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Aging is a complex process influenced by internal and external factors. 
Oxidative stress damages DNA, leading to 8-hydroxy-2’ deoxyguanosine 
formation (8-OHdG). Telomere shortening is considered a biomarker of 
aging and oxidative stress may enhance its attrition. The ability to manage 
and repair oxidative stress varies among species and life histories. Avian 
species, such as Psittacidae birds, exhibit exceptional lifespans despite 
their physiological characteristics that might suggest otherwise. This study 
investigates 8-OHdG levels in serum samples from long- and short-lived birds 
of the order Psittaciformes, examining their relationship with telomere length 
and antioxidant capacity based on lifespan strategies. Among 43 individuals 
analyzed 26 belonged to the “long-lived species” group and 17 belonged to 
the “short-lived species” one. Relative telomere length (rTL) was measured 
in DNA isolated from whole blood by qPCR, and oxidative stress markers, 
such as Total Antioxidant Capacity (TAC) and 8-OHdG, were determined by 
spectrophotometry in serum samples. Long-lived birds had longer rTL than 
short-lived ones [1.308 ± 0.11 vs. 0.565 ± 0.13, (p  < 0.001)]. On the contrary, 
short-lived birds showed more DNA damage than their counterparts 
[3.847 ± 0.351 vs. 2.012 ± 0.308, respectively, (p  < 0.001)]. Old birds had shorter 
rTL than young ones, for both longevity groups (p  < 0.001). Although no 
correlation was found between 8-OHdG levels and age, nor 8-OHdG and 
telomere length, long-lived birds exhibited 75.42-unit increased TAC levels 
when increased 8-OHdG concentrations (p  = 0.046). These findings highlight 
distinct patterns of telomere length and oxidative stress influenced by lifespan 
strategies among avian longevity groups.
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1 Introduction

Aging is vital and complex and results over time in a loss of 
functional capacity and stress resistance of an organism, associated 
with an increased risk of morbidity and mortality. It is influenced by 
genetic factors, environment, and lifestyle, and affects, 
interconnectedly, all body tissues and organs (1). Oxidative stress 
causes damage to the primary biomolecules, including lipids, proteins, 
and DNA. Particularly, DNA damage is considered one of the most 
important in gerontology, as molecular repair depends on the 
information coded in the DNA (2). Continuous damage can 
accumulate over an individual’s lifespan, reducing cellular functioning 
and ultimately activating apoptosis mechanisms (3). The study of 
oxidative stress is a key piece in understanding diseases and 
physiological aging (4, 5).

One of the consequences of DNA damage is the formation of 
8-hydroxy-2′ deoxyguanosine (8-OHdG). It is formed when reactive 
oxygen species (ROS) act on DNA strands, adding radical DNA bases 
and generating a variety of new oxidation products (6, 7). Several 
authors reported the increase of this molecule with normal aging in 
organs, and in different stages of diseases, such as Parkinson’s disease, 
diabetes, cystic fibrosis, and muscular dystrophy (8). 8-OHdG has 
been proposed as an adequate and ubiquitous biomarker of oxidative 
stress. During the reparation of damaged DNA, 8-OHdG is excised 
and excreted further in metabolisms so that it can be measured in 
plasma and urine (3).

Another main marker of aging is telomere shortening. Telomeres 
are protective DNA regions at the end of chromosomes, containing 
5–15 kb of (TTAGGG)n repeats, that prevent degradation and 
recombination and support chromosomal stability. Oxidative stress 
can cause telomere shortening besides cell division-dependent natural 
processes (1, 9). Telomeres are more predisposed to suffer DNA 
damage due to their enriched G-regions and their reduced repair 
capacity, so ROS-induced damage can rapidly accumulate in 
telomeres (10). Indeed, DNA damage accumulation with aging and 
telomere shortening may be related processes (11). When telomeres 
reach a critical length, cell death, and apoptotic mechanisms 
are activated.

The ability of organisms to cope with oxidative stress depends first 
on the damage level, and then on their capacity to invest in its repair, 
which varies between different species, life histories, and age-related 
changes (12). Interestingly, some avian clades are considered long-
lived and possibly resistant to aging processes despite their 
physiological characteristics, which would indicate otherwise (13–15). 
Psittacidae birds in particular are considered among the most long-
living birds, with some exceptional maximum longevity records (16).

Previous studies from our group have found that long-lived 
psittacine show greater initial telomere length which is maintained 
over time compared to their short-lived counterparts, and also display 
a better whole antioxidant status. On the contrary, short-lived birds 
show higher levels of oxidative damage accumulated in lipids (17). 
Still, little information exists regarding the measurement of 8-OHdG 
and its relationship with telomere length dynamics in Psittacidae birds.

In the present study, we  aim to investigate the variation of 
8-OHdG levels in serum samples of psittacine birds with long and 
short lifespans. We intend to analyze the relationship between this 
DNA damage marker, telomere length, and antioxidant capacity 
depending on the life strategies of these animals.

2 Methods

2.1 Sample selection

From a total of 81 birds of the order Psittaciformes analyzed in the 
Psittacine longevity project (2019) (17), a subsample of 43 individuals 
was evaluated in the present study due to sample availability. Of these, 
26 belonged to the “long-lived species” group (species Amazona 
barbadensis, Anodorhynchus hyacinthinus, Cacatua moluccencis, and 
Ara macao), and 17 belonged to the “short-lived species”one (species 
Agapornis taranta, Psitteuteles goldiei, and Trichoglossus johnstoniae). 
Individuals were categorized as “young” and “old,” both for long- and 
short-lived birds, considering maximum longevity and the time they 
end the pre-puberty/ puberty phase and reach maturity according to 
the reported literature research (18) (Supplementary Table 1).

Psittacine birds included in this study are preserved in captivity in 
optimal conditions in Loro Parque Fundación research facilities, in 
Tenerife, Spain. This guarantees no crossed influence of external 
factors such as predation, diet, or extreme environmental factors.

Blood extraction was performed by venipuncture from the right 
jugular vein, acting properly as indicated by ARRIVE guidelines. The 
procedure for sample process and storage was already reported by our 
group (17).

2.2 Biomarkers assay

DNA was isolated from 5 μl of blood using the Dneasy Blood & 
Tissue Handbook kit (Qiagen) following manufacturers’ instructions. 
Telomere length was assessed using the real-time PCR (qPCR) 
procedure as detailed previously (17) based on the studies by Cawthon 
(19), and Criscuolo et  al. (20). Relative telomere length (rTL) is 
expressed as the T/S ratio, measuring the relative amount of telomeric 
repeats of the Tel gene (T), versus (vs.) the GAPDH single-copy control 
gene (S) using the 2(−∆CT) formula. The qPCR assay was set up in a 
StepOne Plus thermocycler (AppliedBiosystems, ThermoFisher 
Scientific, MA, USA). All samples were run in duplicates.

The measurement of antioxidant capacity (TAC) in serum samples 
was performed as detailed previously (17). Each sample was evaluated 
in duplicate, and absorbance was quantified at 593 nm on the EnSpire 
Multimode Plate Reader (Perkin Elmer, Madrid, Spain).

The determination of the DNA damage marker, 8-hydroxy-2′ 
-deoxyguanosine (8-OHdG), was assessed using the competitive 
enzyme immunoassay OxiSelectTM Oxidative DNA Damage ELISA 
Kit (8-OHdG Quantitation; CellBiolabs, San Diego, California) 
following the manufacturer’s instructions. Serum samples were 1:20 
diluted in Assay Diluent and then used 50 μl in the assay. The 
absorbance was determined spectrophotometrically at 450 nm on 
the EnSpire Multimode Plate Reader (Perkin Elmer, Madrid, Spain). 
The 8-OHdG quantitation (ng/μl) was determined by the comparison 
from a 4-parameter-logistic line Standard Curve, using SigmaPlot 12.0 
program (Systat Software, 2010 Inc., San Jose, California).

2.3 Statistical analysis

Continuous variables were described using means and standard 
deviation (SD) or standard error of the mean (SEM) as appropriate. 
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Due to the age range distribution of this subset of individuals, 
statistical tests regarding age have been used with the categorization 
of this variable in “young/old” for both longevity groups (in long-lived 
birds young<15 years; old>15 years; and for short-lived birds 
young<5 years; old>5 years).

To assess the impact of relative telomere length (rTL) and DNA 
damage on age and longevity, Linear Mixed Effects Models were applied, 
considering longevity and the “young/old” classification as fixed factors, 
and species as random factor. Regarding the evaluation of 8-OHdG in 
long-lived individuals, the species Anodorhynchus hyacinthinus was 
excluded from the analysis due to only having old individuals. To 
explore the association of Total Antioxidant Capacity (TAC) with DNA 
damage and age across different longevities, Linear Mixed Effects 
Models were applied, incorporating DNA damage as a covariate, the 
“young/old” variable as a fixed factor, and species as a random factor.

All statistical analyses were performed by using SPSS v.25.0 (IBM 
Statistics) and two-tailed p-values<0.05 were considered significant. 
Graphs were designed with GraphPad Prism v9.0 (Dotmatics, 
GraphPad Software, San Diego, California United States).

3 Results

In this sample subset, long-lived birds had longer rTL than short-
lived ones [1.308 ± 0.11 vs. 0.565 ± 0.13, (p < 0.001), respectively]. Also, 
a correlation with age was found in the analyzed individuals, as young 
individuals had longer rTL than those considered old, both for long- 
[1.693 ± 0.16 young vs. 0.923 ± 0.14 old, (p < 0.001)] and short-
longevity birds [0.732 ± 0.18 young vs. 0.398 ± 0.17 old, (p < 0.001)]; 
(Figures 1A,B).

Short-lived birds accumulated more DNA damage, by showing 
1.835 (IC95% 0.886–2.783) increased levels of 8-OHdG than long-
lived birds [3.847 ± 0.351 vs. 2.012 ± 0.308, respectively, (p < 0.001)]; 
(Figure 1C). When analyzing this oxidative marker concerning the 
different age groups, similar levels of 8-OHdG were found in the 
studied age groups, both for long-lived [1.879 + 0.44 young vs. 
2.145 + 0.44 old] and for short-lived birds [3.974 + 0.5 young vs. 3.720 
+ 0.48 old; (p = 0.989)]; (Figure 1D).

No relation was found between increased levels of 8-OHdG in serum 
and relative telomere length observed in these birds, nor for those within 
the long-lived and short-lived group, (p = 0.969 respectively); 
(Supplementary Figures 1, 2).

On the other hand, increased 8-OHdG concentrations correlated 
with the high Total Antioxidant Capacity (TAC) levels observed in 
long-lived birds. We found a 75.42-unit increase in TAC levels (95% 
CI 1.571–149.373) when increased DNA damage (p = 0.046); 
(Figure 1E). This relationship was not observed in short-lived birds 
(p = 0.335). Long-lived birds also showed higher TAC than short-lived 
birds in these analyzed individuals (p = 0.037). Differences in TAC 
levels were found when analyzing old individuals; old long-lived birds 
showed 346.86 units of Trollox (μM) [IC 95%: 115.14 -578.58] more 
than old short-lived birds (p = 0.004); (Figure 1F).

4 Discussion

Several studies have focused on studying the underlying 
mechanisms and potential biomarkers of aging in various species 

with different lifespans, including mammals, birds, and other 
groups. However, little attention has been paid to exploring 
oxidative stress, especially that directly targeting DNA damage in 
Psittacidae species with different lifespans. In this research, a 
novel and comprehensive study of the variation in DNA damage 
according to the longevity strategy and age of these birds has 
been conducted. Moreover, this study has examined the impact 
of this damage concerning telomere length in these birds and 
their defense mechanisms. In this study, besides confirming what 
was previously reported by our group, on short-lived birds having 
shorter rTL (17), we  found that this group also exhibited 
increased levels of DNA damage than long-lived ones.

Telomeric DNA sequences are plausibly more susceptible to 
oxidative stress due to their high guanine residue content, especially 
by the formation of 8-OHdG (21). At a cellular level, it is well-accepted 
that oxidation compromises telomere length and causes telomere 
attrition through a variety of mechanisms. Research has confirmed 
that DNA repair capacity declines with age, causing the accumulation 
of unresolved or miss-repaired DNA damage, resulting in increased 
telomere shortening and an overall pathology (22, 23). Several studies 
have evaluated the relationship between oxidative damage and age in 
birds but obtained different results (12, 14). Following this, we found 
a tendency of increased 8-OHdG levels in old individuals in contrast 
to younger ones, within long-lived birds.

It is possible that in long-lived species, the increase of oxidative 
stress is not linearly accumulated, being only evident in specific stages 
of their life (24). Also, the measurement of 8-OHdG in serum can 
reflect concentrations due to both damage and repair processes (12), 
masking each other’s effect.

Oxidative damage could be  repaired in vivo through different 
processes (21). In species with shorter lifespans, this damage could 
remain consistently high throughout their lives so we could not assess 
a clear relationship with age, the same was observed for other oxidative 
markers of oxidative stress, such as lipid peroxidation products, which 
also accumulate in short-lived birds (17), suggesting a systemic level 
of oxidative damage.

Recent research has shown complex interactions between reactive 
molecules, oxidative stress, and telomere dynamics (25). As might 
be expected, birds or other individuals with high longevity, having 
longer telomeres, would be predisposed to suffer greater damage (26). 
However, a relationship between telomere length and DNA damage of 
long-lived birds could not be found for any of the longevity groups of 
birds included in this study, although higher levels of nuclear 
8-oxo-deoxyguanosine have been shown to correlate with shorter 
telomeres (11). Further studies are needed to assess how different 
types of DNA damage correlate, and how this DNA damage correlates 
with telomere shortening rates (11).

This can be also explained by the different strategies that these 
animals own to solve the costs of oxidative stress and produce 
molecules that are traded off for other self-maintenance processes 
(10). Some ROS molecules are neutralized by innate antioxidants, 
such as superoxide dismutase (SOD), while other oxidant molecules 
may be scavenged by exogenous sources, dietary antioxidants, etc. 
(23). In previous studies of our group, a higher total antioxidant 
capacity was observed for long-lived parrots (17). In this study, 
we found that long-lived birds may response to high concentrations 
of 8-OHdG with elevated TAC concentrations. We hypothesize that 
these birds may use this general mechanism, along with other more 
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FIGURE 1

Relative Telomere Length (rTL) in the subset of individuals analyzed in the study. (A) rTL in long- and short-lived birds. (B) Correlation between rTL and 
age in long- and short-lived birds (C) 8-OHdG concentration in long- and short-lived psittacine birds (D) 8-OHdG concentration in young and old 
individuals of the different longevity groups included in this study; ns: non-significant. (E) Correlation between the levels of the DNA damage marker, 
8-OHdG, and the Total Antioxidant Capacity (TAC) present in long-lived birds. (F) Total Antioxidant Capacity (TAC) in long- and short-lived birds of 
different ages.
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specific ones, to counteract the damage suffered to their DNA. In 
agreement with the literature, elevated levels of plasma antioxidants 
have been also reported in similar studies (27). These results support 
a compensatory mechanism for the “challenges of aging” (28).

Taken all together, the processes of intercommunication and 
influence of oxidative damage to telomeres, and the reflection of these 
in the longevity of birds are complex, but there is a shred of intriguing 
evidence for differential and potentially advantageous mechanisms, 
especially in long-lived birds, that allow them to resist the detrimental 
effects of oxidative damage, that their short-lived counterparts fail in 
amend. In conclusion, long-lived birds show a greater telomere length 
and overall, less DNA damage than short-lived birds. Long-lived 
psittacine also showed higher total antioxidant capacity when facing 
increased levels of oxidative damage.

4.1 Strengths and impact of the study

In general, parrots typically show no signs of aging until they 
reach a certain advanced age, unless affected by an infectious disease. 
The principal explanation for this is that they have special physiological 
traits that help them survive, but also, evidence suggests that they 
might have evolved special molecular mechanisms, especially long-
lived birds, to be protected against rapid aging (13).

Despite these notable characteristics, and that birds have been 
considered potential models for the study of aging for at least a decade 
for their possibly better resemblance to other long-lived studied 
animal models (29), more in-depth studies are not being carried out 
on parrots.

By studying these birds, which are raised under healthy and 
controlled conditions at the Loro Parque facilities, allows us to reduce 
the influence of external factors. In this way, we can provide a more 
accurate understanding of the effects of senesce in the studied 
biomarkers and how organisms respond depending on their longevity. 
To our knowledge, this study is the first to examine the impact of DNA 
damage on telomere length in Psittacidae birds with varying lifespans.

Psittacidae birds, particularly the long-lived ones, show promising 
results in having conserved strategies and mechanisms that support 
longevity, similar to what has been reported in other birds and animals 
(30, 31). Also, other mechanisms found helpful in other species need 
to be studied further in the Psittacidae family, such as the expression 
of certain genes involved in longevity, and mechanisms focused more 
on telomere maintenance over time rather than its elongation when 
damaged by ROS (32, 33).

4.2 Limitations of the study

The assessment of the oxidative stress biomarkers has been 
measured in serum samples, which reflect the systemic state of these 
markers in the individuals. The extent of the damage and time courses 
of the removal and repair may be very different, and the obtained 
results related to DNA damage in this study may not coincide with 
what is found in specific tissues. Even though this kind of 
measurement offers a non-invasive method and a very useful 
approach, the results need to be contrasted in further studies.

Specifically, the lack of significant correlations between the DNA 
damage markers, and telomere length and age are possible due to low 

sample individuals. Also, the cross-sectional nature of this study may 
not reflect the true relationship of these markers in the long run. There 
is a need to perform longitudinal studies covering a greater range of 
ages to complete the knowledge regarding the behavior of the 8-OHdG 
marker over time. Also, the assessment of multiple biomarkers to fully 
understand the dynamic interplay between ROS, ROS-damaged 
molecules, antioxidants, and repair mechanisms needs to 
be performed.

5 Conclusion

In conclusion, this study evaluated the relationship between 
oxidative damage, telomere dynamics, and longevity in different 
Psittacidae species. The findings revealed that long-lived birds 
exhibited greater telomere length and overall lower DNA damage 
levels (8-OHdG) than short-lived birds. Although not significant, a 
tendency for 8-OHdG to accumulate with age for long-lived birds is 
observed. Moreover, this study underscored the importance of 
antioxidant capacity particularly in long-lived parrots, where elevated 
concentration of TAC may act to mitigate the detrimental effects of 
oxidative stress, suggesting adaptive mechanisms that contribute to 
their extended lifespan. Nevertheless, further longitudinal research 
and the exploration of additional biomarkers are needed to fully 
elucidate the complex interplay between oxidative stress and telomere 
length in the Psittacidae aging process.
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