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Introduction: Single-cell RNA sequencing (scRNA-seq) has become an 
essential tool for uncovering the complexities of various physiological and 
immunopathological conditions in veterinary medicine. However, there is 
currently limited information on immune-suppressive cancer subsets in canine 
breast cancers. In this study, we aimed to identify and characterize immune-
suppressive subsets of triple-negative canine breast cancer (TNBC) by utilizing 
integrated scRNA-seq data from published datasets.

Methods: Published scRNA-seq datasets, including data from six groups of 30 
dogs, were subjected to integrated bioinformatic analysis.

Results: Immune modulatory TNBC subsets were identified through functional 
enrichment analysis using immune-suppressive gene sets, including those 
associated with anti-inflammatory and M2-like macrophages. Key immune-
suppressive signaling, such as viral infection, angiogenesis, and leukocyte 
chemotaxis, was found to play a role in enabling TNBC to evade immune 
surveillance. In addition, interactome analysis revealed significant interactions 
between distinct subsets of cancer cells and effector T cells, suggesting potential 
T-cell suppression.

Discussion: The present study demonstrates a versatile and scalable approach 
to integrating and analyzing scRNA-seq data, which successfully identified 
immune-modulatory subsets of canine TNBC. It also revealed potential 
mechanisms through which TNBC promotes immune evasion in dogs. 
These findings are crucial for advancing the understanding of the immune 
pathogenesis of canine TNBC and may aid in the development of new immune-
based therapeutic strategies.
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Introduction

Immune checkpoint inhibitors (ICIs)-based immunotherapy has 
revolutionized cancer therapy, significantly altering the therapeutic 
landscape for many human cancers (1). Recent clinical trials in dogs 
have demonstrated promising results, with complete remission rates 
of 7.7% (2) and 9.5% (3, 4) in cases of advanced oral malignant 
melanoma following the administration of caninized anti-PD1 and 
anti-PD-L1 antibodies. In addition, anti-human CCR4 antibodies 
targeting tumor-infiltrating regulatory T cells elicited partial remission 
rates of 30% (5) and 71% (6) in canine models of prostate and bladder 
cancer, respectively. Despite a low overall response rate, dogs with 
non-melanoma solid tumors appear to clinically benefit from the 
treatment of anti-PD1 antibodies (7–9). ICIs in dogs have shown 
durability, although there has been one report of a fatality related to 
adverse events (4). Multiple mechanisms are assumed to be involved 
in dogs’ immune suppressive tumor microenvironment, including 
infiltration of immune-suppressive cells (10, 11) and expression of 
immune checkpoints that suppress T cell activity (2, 3, 12). Different 
types of immune modulatory therapies applied to dogs have shown 
that the tumor immune microenvironment (TiME) is the critical rate-
limiting step in the cancer-immune cycle, influencing immune 
evasion and the effectiveness of cancer immunotherapy (2, 3, 13, 14). 
However, little information is available on the composition of the 
tumor microenvironment, its interaction with the tumor in the 
context of its microenvironment, and the specific tumor antigens in 
dogs (15).

Mammary gland tumors (MGT) are the most frequently 
diagnosed tumors in female dogs. Among the subtypes of MGT, 
triple-negative breast cancer (TNBC) is characterized by the absence 
of human epidermal growth factor receptor 2 (HER2), estrogen 
receptor (ER), and progesterone receptor (PR), with or without the 
basal-like type (cytokeratin 5/6-positive) (16). In dogs, the TNBC 
subtype is relatively common, accounting for approximately 27.9% of 
all canine MGT cases, although this proportion varies due to 
differences in inclusion criteria and methodology (16–20). Similar to 
humans, canine TNBC is more biologically aggressive than other 
MGT subtypes, resulting in poor prognosis (16, 17). The molecular 
mechanisms underlying the increased aggressiveness of canine TNBC 
remain largely unknown, but it is suggested that the epithelial-to-
mesenchymal transition may play a role (17, 21).

In dogs, MGT has been suggested to induce immune suppression 
(10, 22, 23). Emerging studies have demonstrated the prognostic value 
of tumor-infiltrating leukocytes (TIL) in dogs with MGT (24). TNBC 
has been demonstrated to shape the suppressive TiME in humans (25, 
26). In dogs with TNBC, tumor-infiltrating CD4+ T cells and tumor-
associated macrophages have been negatively correlated with clinical 
outcomes (16, 27). Surgery is considered the primary treatment for 
canine MGT (28, 29). ICIs are the most studied forms of 
immunotherapy for TNBC (25, 30). New treatment strategies have 
been developed to reduce the incidence of local tumor recurrence and 
delay the metastatic progression of TNBC in dogs (31). TNBCs are 
biologically heterogeneous with low response to ICIs (30, 32) and 
represent a promising model system for comparative immunotherapy 
research in both canines and humans (16).

scRNA-seq has only recently begun to unlock the secrets of 
veterinary diseases, with applications to canine cells derived from 
osteosarcomas, chronic inflammatory enteropathy, Peyer’s patch, and 

hippocampus (33–37). In the present study, using published 
scRNA-seq datasets, we  leveraged data integration to attest to the 
hypothesis that an immune modulatory subset of TNBCs is 
responsible for immune suppression via the interaction with effector 
T cells. As the first step toward cancer immunotherapy, the present 
study defined the immune suppressive subsets of canine TNBC at a 
high-resolution single-cell level and characterized the crosstalk 
between cancer cells and effector CD4+ and CD8+ T cells. The data 
presented in this study indicate potential mechanisms through which 
TNBCs shape the immune suppressive TiME, which was not 
addressed in the original publications (21, 27, 38). The integrated 
scRNA-seq analysis presented in this study will lay the groundwork 
for the development of methodologies to study cell subsets, their 
functions, and the complex cell–cell interactions in the TiME of 
different cancer types and other immune-related syndromes in 
veterinary medicine, including in dogs.

Methods

Single-cell RNA sequencing datasets

Canine scRNA-seq datasets and published studies are available in 
the Gene Expression Omnibus (GEO) database. These included a total 
of 30 scRNA-seq datasets: 10 datasets of peripheral blood mononuclear 
cells (PBMC) from five dogs with and five dogs without atopic 
dermatitis (GSE144730) (39), three datasets of peripheral blood T-cell 
receptor (TCR) αβ T cells (PBT) from three healthy dogs (GSE218355) 
(40), TNBC with or without in vitro vaccinia virus infection derived 
from two dogs (GSE142184) (38), a dataset of nuclei from lung tissue 
from a healthy dog (GSE183300) (41), four datasets of immune cells 
from bronchoalveolar lavage (BAL) (E-MTAB-9265) from four dogs 
(42), and eight datasets of immune cells from BAL from three dogs 
with and five dogs without idiopathic pulmonary fibrosis (IPF) 
(E-MTAB-9623) (43). Detailed sampling information was provided in 
the individual studies. Circulating leukocytes were isolated from 
canine blood using density gradient centrifugation (39, 40). BAL 
samples were isolated by instilling sterile saline solution into the 
airways through a bronchoscope channel, followed by fluid aspiration 
(42, 43). TNBC was confirmed by the lack of immunohistochemical 
expression of ER, PR, and HER2 (38). All datasets were integrated and 
subject to bioinformatic analysis. Each dataset was confirmed to use 
official canine gene symbols associated with human homologs. All 
studies used CanFam3.1 (Canis lupus familiaris genome assembly) for 
aligning reads to the reference genome.

Single-cell RNA sequencing data 
integration and analysis

Seurat objects from all 30 samples were merged and integrated 
into a single object. R toolkit Seurat (v. 4.3.0) was used for the data 
processing, generating the Seurat object as an input file on RStudio (v. 
4.2) for subsequent bioinformatic processes (44). Briefly, low-quality 
cells with either unique feature counts of less than 200 or over 5,000 
or mitochondrial counts of more than 10% were filtered out. Samples 
were normalized using default settings. Preparation for integration 
used 3,000 anchor features. Principal component analysis (PCA) was 
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used for linear dimensional reduction. Principal components 1 
through 30 were utilized for further dimensional reduction, which was 
based on the most significant principal component (p < 1E-5) from the 
Jackstraw substitution test algorithm and the ranking of principal 
components based on the percentage of variance. Moreover, 
t-distributed stochastic neighbor embedding (t-SNE) was used for 
graph-based clustering with a resolution of 2.7.

The scDblFinder (v. 1.4.0) R package was used to remove potential 
doublets (45). Doublet prediction was conducted on each study group 
to account for batch effects. Following singlet selection, single-cell 
clusters were identified and labeled based on several criteria: markers 
from the original studies from which the dataset was sourced, 
canonical lineage markers, markers for rare and unique populations 
from previous publications, or unbiased cell type recognition using 
SingleR (v. 1.8.1) (46). The celldex package (v. 1.6.0) was used to utilize 
reference signatures of pure cell types to infer the cell of origin for 
each single cell (46).

Differential gene expression analysis

A likelihood-ratio test was used to identify differential expression 
for individual clusters compared to all other cells. To identify cluster 
markers, the “FindAllMarkers” function was used in the Seurat 
package with the absolute log2-fold change threshold >0.25 and 
minimum percentage of cells where the gene is detected in a specific 
cluster >25%. To identify cluster differentially expressed genes (DEGs) 
for all clusters across groups, the “FindMarkers” function was used 
with the absolute log2-fold change threshold >0.36 and p-value <0.05.

Gene set enrichment analysis and gene 
ontology analysis

Single-cell gene set enrichment analysis (GSEA) was performed 
using the escape R package (v. 1.6.0) (47). Gene sets were sourced 
from the Hallmark library of the Molecular Signature Database (48). 
Canine gene sets associated with cancer types were derived from 
previous publications (49–52). DEGs were also subjected to either 
Gene Ontology (GO) enrichment analysis using PANTHER 
annotation datasets with a species of Canis lupus familiaris1 or 
ShinyGO (v. 0.77) (53), a graphical gene-set enrichment tool with a 
species of dog. GO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) results were filtered with a p-value of <0.05 and a false 
discovery rate (FDR) of <0.05. The DittoSeq (v. 1.4.4) and pheatmap 
(v. 1.0.12) R packages were used to visualize gene sets that characterize 
specific molecular and biological pathways (54).

Cell cycle analysis

Cell cycle assignment was performed by using the 
“CellCycleScoring” function and calling “cc.genes.updated.2019” in 
Seurat (44).

1 http://geneontology.org/

Cell-to-cell interaction analysis

The CellChat R package (v. 1.4.0) was used to quantitatively infer 
intercellular communication networks from scRNA-seq data (55). 
Single cells derived from PBMC, αβ T, and TNBC groups were subject 
to interactome analysis.

The interaction analysis did not include PTPRC-non-immune 
cells, potential doublets, and clusters that were simultaneously 
assigned to both TNBC and immune cell groups. To find potential 
ligand-receptor pairs, the “netVisual_bubble” function was used with 
a threshold of p-value <0.01, as previously described (56).

Statistical methods

Default statistical methods available within the Seurat package 
were used in this study, as previously described (56). A non-parametric 
Wilcoxon rank-sum test was used to compare the significance of 
two-sample differential expression in the “FindAllMarkers” function. 
A two-tailed unpaired Student’s t-test available within the ggpubr R 
package (v. 0.4.0) was used for statistical tests for the distribution of 
genes on count-level mRNA data.

Results

Standard pre-processing and quality 
control of the integrated scRNA-seq data

The study workflow is presented in Figure 1A. The rationale for 
including these datasets is as follows: Immune cells derived from BAL 
samples were included as a control dataset (42, 43), given that 
macrophages were identified to be immune suppressive. Lung cells 
were included as a control dataset (41), given that airway epithelial 
cells were known to modulate innate mucosal immunity (57). PBMC 
derived from atopic dermatitis was included as a control dataset, given 
that immune cells were identified to be proinflammatory (39). A very 
low passage of primary TNBC cells that were confirmed to be not 
immortalized was included to attest to the hypothesis that dogs have 
immune modulatory subsets of TNBC (38). A summary of subject 
characteristics is presented in Supplementary Table S1. The standard 
pre-processing and rigorous quality control of scRNA-seq data 
integrated by studies are available (Supplementary Figure S1). The 
number of genes, percentage of reads that map to the mitochondrial 
genome, and percentage of canine ensemble genes detected in each 
study are shown (Supplementary Figure S1A). Mitochondrial genes 
were not identified in BAL and lung groups (Supplementary Figure S1B). 
The top 10 highest variable features among 3,000 features that exhibit 
high cell-to-cell variation in the integrated scRNA-seq dataset are 
shown (Supplementary Figure S1B). Principal components of 20 
showing strong enrichment of features with low p-values were selected 
based on the JackStraw (Supplementary Figure S1C) and Elbow 
(Supplementary Figure S1D) plots. Following potential doublet 
exclusion (Supplementary Figure S1E), 69,035 single cells were 
obtained from PBMC (GSE144730, n = 20,078), peripheral blood TCR 
αβ T cells (GSE218355, n = 19,796), lung (GSE183300, n = 3,694), BAL 
(E-MTAB-9265, n = 4,240), BAL (E-MTAB-9623, n = 16,171), and 
TNBC (GSE142184, n = 5,056) (Supplementary Figure 1F).
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Identification of the major single-cell 
clusters by scRNA-seq

Following scRNA-seq data integration, a total of 45 clusters were 
identified in the master Seurat object (Figure 1B). We assessed the 
clustering performance by identifying the major cell types and found 
a clear separation of CD45+ (or PTPRC+) leukocytes, CD4+ T, CD8+ T 
(or CD8A+), myeloid (LYZ+), epithelial cells (EPCAM+ and/or 
COL1A2+), and lung (BMP1+) populations (Figures 1C,D). Out of the 
top 20 DEGs to define the major immune and non-immune subsets, 

representative genes are presented on the heatmap (Figure  1E). 
Functionally unique immune subsets from PBMC, αβ T, and BAL 
groups were further defined by various canonical markers and genes 
derived from previous studies (39, 40, 42, 43) (Figure  1F and 
Supplementary Figure S2). Unbiased cell type recognition was also 
used to define distinct clusters, supporting the clustering performance 
(Supplementary Figure S3).

In the master Seurat object, a total of 16 clusters of CD3+ T 
cells were identified, which mainly consisted of single-positive 
CD4+ or CD8+ cells, as well as a few double-positive (clusters 11 

FIGURE 1

Study scheme and identification of major immune and TNBC clusters by integrated scRNA-seq analysis in dogs. (A) Study scheme. scRNA-seq datasets 
used in this study are present along with downstream analysis. (B) A total of 45 clusters identified from the integrated Seurat dataset are presented on 
the tSNE plot. (C) Single-cell tSNE distribution by the group. Overall, there is a distinct tSNE distribution of single cells across groups. (D) Canonical 
markers used to evaluate cell lineage are present on the tSNE plot. (E) Among the top 20 DEGs to define each major single-cell subset, representative 
genes are presented on the heatmap. (F) Identification of functionally distinct immune cells on the tSNE plot. (G) Simultaneous visualization of co-
expression of CD163 and CSF3R on the tSNE plot. PBMC, peripheral blood mononuclear cells; PBT, peripheral blood TCR αβ T cells; BAL, 
bronchoalveolar lavage; Mo, monocytes; MP, macrophages; M1, M1-polarized; M2, M2-polarized; DC, dendritic cells; pre-eff, pre-effector; Eff, 
effector; Mem, memory; act, activated; Pro exh, progenitor exhausted; Treg, regulatory T cells; Cyto, cytotoxic.
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and 25) and double-negative (clusters 7 and 22, largely derived 
from BAL groups) subpopulations (Supplementary Figure S2A). 
CD4+ T cells were further classified into five transcriptionally 
unique subpopulations: LEF1+SELL+CCR7+ naïve (clusters 0 and 
2), CXCR3high pre-effector (cluster 8), GATA3+ Th2-like 
pre-effector (cluster 9), CCR4highCXCR4high effector memory 
(cluster 17), FOXP3+ regulatory T cells (Treg) (cluster 31), and an 
uncharacterized population (cluster 38). Pre-effector CD4+ T cells 
were defined by a gradual increase in HOPX expression, a marker 
indicating pre-effector T cells poised for subsequent effector 
differentiation. A total of five CD8+ T clusters were identified in 
the master Seurat object. Clusters 14 and 26 showed high 
expression of genes related to killer cell lectin-like receptors (e.g., 
KLRG1 and KLRB1) and cytotoxicity markers (e.g., GZMA, PRF1, 
and NCR3), suggesting these clusters represent cytotoxic CD8+ T 
cells (Supplementary Figure S2A). In addition, cluster 26 uniquely 
expressed FCER1G, indicating an innate-like phenotype. Cluster 
24 displayed features of an exhausted progenitor phenotype, 
characterized by the expression of CD7, TOX, and, to some extent, 
TCF7, but lacked CD27 expression. Cluster 35 showed high 
expression of genes associated with T cell activation, such as 
CD69, JUND, and KLF6, suggesting that these were activated 
CD8+ T cells. Cluster 30 expressed HOPX but showed lower levels 
of cytotoxicity-related genes, indicating it may represent a 
pre-effector type. Cluster 18 was marked by high expression of 
CCL4, CCL5, and S100A4, suggesting a migratory phenotype. 
Additionally, a small number of immune cells, such as gamma 
delta T cells and natural killer (NK) cells, were identified through 
unbiased cell type annotation but were not assigned to a single 
independent cluster (Supplementary Figure S3). Myeloid cells, 
defined by LYZ expression (Supplementary Figure S2B), were 
clearly separated on the tSNE plot based on the expression of 
CSF3R and CD163, which are classic markers for M1 and M2 
macrophage polarization markers, respectively (Figure  1G). 
Myeloid clusters expressing CSF3R were identified as ITGB2high 
monocytes (clusters 3, 6, 10, 12, 16, and 20) derived from 
peripheral blood (Supplementary Figure S3B). These clusters 
rarely expressed CXCR2, a granulocytic lineage marker 
(Supplementary Figure S2A).

Myeloid clusters expressing CD163 were mainly CD68high 
macrophages (clusters 1, 4, 19, 21, and 39) derived from BAL 
(bronchoalveolar lavage). Cluster 20 was further characterized as 
IFN-related monocytes due to the high expression of genes 
associated with interferon signaling pathways, such as ISG15, MX1, 
and MX2. We also identified CD83+CD86+ITGAX+ dendritic cells 
(DC) (cluster 23), FSCN1+ DC (cluster 41), and CD177+ neutrophils 
(cluster 40).

B cells (cluster 34) and plasmablasts (clusters 28 and 33) specifically 
expressed MS4A1 and IRF4, respectively (Supplementary  
Figures S2A, S3A,B). Single cells derived from the lung were not immune 
cells but showed high expression of BMP1 genes (Figure  1D and 
Supplementary Figure S2C). In the TNBC group, single cells exhibited 
specific expression of epithelial cell markers, such as COL1A2, KRT14, 
CA2, and SPP1 (Supplementary Figure S2C). Notably, some immune and 
TNBC cells were assigned to the same clusters (29, 36, and 43), which is 
likely due to a similar global structure of RNA expression across single 
cells. Taken together, this integrated analysis successfully identified major 

distinct subsets of immune and TNBC cells at the single-cell level 
in dogs.

Subsets of cancer cells have a distinct 
immune-suppressive phenotype

Clinical trials have revealed the presence of an immune 
suppressive TiME in various types of canine cancers (5). However, 
whether canine TNBCs possess an immune-suppressive TiME 
remains unknown. To investigate this, we performed GSEA using 
various gene sets associated with immune-associated pathways 
(Figure 2). Overall, we identified two distinct patterns of gene set 
enrichment. First, PBMC were preferentially enriched with 
inflammatory gene sets, such as interferon signaling, M1 
macrophage, proinflammatory, and leukocyte-mediated immunity 
(Figure 2A, red boxed). Specifically, αβ T cells within the PBMCs 
showed significant enrichment of T cell-specific gene signatures, 
including those associated with Treg and terminal T cell 
differentiation. Second, TNBCs exhibited preferential enrichment of 
immune suppressive gene sets, such as those related to TGF-β, 
TNF-α, anergy, anti-inflammatory responses, M2 macrophages, and 
T cell exhaustion (Figure  2A, blue boxed). Notably, the anti-
inflammatory and M2 macrophage enrichment patterns were 
particularly specific to TNBC compared to other groups (Figure 2B). 
Additionally, TNBCs were enriched with gene sets associated with 
alternative metabolic pathways and oxidative stress (Figure  2A). 
Importantly, canine-specific gene sets were also enriched 
(Figure 2C), demonstrating the reliability of the GSEA results in this 
study. Consistent with previous scRNA-seq findings in dogs (43), 
BAL samples affected by IPF showed single-cell clusters that were 
highly enriched with the M2 macrophage gene set (Figures 2A,B). 
Moreover, lung cells showed only sporadic enrichment patterns of 
several gene sets, such as TGF-β and anergy (Figures 2A,B). There 
was no noticeable difference in the enrichment pattern between 
healthy and atopic dermatitis conditions of PBMC. Taken together, 
GSEA confirmed that TNBC contributes to an immune-suppressive 
TiME in dogs, providing a rationale for further analysis with a focus 
on identifying specific TBNC clusters that might have led to the 
distinct immune-suppressive phenotype.

Identification and characterization of 
cancer cell subsets within TNBCs

To scrutinize functionally unique cancer cell subpopulations, 
we  performed sub-clustering of all cancer cells and defined 11 
sub-clusters (Figure 3A). Each cluster was separated in the tSNE plot, 
demonstrating prominent intratumoral heterogeneity and distinct 
global structure of transcriptomes across clusters (Supplementary  
Figure S4). Representative markers for each TNBC cluster are available 
(Figure  3B, Supplementary Figures S4A,B, and Supplementary  
Table S2). For example, the expression of genes associated with 
immune suppression, such as SPP1, HMGA1 and WNT5A, was mainly 
identified in clusters 2, 3, 5, 6, and 7. Clusters 0 and 1 were 
characterized by specific expressions of SFRP2 and COL2A1, 
respectively.
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Subsequently, we  performed functional enrichment analysis to 
investigate cancer cell subsets that could contribute to immune 
suppression. Interestingly, GSEA identified clusters 2, 3, 5, 6, and 7 that 
were preferentially enriched with gene sets associated with immune 
suppression, such as anti-inflammatory, M2 macrophage, anergy, IL-18, 
TNF-α, and TGF-β (Figure  3C, blue boxed, Figure  3D, and 
Supplementary Figure S4C). The enrichment with an anti-inflammatory 
signature tended to increase in virus-infected clusters relative to 
non-viral-infected cancer cell clusters (Figure 3D). Among them, clusters 
2 and 6 showed simultaneous enrichment of anti-inflammatory and M2 
macrophage gene sets, indicative of potential immune-suppressive 
cancer cells (Figure 3E). KEGG analysis using cluster markers revealed 
that cluster 2 was significantly associated with extracellular matrix-
receptor interaction (Supplementary Figure S4D). Cluster 6 was 
significantly associated with blood vessel development and cell migration 
(Supplementary Figure S4D). These enrichment patterns were not 
associated with cell cycle alteration (Figure 3F), given that viral infection 
tended to arrest cell cycle progression, especially in clusters 2 and 6 
(Supplementary Figure S4E). These GSEA and expression analyses 
classified cancer cells into virus-susceptible, virus-resistant, and 

immune-modulatory TNBC subsets (Figure 3G). During virus infection, 
bystander cancer cells can change behavior, potentially favoring immune 
evasion (58). The increasing tendency of anti-inflammatory enrichment 
in virus-infected, particularly immune-modulatory cancer cells, might 
imply genes that can play a key role in shaping an immune-suppressive 
TiME. Among genes belonging to the immune suppressive signatures, 
we identified 40 DEGs across cancer cell subsets related to viral infection 
status (Figure  3H, Supplementary Table S3, and 
Supplementary Figure S4F). Overall, these genes were significantly 
enriched with many biological processes, particularly angiogenesis and 
leukocyte chemotaxis (Figure 3I, Supplementary Figures S4F,G, and 
Supplementary Table S4). In support of this, VEGFA that belonged to 
these GO terms significantly increased in virus-infected cancer cell 
clusters compared to non-infected clusters (Figure  3J and 
Supplementary Figure S4G). Interestingly, VEGFC, which is associated 
with immune suppression during canine mammary cancer development 
(22), was also significantly upregulated in a subset of the cancer cell 
population (Supplementary Figure S4G). Other potential immune 
modulatory candidate genes, such as HSD11B1, LIF, PTGS2, GADD45B, 
and JAG1, were present (Figure 3J).

FIGURE 2

Gene set enrichment analysis of gene signatures associated with immune-related pathways. (A) GSEA. Immune-related pathways are present across 
subsets and clusters. TNBC clusters show marked enrichment with gene sets associated with metabolism, cytokine, and immune suppression, 
particularly including anti-inflammatory, M2 macrophage, and anergy signatures (blue boxed). Note that the specific enrichment of the canine gene set 
is associated with mammary gland tumors in TNBC. Contrary to TNBC, PBMC, and BAL show a general increase in the enrichment with gene sets 
associated with inflammatory responses, such as interferons, M1 macrophages, and proinflammatory (red boxed). (B) The hex density enrichment plot 
reveals the enrichment pattern of the indicated immune-related pathways across groups. The TNBC group exhibits a more anti-inflammatory 
phenotype than other groups, as evidenced by the TNBC-preferential shift toward the anti-inflammatory and M2 macrophage signatures. Note 
intrinsic, significant enrichment of M2 macrophage signature in single cells from BAL group. (C) GSEA. Enrichment of canine gene signatures is present 
across subsets and clusters. GSEA, gene set enrichment analysis; PBMC; peripheral blood mononuclear cells; PB_T, peripheral blood TCR αβ T cells; 
TNBC, triple-negative breast cancer; BAL, bronchoalveolar lavage; TNBC_infected, TNBC subset infected with oncolytic vaccinia virus; Dog_Module 1, 
gene set defining canine pulmonary carcinoma; Dog_Module 2, gene set associated with canine malignant melanoma; Dog_Module 3, gene set 
associated with canine osteosarcoma; Dog_Module 4, gene set associated with canine B cell lymphoma; Dog_Module 5, gene set associated with 
canine T cell lymphoma; Dog_IMHA, gene signature associated with canine immune-mediated hemolytic anemia.
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Identification and characterization of 
cell-to-cell interaction between cancer 
cells and PBMCs

Tumor-immune cell interaction, a hallmark of cancer 
immunology, plays a critical role in T cell exhaustion within the 
TiME, leading to ineffective cancer immunotherapy. As a potential 
mechanism through which cancer cells induce the exhaustion stage 
of tumor-infiltrating T cells, we hypothesize that peripheral T cells 
have the potential to interact with cancer cells via distinct ligand-
receptor pairs. Single-cell clusters from cancer cells and PBMC 
groups were subject to CellChat analysis to decipher coordinated 
tumor-immune interactions (Supplementary Figure S5A). While 
analyzing the interactome, we found two major patterns of cell–cell 
interaction. First, there were distinct subsets of cancer cells (clusters 

13, 27, and 32) that strongly sent signals to other cells in a paracrine 
fashion or to themselves via an autocrine pathway (Figures 4A,B, blue 
boxed). Second, effector CD4+ (cluster 8 pre-effector CXCR3high, 
cluster 17 effector memory, and cluster 31 Treg) and CD8+ (cluster 14 
cytotoxic and cluster 26 innate-like cytotoxic) T cells were able to 
receive signals (Figures  4A,B, red boxed, and Supplementary  
Figure S5B). Afterward, we  focused on these clusters to identify 
significant signaling pathways and ligand/receptor pairs (Figure 4C).

After extensive interactome analysis, we identified key ligand 
and receptor pairs, which were mainly derived from secretory 
(SPP1), cell–cell intact (APP), and extracellular matrix-receptor 
(FN1 and collagen) pathways (Figure  4D and Supplementary  
Figure S5C). For example, the TNBC ligand (COL1A2, SPP1, and 
FN1) and receptors (SDC1, SDC4, ITGAV + ITGB1, ITGAV + ITGB5, 
and ITGA5 + ITGB1) showed high communication probability 

FIGURE 3

Identification and characterization of immune suppressive TNBC subsets and potential candidates by scRNA-seq. (A) A total of 11 major TNBC clusters 
are presented on the tSNE plot. (B) Representative markers to define clusters are present on the feature plot. (C) GSEA shows preferential enrichment 
patterns for gene sets associated with M2 macrophage, TGF-β, IL18, anergy, anti-inflammatory, and TNF-α in clusters 2, 3, 5, 6, and 7 TNBC clusters. 
(D) Hex density enrichment plot reveals that indicated TNBC subsets are more anti-inflammatory compared to the entire population of TNBC. Red and 
blue numbers on each quadrant illustrate upward and downward trends, respectively, compared to control. (E) Simultaneous visualization of co-
enrichment of anti-inflammatory and M2 macrophage signatures on the tSNE plot. (F) Cell cycle profile across TNBC subsets. (G) Molecular 
classification of TNBC clusters according to viral infection, transcriptional features, and functional enrichment. (H) Differentially upregulated genes that 
belong to gene sets highlighted in (C) are present across TNBC clusters. Numbers in the parenthesis indicate the origin of statistically significant DEGs 
in TNBC clusters. (I) Gene ontology analysis using DEGs affected by viral infection. Highly enriched and statistically significant representative GO terms 
are shown, which are associated with the regulation of angiogenesis and leukocyte chemotaxis. (J) The violin plot reveals differential expression of 
indicated genes in TNBC subsets. A comparison between the two groups of interest was made using a two-tailed unpaired Student’s t-test.

https://doi.org/10.3389/fvets.2024.1434617
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Kim et al. 10.3389/fvets.2024.1434617

Frontiers in Veterinary Science 08 frontiersin.org

(Supplementary Figure S5D). Interestingly, T cell receptors CD44 
and CD74 showed high communication probability, contributing 
most to the outgoing signaling of the representative ligands from 
cancer cells (Supplementary Figure S5E). The ligand and receptor 
genes showed high expression levels in the interacting cancer cells 
and T clusters (Figure 4E). Finally, the TNBC ligand and receptor 
genes (SPP1, COL1A2, FN1, APP, SDC1, and SDC4) were also 
expressed in immune-modulatory cancer cell subpopulations 
(clusters 2, 3, 5, 6, and 7) (Figure 4F), suggesting potential immune 
suppressive mechanisms mediated by cancer-T cell and cancer-
cancer cell interaction.

Discussion

We utilized open-source canine scRNA-seq datasets in the present 
study, including primary TNBC and peripheral immune cells. 
We  investigated the mechanism through which TNBC induces 
immune suppression in dogs. The integrated scRNA-seq analysis in 
this study reveals immune suppressive canine TNBC subsets, which 
were identified to preferentially interact with TNBC subsets and 
effector types of CD4+ and CD8+ T cells. Potential mechanisms through 
which canine TNBC cells shape the immune suppressive TiME are 
suggested to regulate angiogenesis and immune cell infiltration.

FIGURE 4

CellChat-based identification of immune-to-TNBC interactions by scRNA-seq. (A) Institutive visualization of the dominant signal senders (blue box) 
and receivers (red box) on the scatter plot. (B) Overall, outgoing and incoming signaling patterns of significant pathways across clusters are presented. 
Bars refer to the sum of the original computed interaction strength in each column and row. (C) Visualization of cell–cell communication from 
indicated TNBC to T clusters is present on the chord diagram. The inner thinner bar colors represent the targets that receive signals from the 
corresponding outer bar. (D) Identification of significant interactions and key ligand and receptor pairs from indicated TNBC to T clusters on the bubble 
plot. (E) Expression of representative ligand and receptor genes that belong to SPP1, FN1, APP, and collagen signaling pathways is present across 
clusters in the violin plot. (F) Identification of TNBC ligand gene expression on the functionally unique TNBC subpopulations from the sub-clustered 
group.
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By leveraging integrated scRNA-seq analysis, we  identified 
transcriptionally distinct cancer cell subsets with potentially different 
cancer immune properties and interactions with T cells, which cannot 
be captured by bulk RNA-seq. Of note, while corroborating previous 
findings, e.g., viral-resistant DDIT4+ cancer cells (clusters 0, 1, 8, and 
9) (38), bystander cancer cells identified by the previous study were 
reinterpreted to immune modulatory TNBC subsets in this study. The 
immune modulatory TNBC subsets identified in this study are 
functionally unique, as indicated by the expression of specific cluster 
markers, such as HMGA1, SPP1, and WNT5A. Interestingly, these 
genes are closely linked to the development and potential immune 
evasion mechanisms in both canine (59, 60) and human TNBC (61, 
62). For example, HMGA1, a downstream gene of PD-L1 that regulates 
cancer immunity in human TNBC (63), was exclusively expressed in 
immune-modulatory TNBC subsets. WNT5A-induced Wnt signaling 
promotes immune escape in TNBC through multiple pathways, such 
as creating a hypoxic microenvironment, suppressing immune 
responses, and excluding T-cell infiltration (64). Similarly, SPP1, 
expressed on malignant cells, contributes to T-cell suppression via 
CD44-mediated binding (65). Therefore, we  suggest that 
HMGA1+SPP1+ or WNT5A+ TNBC cells may play a role in immune 
evasion and could be potential targets for anticancer immunotherapy. 
The functional enrichment of immune-suppressive gene sets in these 
TNBC subpopulations further supports the conclusions of this study.

Immunosuppressive pathways could play a prominent role in the 
resistance of tumor cells to oncolytic viral infection (58). Accordingly, 
we explored oncolytic viral infection as an anti-inflammatory factor 
and identified candidate genes involved in immune evasion and 
mechanisms through which TNBC escapes immune surveillance by 
the host. GO analysis of DEGs in cells infected by the virus revealed 
two key signaling pathways: angiogenesis and leukocyte chemotaxis. 
Angiogenesis is a hallmark of canine mammary gland tumorigenesis, 
with VEGF signaling being critical in the pathophysiology of canine 
TNBC (66). In addition, angiogenesis is significantly correlated with 
immune suppression in dogs (22). In this study, immune-modulatory 
TNBC subsets affected by viral infection significantly upregulated 
VEGFA and VEGFC. Angiogenesis promotes the infiltration of various 
immune-suppressive cells into MGT in dogs (24). Indeed, VEGFC 
released by canine MGT contributes to immune suppression by 
recruiting Treg and myeloid-derived suppressor cells (MDSCs) (22). 
Moreover, the infiltration of Treg (67) and tumor-associated 
macrophages (TAMs) (68) is promoted by VEGF signaling in canine 
MGT. These recruited immune-suppressive cells have been strongly 
suggested to inhibit anticancer T-cell activity, contributing to poor 
prognoses in canine MGT and TNBC (22, 24, 27). Based on previous 
findings and our current results, we postulate that TNBC promotes 
cancer immunity through angiogenesis and VEGF-mediated immune 
cell infiltration. Future research is warranted to elucidate the 
mechanisms by which canine TNBC modulates cancer immunity 
through the regulation of other candidate genes. For example, in this 
study, TNBC cancer cells were inferred to interact specifically with 
each other, suggesting the presence of autocrine and paracrine 
communications. Based on this observation, we  propose that the 
candidate genes may form a positive feedback loop, amplifying the 
anti-inflammatory signaling pathways within cancer cells. Indeed, 
oncolytic virus-regulated candidate genes, such as PTGS2, GADD45B, 
and JAG1, have been involved in autocrine and/or paracrine signaling 
within the TiME of human TNBC (69–71). Therefore, targeting 

therapeutic strategies to disrupt this potential intertumoral feedback 
loop may provide an effective approach to normalizing the TiME.

The interactome analysis reveals that cancer cells directly 
modulate T-cell activity, potentially promoting immune suppression. 
In this study, we suggest that SPP1+, FN1+, or COL1A2+ cancer cells 
may be a key subset responsible for T-cell suppression, where CD44 
likely acts as an immune checkpoint in dogs. Indeed, the SPP1-CD44 
interaction has been demonstrated to suppress infiltrating effector 
T-cell activity in various types of cancers (65, 72). This interaction may 
occur between proteins of both tumor and non-tumor origin (73). For 
instance, the binding of CD44+ tumor-infiltrating T cells to type 
I  collagen has been demonstrated to induce a more aggressive 
phenotype in malignant melanoma (74). In addition, FN1+ TNBC 
cells are associated with increased CD8+ T cell infiltration and 
immune suppression (75). Although there is limited information on 
cell–cell interactions in canine TNBCs, numerous studies support the 
anti-inflammatory roles of SPP1, FN1, and COL1A2 in canine MGT 
and TNBC (59, 76, 77). Investigating the impact of the TNBC-Treg 
interaction could provide further insights into immune evasion 
mechanisms. It might be associated with the direct induction of Treg, 
which supports CD4+ T cell-mediated poor prognosis of canine 
mammary carcinoma and TNBC. In the present study, interactions 
between TNBC subsets may contribute to the development of more 
aggressive TNBC phenotypes, such as increased invasiveness and 
metastatic potential. Notably, strong communication probabilities 
between the breast cancer ligand FN1 and syndecan receptors, such 
as SDC1 and SDC4, have been significantly involved in promoting a 
brain metastatic TiME (78). SDC1, a key immunity-related gene that 
is highly expressed in TNBC patients, facilitates immune escape by 
excluding tumor-infiltrating lymphocytes (79). Future studies are 
warranted to explore the clinical relevance of the binding of TNBC 
ligands to receptors on CD44+ T and other TNBC subsets in driving 
immune suppression in canine MGT.

This study leveraged scRNA-seq integration to define immune-
suppressive subsets of TNBC at a high-resolution single-cell level and 
to characterize the crosstalk between cancer cells and effector CD4+ 
and CD8+ T cells. The results presented in this study will be valuable 
in demonstrating that canine TNBC shapes an immune-suppressive 
tumor microenvironment, which is mediated by interactions between 
immune cells and TNBC, and affected by exhausted CD44+ effector 
CD4+ T cells.

We acknowledge that this study has certain limitations. First, 
tumor-infiltrating immune cells were not analyzed, and peripheral 
immune cells from non-tumor-bearing dogs were used for the 
analysis. Although PBMCs may infiltrate tumor sites, interact with 
tumor cells, and become exhausted through immune-tumor 
interactions, future studies must confirm this in canine TNBCs. 
Second, we  did not fully characterize the TiME in terms of the 
composition of immune components within canine TNBC. In 
addition, although the low passage of TNBC cells were analyzed, they 
may not fully represent the in vivo tumor microenvironment. 
Nevertheless, the results presented in this study will be valuable in 
identifying potential interaction among immune-modulatory TNBC 
subsets, which may contribute to the immunopathogenesis of TNBC 
in dogs. Third, despite the well-established integration methodology 
provided by Seurat, potential institutional or batch effects across 
scRNA-seq datasets might have occurred during the analysis. Finally, 
functionally validated canine gene sets were not utilized during 
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GSEA. Although humans and dogs share a high degree of homology 
in corresponding sequences and orthologous genes, especially in well-
conserved interspecies immunological functions (80), a more accurate 
assessment of immune-related functions should be performed using 
canine-specific gene sets.

Immunotherapy for dogs still lags far behind human treatment 
(15). Future scRNA-seq studies are warranted to map the immune 
landscape of canine MGT using paired samples of tumor cells, PBMC, 
and TILs identify novel and targetable immune checkpoint genes in 
tumor-bearing dogs.
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