mean inhibitory concentrations

Clinical Laboratory Standards Institute MICs for commonly 
encountered bacteria, such as Staphylococcus pseudintermedius (MRSP 
and MSSP), Escherichia coli, and Pseudomonas aeruginosa, were 

obtained from the University of Florida College of Veterinary 
Medicine’s microbiology laboratory database. The MIC of these 
organisms was compared to the concentrations of the following 
antibiotics used in our study: amikacin, cefazolin, and gentamicin, to 
determine their MIC breakpoints. The MICs for meropenem and 
ampicillin/sulbactam have not been established.

2.5 Statistical analysis

All elution testing was performed in triplicate. Data that followed 
a normal distribution was presented as mean (standard deviation), 
and non-normal data was presented as median (range).

3 Results

Peak concentrations (Cmax) occurred at 1-h for both sizes with all 
antibiotics. The following are the peak concentrations in μg/mL for 
each antibiotic for the 3- and 5-mm beads, respectively: amikacin 
(264.80, 717.20), cefazolin (289.38, 617.60), gentamicin (232.17, 
417.30), ampicillin (155.69, 341.48), sulbactam (170.39, 390.81), and 
meropenem (187.27, 462.18) (Figures 1A,B).

Elution of amikacin, gentamicin, and the 5-mm beads of 
meropenem followed a biphasic pattern. A second peak in 
concentration for amikacin occurred at hour 12 for both sizes 
(3-mm beads 41.92 μg/mL, 5-mm beads 320.10 μg/mL). 
Gentamicin’s second peak in concentration occurred at hour 12 for 
the 5-mm beads (233.53 μg/mL), but a second peak was not 
observed in the 3-mm beads. Meropenem had a second peak in 
concentration at hour 12 for the 5 mm-bead (284.51 μg/mL). There 
was a triphasic pattern for the 3-mm beads of meropenem and both 
sizes of beads for cefazolin. The 3-mm beads of meropenem peaked 
a second time at hour 12 (60.39 μg/mL), then again on day 1 
(66.54 μg/mL). The second peak for cefazolin occurred at hour 12 
for both sizes (3-mm beads 122.25 μg/mL, 5-mm beads 350.59 μg/
mL). The third peak of cefazolin occurred on day 3 for both sizes 
(3-mm beads 173.67 μg/mL, 5-mm beads 551.40 μg/mL). Ampicillin 
and sulbactam both displayed a monophasic pattern with the Cmax 
occurring at hour 1 as described above. No drug elution occurred 
from the control beads.

Minimal inhibitory concentrations breakpoints for amikacin, 
cefazolin, and gentamicin were compared to the susceptibility 
breakpoints of Staphylococcus pseudintermedius (MRSP and MSSP), 
Escherichia coli, and Pseudomonas aeruginosa. The concentration of 
antibiotics within the eluent within the first 3–9 days (3 and 5 mm 
beads, respectively) was greater than the MIC of common isolates 
encountered by the University of Florida’s Veterinary Diagnostic Lab 
(Table 1).

4 Discussion

This study characterizes the elution kinetics of five antibiotics 
from a commercially available calcium sulfate local antibiotic delivery 
kit. While most antibiotics were eluted within the first week, antibiotics 
were detectable in small amounts in all samples up to 30 days, except 
for ampicillin/sulbactam. Most of the antibiotics followed a biphasic 
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or triphasic pattern. Five-millimeter beads samples were superior in 
maintaining higher concentrations for a longer period of time 
compared to the 3-mm beads for all analyzed antibiotics.

The differences in the elution profiles between the sizes of beads 
are unclear but may be  attributed to several factors. Aiken, et  al. 
suggests that different sizes of beads have different surface-to-volume 

FIGURE 1

(A) The elution profile for five antibiotics [amikacin (AM), cefazolin (CF), gentamicin (GE), ampicillin (UN-AmpNA)/sulbactam (UN-SulbNA), and 
meropenem (ME)] impregnated in 5-mm calcium sulfate beads. The elution concentration was measured over a 30-day period. All antibiotic 
impregnated CSH beads eluted detectable concentrations of antibiotics for the 30-day sampling period except for ampicillin/sulbactam, which eluted 
detectable concentrations of antibiotics for 9  days. (B) The elution profile for five antibiotics [amikacin (AM), cefazolin (CF), gentamicin (GE), ampicillin 
(UN-AmpNA)/sulbactam (UN-SulbNA), and meropenem (ME)] impregnated in 3-mm calcium sulfate beads. The elution concentration was measured 
over a 30-day period. All antibiotic impregnated CSH beads eluted detectable concentrations of antibiotics for the 30-day sampling period except for 
ampicillin/sulbactam, which eluted detectable concentrations of antibiotics for 3  days.

TABLE 1  Minimum inhibitory concentration (MIC; μg/mL) of isolates commonly encountered by the University of Florida College of Veterinary Medicine 
Diagnostic Laboratory.

Drug name S. pseudintermedius 
(MSRP)

S. pseudintermedius 
(MSSP)

E. coli P. aeruginosa

N  =  914 N  =  722 N  =  1,596 N  =  582

Amikacin 16.00 16.00 4.00 4.00

Cefazolin 2.00 2.00 2.00 64.00

Gentamicin 4.00 4.00 0.50 <2.00

Data not available for meropenem and ampicillin/sulbactam (Unasyn). MIC presented is the most frequently represented distribution.
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ratios. While this would mean that smaller beads have a larger surface 
area, contributing to the reduced diffusion path from the center to the 
surface for each antibiotic bead, in this study, larger beads appeared to 
load more antibiotics and therefore maintain higher concentrations. 
But the solubility of the antibiotic, molecular weight, and potential for 
binding to calcium sulfate must also be considered (1).

Changes in concentration over time of locally administered 
antibiotics vary according to the type and stability of the drug and its 
substrate; the likelihood of an exothermic reaction to occur when 
mixing drug and substrate, the size, shape, porosity, and degradation 
habits of the bead; the rate and volume of fluid flowing around the 
bead; the vascularity of the tissues in which the beads have been 
implanted; and the diffusion characteristics of the antibiotics (6, 8, 
24–27). While antibiotic concentrations remained above the MIC 
during the first week for most of the antibiotics in this study, only the 
elution kinetics of three beads per size were evaluated. Clinically, up 
to 10 times that number of beads are commonly used for the treatment 
of infections. While this may be excessive in terms of the MIC needed 
to accomplish bacterial death, elution times above the MIC may 
be  much higher with a longer duration than reported in this in 
vitro study.

Previously, researchers have concluded that time-dependent 
drugs, such as cefazolin, are more efficacious when concentrations are 
stable between 2 and 5 times above the MIC for at least 50% of the 
dosing intervals because it improves antimicrobial efficacy against 
certain pathogens with an MIC close to the breakpoint (6, 28–31). For 
concentration-dependent antibiotics, like amikacin and gentamicin, 
it has been shown that concentrations between 10 and 12 times the 
MIC can improve antimicrobial penetration of biofilm and increase 
the killing of the bacteria (6, 28, 32, 33). Susceptibility breakpoints 
may be helpful in predicting the effectiveness or a particular antibiotic 
administered systemically, however it remains unknown how this 
information can be applied to locally administered antibiotics.

The experimental parameters used in this study were performed 
to mimic the intra-and postoperative environments in a relatively 
stable atmosphere. The sampling period of 30 days was chosen for the 
study as that is the reported time frame by which the beads would 
be  degraded and is consistent with other studies (6, 7, 34–37). 
Furthermore, it is important to note that while the beads will begin to 
dissolve once they are placed into solution, thereby releasing 
antibiotics into the buffer, agitating the samples and exchanging the 
buffer solution at specific time points, promotes elution of the 
antibiotics and thereby mimicking an in vivo environment.

There are several limitations to this study. The in vitro setting does 
not account for the complexity of a tissue infection, interactions 
between bacteria, the host immune responses, and the formation of a 
biofilm. In vitro models do not consider multiple factors such as blood 
clot formation, which will affect the diffusion of the antibiotic into the 
surgical site, and protein binding, which will affect the release of the 
antibiotics into the extracellular matrix which affects efficacy (1, 38, 
39). Factors such as absorption, distribution, metabolism, and 
excretion cannot be accurately assessed in an in vitro setting. These 
factors play a crucial role in determining the drug’s efficacy and safety 
profile in humans. Therefore, the results from this in vitro study may 
not fully reflect the real-world response to infection.

Additionally, the antibiotics selected for this study were selected 
due to their broad-spectrum activity against a variety of bacteria 

commonly encountered in veterinary practice. However, it is 
important to acknowledge that the World Health Organization’s 
classifies meropenem as a critically important antimicrobial in 
human medicine. While all antibiotics, except for ampicillin/
sulbactam, were eluted at concentrations above the MIC for 
common isolates for at least 3–9 days, there was a decline in 
concentrations over time, potentially leading to subtherapeutic 
levels toward the end of the 30-day period. This raises concerns 
about the potential development of resistance, particularly when 
using carbapenems like meropenem. To mitigate these risks, future 
research could focus on strategies for selecting antibiotics that 
minimize the risk of resistance development, or methods for 
maintaining therapeutic concentrations of antibiotics over longer 
periods, such as is the case when using a higher number of beads. 
These considerations are crucial for the responsible use of 
antibiotics in veterinary practice and for the broader goal of 
antimicrobial stewardship.

In conclusion, CSH beads impregnated with amikacin, cefazolin, 
gentamicin, and meropenem eluted antibiotics over the 30-day course 
of the study with most of the antibiotic elution occurring within the 
first week. Larger beads maintained higher concentrations for a longer 
period, consistent with a previous study (40). Ampicillin/sulbactam 
was not detectable beyond 9 days in this study using three beads; 
however, does not likely represent the tissue fluid concentrations 
achievable when using a higher number of beads. The information 
from our study may be  useful for clinical decision making when 
implementing antibiotic beads for treatment of local infections and in 
vivo studies are warranted.
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