
Frontiers in Veterinary Science 01 frontiersin.org

Phenotypic variation of dairy 
cows’ hematic metabolites and 
feasibility of non-invasive 
monitoring of the metabolic 
status in the transition period
Silvia Magro 1, Angela Costa 2*, Damiano Cavallini 2, 
Elena Chiarin 1 and Massimo De Marchi 1

1 Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 
Legnaro, Italy, 2 Department of Veterinary Medical Sciences, Alma Mater Studiorum University of 
Bologna, Bologna, Italy

Introduction: The incidence of metabolic diseases tends to be highest during the 
transition period (±3  weeks around parturition) in dairy cows due to physiological 
changes and the onset of lactation. Although blood profile testing allows for the 
monitoring of nutritional and metabolic status, conducting extensive analyses in 
the herd is costly and stressful for cows due to invasive procedures. Therefore, 
mid-infrared spectroscopy (MIR) could be seen as a valid alternative.

Methods: In the present study, we used laboratory-determined reference blood 
data and milk spectra of 349 Holstein cows to (i) identify the non-genetic factors 
affecting the variability of major blood traits in healthy cows and, subsequently, 
(ii) test the predictive ability of milk MIR. Cows belonged to 14 Italian 
commercial farms and were sampled once between 5 and 38  days in milk. For 
β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), cholesterol, glucose, 
urea, total protein, albumin, globulin, minerals, aspartate aminotransferase, 
gamma-glutamyl transferase, creatine kinase, total bilirubin, and cortisol, the 
effects of parity, days in milk, and season were investigated using a linear model.

Results and discussion: The results indicate that all fixed effects significantly 
affected the hematic concentration of most of the traits. Regarding MIR, 
the most predictable traits were BHB, NEFA, and urea, with coefficients of 
determination equal to 0.57, 0.62, and 0.89, respectively. These values suggest 
that MIR predictions of BHB and NEFA are not sufficiently accurate for precise 
and punctual determination of the hematic concentration, however, still the 
spectrum of the milk can be exploited to identify cows at risk of negative energy 
balance and subclinical ketosis. Finally, the predictions can be useful for herd 
screening, decision-making, and genetic evaluation.
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1 Introduction

The transition period conventionally refers to ±3 weeks around parturition and is known 
to be a challenging moment for dairy cows. In this phase the incidence of infections and 
metabolic diseases tends to be  high due to nutritional, metabolic, hormonal, and 
immunological changes (1, 2) and all disorders/diseases that occur have severe implications 
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on the cow’s productive performance and fertility during the 
lactation. This is because dairy cows commonly experience a negative 
energy balance (NEB), a condition caused by insufficient dry matter 
intake. Energy intake fails to meet the demands of both maintenance 
and milk production (3, 4).

To compensate for the lack of energy substrates, there is mobilization 
of body reserves that leads to an increase in the concentrations of NEB 
blood biomarkers such as non-esterified fatty acids (NEFA) and ketone 
bodies such as β-hydroxybutyrate (BHB) (2, 5).

Apart from the indicators of NEB, there are several blood traits 
important for dairy cow health monitoring, namely albumin, globulin, 
urea, hepatic aspartate aminotransferase (AST), gamma glutamyl 
transferase (GGT), creatine kinase (CK), and total bilirubin (BILT). 
Some of these parameters can vary simoultaneously, especially in 
some specific moments and/or in unhealthy animals. For instance, 
cows with metritis exhibit greater AST and BILT than healthy cows 
(6), and CK and AST concentrations jointly increase in uterine tissue 
in the presence of clinical endometritis (7).

Blood metabolic profile testing is time-consuming, invasive, and 
relatively expensive. Therefore, conducting extensive analyses on a 
large scale is not feasible in the field, also due to the absence of 
standardized and validated sampling protocols and analyses (8).

In this context, there is an evident interest in the Fourier-
transform mid-infrared spectroscopy (FT-MIR), whose spectral data 
– already adopted to assess milk composition assessment (9, 10) – can 
be exploited to predict blood parameters (11, 12). Predicting mineral 
and hepato- and protein-profile indicators from milk spectra can 
represent a concrete and helpful opportunity for commercial farms. 
The present study aimed to (i) investigate the factors determining the 
variability of blood traits in healthy Holstein cows in early lactation, 
(ii) evaluate the association between blood and milk traits, and (iii) 
test the predictive ability of milk FT-MIR to predict hematic 
metabolic indicators.

2 Materials and methods

2.1 Sample collection

For this study, 14 commercial farms located in the Veneto region 
(Italy) were enrolled. The focus of this study was on Holstein cows 
under an intensive farming system. This means that the involved 
farms were characterized by a free stall barn, total mixed ration 
feeding, and no access to pasture. Between May and December 2020, 
each farm was visited once to sample cows in the first stage of 
lactation, i.e., between 3 and 38 days in milk (DIM). Animals with 
clinical signs of disease or those who received medical treatment at 
calving were excluded a priori, resulting in 349 clinically healthy cows, 
from calving up to the day of milk/blood sampling.

Individual blood (8 mL) and milk samples (50 mL) were collected as 
represented in Figure 1 during the morning milking, and information on 
DIM, parity, and milk yield (kg/d) was retrieved. Milk sampling was 
done in correspondence of the monthly official milk testing, and the 
tubes contained Bronopol (2-bromo 2-nitro 1,3-propandiol) for 
preservation in line with the guidelines of the International Committee 
for Animal Recording (ICAR). Milk samples were transported to the 
milk laboratory of the Breeders Association of Veneto Region (ARAV, 
Vicenza, Italy) for FT-MIR spectrum acquisition.

Blood sampling via venepuncture took place immediately 
after milking (within 1 h maximum, Figure 1), as performed in 
other studies (11, 13), and required immobilization of the animals 
in a containment trunk and preliminary cleaning of the 
venipuncture site (tail) with a disposable paper towel. Blood 
samples were stored into vacuum tubes containing lithium 
heparin (Greiner Bio-One GmbH, Kremsmünster, Austria) and 
were gently inverted 5 times, stored at 5°C and transported to the 
laboratory of the Experimental Zooprophylactic Institute of the 
Venezie (IZSVe, Padova, Italy).

2.2 Laboratory analysis

At the ARAV milk laboratory, samples (1 per cow) were scanned 
with a CombiFoss™ 7 machine (Foss Electric A/S, Hillerød, 
Denmark). For all cows, fat, protein, casein, and lactose content, and 
BHB and urea concentrations were determined via FT-MIR 
spectroscopy and somatic cell count (SCC, cells/mL) via flow 
cytometry. Infrared spectroscopy involves passing electromagnetic 
radiation through matter and measuring the energy absorbed at each 
wavelength (n = 1,060  in the case of CombiFoss™ 7). FT-MIR is 
commonly used in official milk laboratories to determine traditional 
milk quality traits for Dairy Herd Improvement as per ICAR 
guidelines (14). In this study, spectral information containing 1,060 
infrared transmittance data points in the region between 5,000 and 
900 cm−1 was stored using MilkoScan ™ 7 RM (Foss Electric A/S, 
Hillerød, Denmark).

At the IZSVe laboratory, blood samples (1 per cow) were centrifuged 
at 1,500 x g for 15 min at 4°C to separate the plasma. A set of parameters 
routinely used for blood profiling of lactating cows was considered: 
parameters related to both protein and energy metabolism (total 
protein, globulin, albumin, urea, glucose, NEFA, BHB, and cholesterol), 
enzymes and hepatic markers (AST, GGT, CK, and BILT), minerals (Ca, 
P, Mg, Na, K, and Cl) and cortisol. All plasma samples were analyzed 
with the COBAS C501 biochemical analyzer (Roche Diagnostics 
GmbH, Mannheim, Germany) using Roche BM commercial kits, 
except for the concentrations of NEFA and BHB, which were measured 
with an enzymatic colorimetric method (Randox Laboratories Ltd., 
Ardmore, United Kingdom). The analytical methods used for each 
blood parameter have been widely described by Cozzi et al. (15) who 
analyzed blood samples in the same laboratory. Intra-assay variation 
ranged from 0.31% for Cl to 4.17% for BILT. The inter-assay variation 
ranged from 0.47% for Na to 5.46% for BILT.

A database of blood parameters, milk spectral data, and individual 
cow information was created for subsequent statistical analyses.

2.3 Phenotypic variance

The software R v. 4.1.2 (16) was used for data handling and 
calculation of descriptive statistics and correlations. Traits were 
visually inspected to evaluate the Gaussian distribution, and whenever 
necessary, values underwent transformation to achieve normality. In 
particular, the values of BHB, NEFA, AST, GGT, CK, and cortisol were 
log10 transformed.

Values of plasma and milk traits deviating more than 3 SD 
from the respective mean were treated as missing deviating more 
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than 3 SD from the respective mean were treated as missing. 
Spearman’s correlations were calculated between plasma traits and 
between plasma and milk traits.

To investigate the factors affecting plasma traits, analysis of 
variance was performed using the following generalized linear mixed 
model (Equation 1) with PROC GLIMMIX in SAS software v. 9.4 
(SAS Institute Inc., Cary, NC, United States):

 ( )ijklm i j k m ijklmijy P D P x D M H eµ= + + + + + +
 

(1)

where yijklm is the trait investigated; μ is the overall intercept of the 
model; Pi is the fixed effect of the ith parity (i = 1, 2, ≥3, with the last 
class including cows up to parity 10); Dl is the fixed effect of the lth 
distance from calving (l = 4 classes, with the first being a class from 3 
to 8 DIM, followed by 2 classes of 6 d each, and the last being a class 
from 21 to 38 DIM); (P x D) is the first order interaction between 
parity and DIM class; Mk is the fixed effect of the kth sampling season 
(k = 3 classes, May-Jun, Jul-Aug, Sep-Oct); Hm is the random effect of 
the mth herd (m = 14 levels) assumed to be distributed as ~N(0, σ2

H), 
where σ2

H is the herd variance; and eijklm is the random residual 
assumed to be  distributed as ~N(0, σ2

e), where σ2
e is the residual 

variance. Multiple comparisons of least squares means (LSM) were 
performed using Bonferroni adjustment with significance at p ≤ 0.05. 
The results for log-transformed variables were reported after 
back transformation.

Blood BILT was processed as a binary trait, with a value of ‘1’ 
assigned if BILT was >4 μmol/L and ‘0’ if it was ≤4 μmol/L. This was 
done because several samples presented BILT concentration below the 
laboratory limit of detection, i.e., < 2.5 μmol/L. A binary logistic 
regression analysis was performed using the model above described 
(Equation 1) in SAS v. 9.4. For each fixed effect, odds ratios were 
calculated and were considered as significant when the 95% confident 
interval did not include 1.

2.4 Mid-infrared prediction models

Each milk spectrum was paired with the relative blood sample 
values of BHB, NEFA, glucose, cholesterol, urea, Ca, P, Mg, Na, K, Cl, 
total protein, albumin, globulin, GGT, AST, CK, and cholesterol 
determined in the laboratory. For non-distributed traits, a logarithmic 
transformation was also applied. For each spectral wavelength, the 

value was transformed from transmittance to absorbance using the 
formula: Absorbance = log10(1/Transmittance).

Spectral regions where there is non-negligible noise due to water 
absorption were discarded (10, 17), leading to 338 wavelengths 
located/scattered in the following intervals within the spectrum: 945.5 
to 1,585.6 cm−1, 1,716.8 to 1,929.0 cm−1, 2,507.7 to 2,970.7 cm−1. 
Preliminary analysis of the spectral data was conducted using 
principal component analysis to identify anomalous samples in terms 
of the FT-MIR spectrum. This allowed for the elimination of nine 
spectral outliers. Before the development of the prediction model, 
spectra were independently subjected to standard normal variate 
(SNV) scatter correction with the aim of normalizing the spectral data 
to reduce baseline shifting or tilting due to nonspecific radiation 
scattering (18). The partial least squares (PLS) analysis was carried out 
using the ‘trainControl’ function available in the R package ‘caret’, 
whose details are described in Kuhn (19), following this process:

 • The models were fine-tuned using leave-one-out cross-validation, 
and the number of components was set automatically but capped 
at a maximum of 20 to avoid overfitting;

 • Spectral data points were centered and scaled;
 • Predictions with residuals largely different from the observed 

values were removed;
 • The complete data set was randomly split into a calibration set 

representing 70% of the total samples and a validation set (30%), 
both of which had similar mean and standard deviation of the 
target trait and were representative of all herds, parities, and DIM;

 • The external validation was iterated 3 times, each time over a 
different portion of cows, and the reported fitting statistics were 
the average of the fitting statistics were the average of the fitting 
statistics of the 3 iterations.

The fitting statistics of the PLS consisted of: the standard error in 
leave-one-out cross-validation and external validation and the 
coefficient of determination (R2) in leave-one-out cross-validation and 
external validation.

Using existing thresholds of BILT, BHB, and NEFA (20), partial 
least squares discriminant analysis (PLS-DA) was used through the 
same package to classify animals above or below the thresholds (e.g., 
4 μmol/L for BILT), and therefore potentially at risk of certain 
metabolic disorders. PLS-DA performance included sensitivity, 
specificity, positively predictive values, negatively predictive values, 
and balanced accuracy in both calibration and validation. Balanced 

FIGURE 1

Experimental design and rationale of the study.
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accuracy is the mean of sensitivity and specificity, and positively and 
negatively predictive values are the proportions of positive and 
negative results that are true positive and true negative, respectively.

3 Results and discussion

3.1 Plasma traits

3.1.1 General overview
There is a metabolic priority toward the mammary gland in dairy 

breeds, so energy and nutrients primarily support milk synthesis. As 
reported by Bauman and Currie (21), in fact, “[…] the most 
pronounced example of homeorhesis would be in a dairy cow where 
initiation of lactation dramatically alters metabolism of many maternal 
organs in order that the mammary gland be supplied with nutrients 
necessary for synthesis of milk […].” The genetic pressure that dairy 
cattle breeds were exposed to in the past resulted in a progressive 
linear increase in milk productivity at the expense of fitness, fertility, 
resistance to disease, and overall health (22). This explains why 
conditions such as NEB, glucose drop and hyperketonemia are 
commonly considered normal and are observed in healthy animals 
with no clinical signs.

Descriptive statistics of the milk and plasma traits analyzed for 
early lactation cows before editing are presented in Tables 1, 2, 
respectively. The cows sampled had an average and SD of DIM and 
parity of 14.54 ± 7.62 and 2.40 ± 11.41, respectively. The average milk 
composition was in line with the average performance reported by the 
Italian Breeders Association (AIA) for Holsteins farmed in the Veneto 
region in 2020 (23).

Hematic traits are in the range of values commonly found in 
healthy high-producing cows (24). The minimum and the maximum 
values of BHB in this study were quite far from each other, 0.15 and 
4.96 mmol/L, suggesting that the healthy cows involved differ widely 
in terms of mobilization.

In this study, the average NEFA was in line (0.52 mmol/L) with 
another study reporting the trend of this trait from 0 to 40 DIM (25). 
Blood urea, which is directly related to BUN, was within the 
conventional range (Table  2) in this study, except for a few cases 
presenting either a lower (< 1.70 mmol/L, 6 cows) or higher 
concentration (> 6.87 mmol/L, 11 cows).

Regarding the mineral profiles, the averages in Table 2 mirror 
those reported by Walter et al. (25). Due to osmotic equilibrium, Ca 
and P are expected to be scarcely variable in the blood of healthy cows. 
In the present study, it appeared that 6 cows out of 349 cows were in a 
state of hypocalcemia with a concentration of Ca below the threshold 
(2.10 mmol/L, 26). Total protein, albumin, and globulin were included 
in the protein profile (Table 2). Globulins are produced in response to 
inflammation of the chronic type and albumin is a protein that is 
synthesized in the liver and low levels reflect poor liver health or a 
poor supply of amino acids from the diet (27). The averages observed 
in the present study are in line with those of Cattaneo et al. (27), who 
evaluated the evolution of albumin and globulin concentrations before 
and after calving.

The average concentration of CK was 340.34 U/L (Table 2), while 
the median was 168 U/L. Walter et  al. (25) indicated that the 
distribution of CK values is not normal; thus, the mean can be inflated 
by a limited number of samples (Figure 2). The average of both AST 
and GGT levels was in accordance with Fiore et al. (28), who evaluated 
how blood parameters were affected by different preventive treatments 
for hyperketonemia.

Cortisol is a valid indicator of chronic stress in livestock animals 
and, is detectable in a variety of matrices, e.g., saliva, milk, plasma, and 
hair (29). In this study, the minimum, average, and maximum values 
observed for this hormone were 1.94, 17.05, and 107.00 nmol/L.

3.1.2 Correlations
Spearman’s correlations were calculated to evaluate if an 

association exists among blood parameters and between blood and 
milk traits (Figure  3). Such an investigation is useful for 
understanding how milk is capable of mirroring blood and, in 
addition, for determining whether some hematic traits change in 
parallel or not in the transition period.

Among the energy profile traits, the strongest positive and negative 
correlations were found between NEFA and urea (0.40) and between 
BHB and glucose (−0.39), respectively (Figure  3). A significant 
association between hypoglycemia, fat mobilization, and circulating 
nitrogen has been reported in previous studies that reported blood 
traits in cows within 35 DIM (11, 12). On average, these traits showed 
weak correlations with mineral and protein profiles. In particular, urea 
was positively correlated with albumin (0.40) and negatively with 
globulin (−0.24), as reported by Luke et al. (12). Among the mineral 

TABLE 1 Descriptive statistics of milk traits before editing1.

Milk trait2 Mean (SD) Minimum Maximum N. missing values3

< Mean-3 SD < Mean-3 SD

Yield, kg/d 39.04 (10.47) 10.00 62.80 0 1

Fat, % 4.39 (1.39) 0.67 13.08 0 2

Protein, % 3.34 (0.49) 2.36 6.59 0 4

Casein, % 2.57 (0.39) 1.72 5.22 0 4

Lactose, % 4.73 (0.26) 3.58 5.28 0 6

SCS 2.62 (2.09) −1.64 9.38 0 0

Urea, mg/dL 27.39 (7.85) 10.8 65.6 0 2

Log10 BHB −0.99 (0.24) −3.00 −0.24 0 5

1Values of milk traits deviating more than 3 SD from the respective mean (if requested with log-transformed values) were treated as missing. 2SCS, somatic cell score; calculated as SCS, 3 + 
log2 (SCC/100,000), where SCC is somatic cell count (cells/mL); BHB, β-hydroxybutyrate (mmol/L).
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profile traits, the strongest positive and negative correlations were 
found between Na and Cl (0.76) and between Cl and Ca (−0.29). The 
traits in the protein profile set were negatively correlated with Na and 
Cl. Moreover, in line with Luke et al. (12), a positive and moderate 
correlation was observed between albumin and Ca and Mg. Among 
the hepatic and muscular profile traits, the strongest correlation was 
found between CK and AST (0.49), and these traits showed weak 
correlations with NEFA and BHB (Figure 3). In addition, Sattler and 
Fürll (7) reported a positive correlation between CK and AST, both of 
which increased in the presence of uterine diseases.

According to the literature, blood NEFA, BHB, and urea are 
expected to go in parallel, especially in cows with severe 
NEB. However, their association could be nonlinear or weak (30). For 
instance, McCarthy et al. (31) found that the correlation between BHB 
and NEFA in the postpartum is moderate, despite positive (0.26).

Correlations were also calculated between plasma and milk traits 
(Figure 3). The strongest correlation was observed between urea in 
plasma and milk (0.89), followed by BHB (0.53). In agreement with 
Benedet et al. (11), milk BHB was positively correlated with NEFA and 
negatively correlated with glucose, while cholesterol was inversely 
associated with milk quality (i.e., fat, protein, and casein content). 
Blood BHB was positively correlated with fat content while negatively 

with protein, casein and lactose content. This association has also been 
reported by Benedet et al. (11). Regarding milk yield, the strongest 
positive and negative correlations were found with albumin (0.51) and 
P (−0.24), respectively, whereas, SCS was negatively correlated with 
Mg and cholesterol. On the other hand, Andjelić et al. (32) observed 
a negative correlation between milk fat and NEFA and BHB. Andjelić 
et al. (32) reported a positive correlation between blood and milk 
serum AST and GGT levels.

3.1.3 Variation across DIM
The transition from the dry-off to lactogenesis in the first days 

after calving is critical for dairy cow. After calving, especially if the diet 
is not properly balanced in the pre-partum period, nutritional status 
can play a dramatic role. For example, a significant reduction in 
hematic Ca and P is frequently observed around or immediately after 
calving, which can expose cows to hypocalcemia and other associated 
disorders (33). Furthermore, during this period, dairy cows undergo 
a natural state of immunosuppression, which is often considered the 
principal cause of their high vulnerability to infectious diseases such 
as mastitis or metritis (34). Monitoring changes in blood biomarkers 
can be  informative, and the early identification of subclinical 
metabolic disorders in the first days after calving is advisable and 

TABLE 2 Descriptive statistics of blood traits before editing1.

Blood trait2 Mean (SD) Minimum Maximum N. missing values3

<Mean-3 SD > Mean  +  3 SD

Energy profile

Glucose, mmol/L 2.80 (0.53) 0.20 4.90 2 1

Cholesterol, mmol/L 2.66 (0.92) 0.60 6.00 0 2

NEFA, mmol/L 0.52 (0.34) 0.04 2.02 0 6

BHB, mmol/L 0.71 (0.54) 0.15 4.96 0 10

Urea, mmol/L 4.19 (1.31) 1.30 9.30 0 2

Mineral profile

Na, mmol/L 138.88 (3.49) 129.00 150.00 0 1

K, mmol/L 4.39 (0.39) 2.61 5.94 1 3

Cl, mmol/L 98.54 (3.77) 71.00 111.00 1 2

Ca, mmol/L 2.45 (0.15) 1.98 3.21 1 2

P, mmol/L 1.60 (0.34) 0.63 3.11 0 3

Mg, mmol/L 0.96 (0.13) 0.56 1.40 2 1

Protein profile

Total protein, g/L 74.37 (6.11) 59.00 98.00 0 1

Albumin, g/L 33.91 (4.34) 17.00 43.00 1 0

Globulin, g/L 40.46 (7.05) 26.00 66.00 0 6

Hepatic and muscular profile

AST, U/L 98.14 (47.97) 53.00 629.00 0 3

GGT, U/L 16.30 (9.74) 4.00 152.00 0 2

CK, U/L 340.34 (694.34) 79.00 6,515.00 0 7

Stress profile

Cortisol, nmol/L 17.05 (15.00) 1.94 107.00 0 4

1Values of blood traits deviating more than 3 SD from the respective mean were treated as missing. 2NEFA, not esterified fatty acids (mmol/L); BHB, β-hydroxybutyrate (mmol/L); AST, 
aspartate aminotransferase (U/L); GGT, gamma glutamyl transferase (U/L); CK, creatin kinase (U/L). 3Excluded for the analysis of variance. In the case of non-normally distributed traits, the 
missing values were identified using the log-transformed form (BHB, NEFA, AST, GGT, CK and cortisol).
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helpful, allowing for the detection of anomalies, animals at risk, 
proper decision-making, and timely management interventions (35).

The LSM of DIM classes are presented in Table 3 and revealed that 
NEFA concentration was lower in 21–38 DIM compared to the classes 
of DIM closest to calving (i.e., 3–8 DIM and 9–14 DIM), and that BHB 
concentration was numerically greater in the first two DIM classes 
(i.e., 3–8 DIM and 9–14 DIM) than the other two (i.e., 15–20 DIM 
and ≥ 21 DIM, Table 3). An increase in NEFA is expected in dairy 
cows in the first days after calving and is commonly observed in high-
producing breeds, due to a massive mobilization of adipose reserves 
in dairy cows to overcome NEB (5). In contrast, the LSM of glucose 
concentration did not fluctuate dramatically in the first 38 DIM in the 
present study. Although there may be peaks or drops in glucose in 

correspondence of meals, the baseline level is subject to tight 
homeostatic regulation; therefore, glycemia is considered informative 
in animals suffering from specific disorders/pathologies (36). 
Cholesterol concentration increased with DIM, progressively raising 
from the first class onward (Table 3), likely due to its relationship with 
the dry matter intake of cows, which increases in the first week after 
calving (37). This finding was also observed by Walter et al. (25) in 
362,586 serum samples obtained from clinically healthy German 
Holstein cows.

The P, Ca, and Mg concentrations were the lowest immediately after 
calving (3–8 DIM), followed by a gradual increase (Table 3). Luke et al. 
(12) observed a similar trend for Ca and Mg concentration in 773 
spring-calving Holstein cows. Immediately after parturition, there is a 

FIGURE 2

Boxplots showing the distribution1 of the plasma traits2 values. 1Before the log-transformation of the non-normally distributed traits, i.e., AST, GGT, CK, 
BHB, NEFA and cortisol. 2NEFA, not esterified fatty acids (mmol/L); BHB, β-hydroxybutyrate (mmol/L); AST, aspartate aminotransferase (U/L); GGT, 
gamma glutamyl transferase (U/L); CK, creatin kinase (U/L).
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significant and immediate demand for Ca for milk production (38). 
This, coupled with the typically low dry matter intake, results in 
substantially low Ca mobilization and Ca deficiency that requires 
several days to be adjusted (33, 38). In contrast, Mg and P play important 
roles in Ca homeostasis (33). Moreover, these minerals (i.e., Ca, Mg, and 
P) are present in high amounts in transition milk, and mature milk (39, 
40). However, Na and Cl concentrations were the highest immediately 
after calving (3–8 DIM) and then gradually decreased (Table 3). The 
concentration of Cl was very high around calving, as it is common to 
increase the anionic quota (Cl and S) in prepartum diets to enhance feed 
intake and indirectly reduce the risk of hypocalcemia (41).

Total protein concentration was the lowest in the first class of 
DIM. Specifically, the lowest globulin concentration was observed in 
the period between 3 and 8 DIM, whereas the albumin concentration 
was relatively consistent across the 21 days and then reached the 
highest value in the last class, DIM ≥21 (35.58 g/L; Table 3). Similar 
patterns were observed by Luke et  al. (12) who observed 
concentrations of about 34 g/L in 24–35 DIM.

With regard to the hepatic profile, a significant decrease in AST 
was observed from the first DIM class to the last (Class 1:102.82 vs. 
Class 4: 87.39 g/L). The GGT concentration showed an opposite trend, 
being the lowest immediately after calving (3–8 DIM, 9–14 DIM; 
Table 3). On the other hand, Moretti et  al. (42) reported that the 
concentration of GGT was lower in the first days after calving (3 ± 1 
DIM) due to the production of colostrum and milk and low feed 
intake. Hoffman and Solter (43) reported the highest concentration of 

GGT activity in the kidney, pancreas, intestines, and mammary 
glands. In contrast, CK and cortisol were not significantly affected by 
distance from calving, so the LSM of the DIM classes were not 
statistically different (Table 3).

Table 4 contains the odds ratio estimated for the BILT classes (> 
and ≤ 4 μmol/L). Overall, there were no differences related to distance 
from calving in the first 14 days, but LSM indicated that the probability to 
observe high BILT concentration (> 4 μmol/L) decreased as DIM 
progressed. It is likely that, higher LSM for AST were estimated near 
calving because they reflect tissue damage in the uterine tissue (25) and/
or degradation of muscle cells caused by mobilization of body reserves 
(7). Authors of other studies (25, 44) observed that the highest levels of 
BILT are found in the first week postpartum as a consequence of 
the lipolysis.

3.1.4 Variation related to the effect of parity
The parity of cows played a crucial role in the variability of the 

plasma traits investigated, except for Na, Cl, K, albumin, AST, and 
cortisol (Table 5). Within the energy profile traits, glucose and cholesterol 
concentrations decreased with parity, whereas NEFA and BHB increased 
(Table 5). This is in line with the literature and supports that multiparous 
cows have a higher prevalence of hyperketonemia than primiparous due 
to greater milk production, mobilization of body reserves, and metabolic 
stress related to the previous lactation (5).

As regards the mineral profile, Ca, P and Mg concentrations were 
the greatest in the first two parity orders (Table 5). In older cows, low 

FIGURE 3

Spearman’s correlations1 between the investigated blood and milk traits2. 1***p  ≤  0.001; **p  ≤  0.01; *p  ≤  0.05. 2NEFA, not esterified fatty acids (mmol/L); 
BHB, β-hydroxybutyrate (mmol/L); AST, aspartate aminotransferase (U/L); GGT, gamma glutamyl transferase (U/L); CK, creatin kinase (U/L); SCS, 
somatic cell score, calculated as SCS, 3  +  log2(SCC/100,000), where SCC is somatic cell count (cells/mL).
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TABLE 3 Least squares means (standard error) of blood traits1 for the fixed effect of days in milk/ after calving (DIM) along with the F-value.

Blood trait 3–8 DIM 9–14 DIM 15–20 DIM ≥21 DIM F-value

Energy profile

Glucose, mmol/L 2.91 (0.10) 2.79 (0.10) 2.88 (0.10) 2.92 (0.10) ns

Cholesterol, mmol/L 2.05d (0.15) 2.45c (0.15) 2.90b (0.15) 3.49a (0.15) 69.40 ***

NEFA, mmol/L 0.42a (0.06) 0.41a (0.06) 0.35ab (0.05) 0.29b (0.04) 7.15 ***

BHB, mmol/L 0.61 (0.03) 0.62 (0.03) 0.57 (0.03) 0.59 (0.03) ns

Urea, mmol/L 3.60 (0.30) 3.62 (0.30) 3.52 (0.30) 3.77 (0.30) ns

Mineral profile

Na, mmol/L 140.23a (0.64) 139.27ab (0.63) 138.67b (0.63) 138.27b (0.64) 8.08 ***

K, mmol/L 4.35 (0.07) 4.40 (0.07) 4.42 (0.07) 4.38 (0.07) ns

Cl, mmol/L 100.03a (0.63) 98.88b (0.62) 98.37b (0.62) 97.72b (0.62) 11.82 ***

Ca, mmol/L 2.41b (0.02) 2.46 ab (0.02) 2.43ab (0.02) 2.48a (0.02) 5.70 **

P, mmol/L 1.50b (0.06) 1.57ab (0.06) 1.63ab (0.06) 1.67a (0.06) 5.12 **

Mg, mmol/L 0.90c (0.01) 0.96b (0.01) 0.99ab (0.01) 1.02a (0.01) 18.13 ***

Protein profile

Total protein, g/L 70.53c (0.77) 72.70b (0.74) 75.58a (0.76) 76.82a (0.78) 21.79 ***

Albumin, g/L 32.87b (0.60) 32.96b (0.58) 33.42b (0.59) 35.58a (0.60) 8.66 ***

Globulin, g/L 37.31b (0.90) 39.54a (0.86) 41.61a (0.88) 40.93a (0.90) 8.66 ***

Urea, mmol/L 3.60 (0.30) 3.62 (0.30) 3.52 (0.30) 3.77 (0.30) ns

Hepatic and muscular profile

AST, U/L 102.82a (4.22) 100.05a (4.09) 92.34ab (4.00) 87.39b (3.44) 4.87 *

GGT, U/L 13.67b (0.52) 14.51b (0.53) 17.31a (0.70) 17.11a (0.71) 8.75 ***

CK, U/L 265.04 (26.28) 217.91 (22.23) 220.43 (22.08) 197.60 (20.20) ns

Stress profile

Cortisol, nmol/L 12.50 (1.60) 13.41 (1.66) 16.51 (2.09) 14.56 (1.85) ns

1NEFA, not esterified fatty acids (mmol/L); BHB, β-hydroxybutyrate (mmol/L); AST, aspartate aminotransferase (U/L); GGT, gamma glutamyl transferase (U/L); CK, creatin kinase (U/L). 
Estimates with different superscript letters within row are statistically significantly different (p ≤ 0.05).

minerals concentration can be associated with a decreased capacity 
to mobilize Ca from the bones, lower absorption at the intestinal 
level, and high requirement for Ca (33, 40).

In agreement with Cozzi et al. (15), total protein and globulin 
concentrations were greater in parity greater than 2 (Table 5) and GGT 
increased from parity 1 onwards (Table 5). On the other hand, the 
concentration of the CK was the greatest in parity 1 (Table 5). Cozzi 
et al. (15) and Walter et al. (25) hypothesized that the high CK level - a 
specific marker of skeletal muscle injury - in primiparous cows may 
be due to physical stress caused by hierarchical conflicts when they are 
grouped with multiparous cows.

Regarding the odds ratio of BILT classes (Table 5), there were no 
differences between parity 1 and 2, but the risk of having BILT above 
the threshold (> 4 μmol/L) in parity ≥3 was 3.85 times higher 
compared to party 1. This finding is in line with that of Walter et al. 
(25), who reported that the BILT baseline was higher in multiparous 
cows than in primiparous cows.

3.1.5 Interaction between parity and DIM
The first order interaction between parity and DIM class was not 

significant for the traits investigated, except for cholesterol, globulin, 
and total protein. In particular, total protein and globulin were 
significantly different – i.e. Seventy nine.00 and 45.70 g/L - in parity 
>3 between 15 and 20 DIM compared with the rest of the interaction 

levels. Ferreira et al. (45) observed that total protein and globulin 
concentrations increased during lactation and in their study were 
greater in multiparous than in primiparous cows. Cholesterol, on the 
other hand, was the greatest in the last DIM class regardless of parity. 
Walter et al. (25) reported a constant increasing trend of cholesterol 
after calving and was greater in multiparous than in primiparous cows.

3.1.6 Variation across seasons
Only few plasma traits were significantly affected by the effect of 

season, namely Na, Cl, K, albumin, globulin, urea, glucose and 
cholesterol. In this study, the sampling period spanned from May to 
October, excluding winter, late autumn, and early spring. In agreement 
with Cozzi et al. (15), the LSM estimated in this study for Na and Cl 
were the lowest in samples collected in July–August, while K 
concentration was the lowest in May–June (Table 6).

With regard to the protein profile, both albumin and urea 
concentrations slightly increased during the sampling period, with the 
highest LSM estimated for September–October. In contrast, globulin 
concentration decreased within the time window considered (Table 6). 
Regarding the energy profile, the lowest concentration of glucose was 
found in May–June and July–August (2.72 and 2.83 mmol/L; Table 3) 
and samples collected in July–August had the lowest LSM for 
cholesterol concentration (2.53 mmol/L; Table 6). During the core of 
summer, in presence of acute heat stress, cows decrease their feed 
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intake, inevitably reducing the energy available (46, 47). Moreover, the 
forage quality may differ across seasons in Italy. Although these two 
factors can be a reasonable explanation for the low cholesterol and 
glucose in July–August, this study lacks of data on individual feed 
intake, ration composition and diet protein level to support 
this hypothesis.

3.2 Fourier-transform mid-infrared 
spectroscopy

3.2.1 Prediction ability of FT-MIR
The R2 and RMSE of the prediction models for plasma trait 

concentrations are shown in Table  7. The percentage of samples 

TABLE 4 Odds ratio and 95% confidence interval for total bilirubin (BILT) class1 for each fixed effect.

Effect Level Prevalence 2, % Odds ratio 95% confidence interval

Days in milk/after 

calving

3–8 DIM 41.57 Reference

9–14 DIM 37.62 0.82 0.43–1.54

15–20 DIM 23.08 0.37 ** 0.17–0.77

≥21 DIM 19.23 0.20 *** 0.08–0.48

Parity 1 20.00 Reference

2 27.18 1.57 0.79–3.11

≥3 43.61 3.85 *** 2.00–7.37

Season May–June 31.01 Reference

July–August 31.16 2.88 0.98–8.50

September–October 31.65 2.68 0.80–9.01

1“1” if BILT was > 4 μmol/L and “0” if ≤ 4 μmol/L. 2of BILT class = 1.

TABLE 5 Least squares means (standard error) of blood traits1 for the fixed effect of parity class along with the F-value.

Blood trait Parity 1 Parity 2 Parity ≥3 F-value

Energy profile

Glucose, mmol/L 3.05a (0.10) 2.75b (0.10) 2.83b (0.10) 19.86 ***

Cholesterol, mmol/L 2.80a (0.14) 2.81a (0.14) 2.56b (0.14) 6.27 **

NEFA, mmol/L 0.33b (0.05) 0.34b (0.05) 0.42a (0.06) 7.56 **

BHB, mmol/L 0.54b (0.02) 0.62ab (0.03) 0.64a (0.02) 5.77 **

Urea, mmol/L 3.57 (0.30) 3.80 (0.30) 3.51 (0.29) 3.28 *

Mineral profile

Na, mmol/L 139.16 (0.62) 139.32 (0.62) 138.84 (0.61) ns

K, mmol/L 4.40 (0.07) 4.43 (0.07) 4.33 (0.07) ns

Cl, mmol/L 98.63 (0.61) 99.12 (0.61) 98.49 (0.60) ns

Ca, mmol/L 2.45ab (0.02) 2.47a (0.02) 2.42b (0.02) 4.13 *

P, mmol/L 1.71a (0.04) 1.59b (0.04) 1.48b (0.04) 18.69 ***

Mg, mmol/L 0.99a (0.01) 0.97a (0.01) 0.94b (0.01) 7.29 ***

Protein profile

Total protein, g/L 72.84b (0.72) 72.60b (0.72) 76.29a (0.67) 17.96 ***

Albumin, g/L 33.73 (0.57) 33.72 (0.56) 33.66 (0.53) ns

Globulin, g/L 38.69b (0.84) 38.79b (0.84) 42.08a (0.79) 13.04 ***

Hepatic and muscular profile

AST, U/L 93.29 (3.73) 96.99 (3.71) 96.12 (3.26) ns

GGT, U/L 14.04b (0.50) 15.91ab (0.57) 16.89a (0.52) 7.87 **

CK, U/L 286.68a (27.03) 220.68b (21.17) 177.55b (15.73) 16.00 ***

Stress profile

Cortisol, nmol/L 15.21 (1.87) 13.95 (1.69) 13.40 (1.55) ns

1NEFA, not esterified fatty acids (mmol/L); BHB, β-hydroxybutyrate (mmol/L); AST, aspartate aminotransferase (U/L); GGT, gamma glutamyl transferase (U/L); CK, creatin kinase (U/L). 
Estimates with different superscript letters within row are statistically significantly different (p ≤ 0.05).
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TABLE 6 Least squares means (standard error) of blood traits1 for the fixed effect of sampling season along with the F-value.

Blood trait May–June July–August September–October F-value

Energy profile

Glucose, mmol/L 2.72b (0.11) 2.83b (0.11) 3.08a (0.11) 8.02 ***

Cholesterol, mmol/L 2.83a (0.16) 2.53b (0.15) 2.80ab (0.15) 4.17 *

NEFA, mmol/L 0.23 (0.04) 0.47 (0.07) 0.44 (0.07) ns

BHB, mmol/L 0.67 (0.03) 0.63 (0.03) 0.51 (0.02) ns

Urea, mmol/L 3.12c (0.32) 3.61b (0.30) 4.16a (0.31) 10.45 ***

Mineral profile

Na, mmol/L 140.02a (0.70) 137.62b (0.64) 139.68a (0.67) 14.06 ***

K, mmol/L 4.22b (0.08) 4.44a (0.07) 4.50a (0.07) 7.91 ***

Cl, mmol/L 98.93a (0.68) 97.43b (0.63) 99.88a (0.65) 12.83 ***

Ca, mmoL/L 2.44 (0.02) 2.47 (0.02) 2.42 (0.02) ns

P, mmol/L 1.63 (0.06) 1.60 (0.06) 1.56 (0.06) ns

Mg, mmol/L 0.95 (0.01) 0.98 (0.01) 0.98 (0.02) ns

Protein profile

Total protein, g/L 74.38 (0.83) 74.07 (0.74) 73.29 (0.83) ns

Albumin, g/L 31.47c (0.66) 33.71b (0.59) 35.93a (0.64) 16.56 ***

Globulin, g/L 42.58a (0.98) 39.78b (0.87) 37.20c (0.96) 10.18 ***

Hepatic and muscular profile

AST, U/L 94.12 (3.90) 93.35 (4.06) 98.97 (4.17) ns

GGT, U/L 16.86 (0.55) 15.81 (0.48) 14.15 (0.59) ns

CK, U/L 229.14 (25.89) 186.38 (18.07) 263.00 (29.08) ns

Stress profile

Cortisol, nmol/L 9.81 (1.38) 14.85 (1.88) 19.51 (2.65) ns

1NEFA, not esterified fatty acids (mmol/L); BHB, β-hydroxybutyrate (mmol/L); AST, aspartate aminotransferase (U/L); GGT, gamma glutamyl transferase (U/L); CK, creatin kinase (U/L). 
Estimates with different superscript letters within row are statistically significantly different (p ≤ 0.05).

identified as outliers and excluded ranged from 0.60 to 4.60%, and the 
number of LV used ranged from a minimum of 2 to a maximum of 17.

Regarding the quality of predicted phenotypes, Williams (48) and 
Grelet et al. (49) proposed classifications based on the R2. In particular 
if the R2 is (i) ≥ 0.91, the model can be used for punctual prediction, 
(ii) between 0.82 and 0.90 the model is suitable for good quantitative 
screening; (iii) between 0.66 and 0.81, the model is adequate for 
approximate screening; and (iv) between 0.50 and 0.65, the predicted 
trait should be  used exclusively for detecting extreme values or 
comparing groups (48).

Overall, the prediction models developed for energy-related 
metabolites exhibited the best performance. In particular, the most 
outstanding model in terms of variance explained in the leave-
one-out cross-validation was urea concentration (R2 = 0.89; Table 7; 
Figure  4). When applied to an external set, the same model still 
showed a very good performance (R2 = 0.86; Table 7; Figure 4). The 
prediction accuracy for blood urea in this study was higher than that 
reported in the literature (11, 50). In particular, Ho et al. (50), who 
used 3,027 samples of Holstein cows from 19 dairy herds in Australia 
to develop models, obtained R2 of 0.87 in cross-validation and 0.69 
in external validation (50). On the other hand, Luke et  al. (12) 
reported an R2 equal to 0.90 both in cross-validation and random 
validation on an independent external dataset. However, when 
validation was done using the herd-out approach (12), i.e., using an 

external independent farm, the performance reduced substantially 
(R2 = 0.35).

Prediction models for BHB concentration and log-transformed 
BHB had the same R2 in leave-one-out cross-validation (R2 = 0.62; 
Table 7; Figure 4), whereas in external validation it was slightly greater 
for the log-transformed trait (0.52 vs. 0.45; Table  7; Figure  4). 
Conversely, the prediction model for the untransformed NEFA 
concentration fitted better than that for the log-transformed NEFA in 
both calibration and validation. The R2 values in external validation 
were 0.57 and 0.46, respectively (Table 7; Figure 4).

Several studies have investigated the use of milk FT-MIR for 
predicting blood/serum metabolites, such as BHB and NEFA, to identify 
cows at risk of hyperketonemia, NEB, and excessive fat mobilization. The 
accuracy of NEFA and BHB predictions reported in this study are in line 
with those found previously by (11, 12, 50–52). Only Grelet et al. (52) 
found slightly greater R2 for BHB concentration both in calibration and 
validation, i.e., equal to 0.77 and 0.70, respectively. All these studies used 
blood sampled from cows in early lactation within 40 DIM (11, 12, 50, 
52), while Giannuzzi et al. (51) investigated prediction models for these 
metabolites throughout the whole lactation, obtaining slightly lower 
accuracy for BHB prediction.

It is important to highlight that time is a key factor for the data 
quality and representativeness, with potential consequences in the 
model performance. When predicting a certain blood element from 
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the milk spectrum, in fact, the distance – in time - between the 
blood and the milk sampling plays a crucial role (53). In fact, it has 
been demonstrated that the morning plasma level of NEFA is 
predicted with significantly higher accuracy when using evening 
(R2 = 0.61) than morning (R2 = 0.50) milk spectra (53). This indicates 
that, although the milk is still expected to mirror the blood, there 
could be  a “delay” in some traits. In addition to this, there is 
evidence that several traits show very high variability during the 
day in healthy cows, with either peaks and/or long or short plateaus 
(e.g., glucose and cortisol).

Cholesterol and glucose were predicted with less accuracy than 
the traits mentioned above, with an R2 in leave-one-out cross-
validation of 0.47 and 0.43, respectively (Table 7). These predictive 
abilities were generally similar to those reported by Benedet et al. 
(11), i.e., R2 equal to 0.39 and 0.20, respectively. Using the PLS, 
Giannuzzi et  al. (51) obtained similar accuracy for cholesterol 

concentration, but, on the other hand, a greater accuracy for glucose 
concentration. To justify this difference, it is worth stressing that 
the study of Giannuzzi et al. (51) dealt with blood samples collected 
during the whole lactation, up to >305 DIM. As previously 
discussed, even if glucose tends to be high around calving, it may 
still vary quite substantially within the same day due to the presence 
of non-negligible peaks corresponding to meal administration or 
acute episodes of stress (28).

Blood mineral concentrations were generally predicted with less 
accuracy compared to the other traits. In fact, the R2 was below 0.50, 
regardless of the type of validation (Table 7) and the best model was 
the one developed for Ca concentration (R2 = 0.44), followed by Mg 
concentration (R2 = 0.39). When applied to an external set of samples, 
these two models showed lower R2 values (both equal to 0.23). Despite 
this, the results can be considered more promising compared to those 
reported by Luke et al. (12), who observed R2 in cross-validation of 

TABLE 7 Goodness of fit statistics1 of the modified partial least squares regression models for blood traits2 developed using milk mid-infrared spectra.

Blood trait % Outliers n. LV R2c RMSEc R2v RMSEv

Energy profile

Glucose, mmol/L 1.8 15 0.43 0.36 0.29 0.40

Cholesterol, mmol/L 2.1 9 0.47 0.64 0.37 0.70

NEFA, mmol/L 2.9 10 0.57 0.20 0.46 0.22

Log-NEFA 2.4 8 0.50 0.20 0.42 0.21

BHB, mmol/L 2.1 15 0.62 0.25 0.45 0.30

Log-BHB 1.2 15 0.62 0.13 0.52 0.15

Urea, mmol/L 1.8 17 0.89 0.43 0.86 0.48

Mineral profile

Na, mmol/L 2.4 13 0.30 2.70 0.21 2.89

K, mmol/L 3.2 13 0.16 0.29 0.02 0.33

Cl, mmol/L 0.9 13 0.41 2.62 0.11 3.43

Ca, mmo/L 2.6 13 0.44 0.10 0.23 0.12

P, mmol/L 2.1 8 0.26 0.26 0.14 0.29

Mg, mmol/L 2.6 7 0.39 0.09 0.23 0.10

Protein profile

Total protein, g/L 1.5 14 0.23 5.06 0.03 6.20

Albumin, g/L 1.8 9 0.38 3.14 0.32 3.64

Globulin, g/L 2.4 9 0.24 5.55 0.05 6.03

Hepatic and muscular profile

AST, U/L 1.5 8 0.27 20.90 0.18 22.11

Log-AST 2.5 7 0.25 0.08 0.19 0.09

GGT, U/L 0.9 2 0.06 5.39 0.01 5.8

Log-GGT 1.8 4 0.08 0.14 0.02 0.16

CK, U/L 3.5 10 0.17 226.45 0.08 192.39

Log-CK 4.6 12 0.26 0.18 0.02 0.21

Stress profile

Cortisol, nmol/L 3.0 9 0.25 10.28 0.08 12.63

Log-Cortisol 0.6 9 0.21 0.32 0.11 0.36

1LV, latent variables; R2
c, coefficient of determination in calibration; RSMEC, Root Mean Square Error in calibration; R2

V, coefficient of determination in validation; RSMEV, Root Mean Square 
Error in validation. The percentage of outliers (%) here refers to samples whose prediction was far from the actual value, i.e., large residual. 2NEFA, not esterified fatty acids (mmol/L); BHB, 
β-hydroxybutyrate (mmol/L); AST, aspartate aminotransferase (U/L); GGT, gamma glutamyl transferase (U/L); CK, creatin kinase (U/L).
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0.08 and 0.06 for Ca and Mg, respectively. In their study (12), blood 
samples were taken immediately after or during milk sampling. 
Attempting to predict something present in the blood using the milk 
spectrum is challenging, as it is an indirect prediction, therefore low 
R2 are inevitably expected.

For the others plasma traits, the R2 in leave-one-out cross-
validation was low, ranging from 0.08 (GGT) to 0.38 (albumin), as 
well as the one in external validation (0.01 to 0.32; Table  7). In 
general, whenever a trait was not normally distributed (e.g., BHB), 
prediction models were used for both the forms, log-transformed and 
untransformed. In general, the R2 values in the external validation 
were slightly higher when the log-transformed trait was used. In line 
with Luke et al. (12), the prediction model for albumin fitted better 
than globulin (Table 7). It is widely known that components present 

in very low concentrations are more difficult to predict with FT-MIR 
because of the small signal(s) within the spectrum. Highly 
concentrated components have strong absorption peaks and are 
thereby easier to be predicted precisely and accurately.

Based on the classification of Williams (48), concentrations of 
BHB, NEFA, and urea predicted with the model in Table 7 can 
be considered as good enough for population screening and for 
carrying out selective breeding. Phenotypes predicted from the 
milk spectra may be scarcely or moderately correlated with the 
real trait (e.g., blood BHB), but still the predictions can be valuable 
for genetic investigations at the population level and for design of 
breeding programs (54, 55). For example, FT-MIR allows to 
identify cows within a given population with high BHB and/or 
NEFA and their sires, i.e., bulls with progeny at major risk of 

FIGURE 4

Plot of mid-infrared predictions (x-axis) and observed values (y-axis) for the blood traits2. Calibration set are reported in in red (▲), whereas validation 
set are black (●). 1Only prediction models with coefficient of determination in validation >0.40 are presented, namely: blood urea, not esterified fatty 
acids (NEFA), logarithmic transformation of NEFA (logNEFA), β-hydroxybutyrate (BHB), and logarithmic transformation of BHB (logBHB).
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metabolic diseases. The FT-MIR is a low-cost phenotyping tool 
since the analysis are regularly carried out for milk quality 
assessment in the framework of the official tests (14).

3.2.2 FT-MIR classification ability
The PLS-DA was performed for traits whose threshold found a 

consensus in the literature, i.e., BHB, NEFA and BILT, considering two 
levels: equal to or below the threshold (no risk) and above the threshold 
(at risk). In the dataset 22.30, 8.90, and 27.80% of the samples were 
above the thresholds for BHB, NEFA and BILT, respectively (Table 8).

Sensitivity, defined for each plasma traits class as the probability of 
correctly identifying cows at risk (above the threshold), ranged from 
0.48 for BILT to 0.56 for NEFA in calibration. In validation, the 
maximum and minimum sensitivity were 0.42 and 0.33, respectively 
(Table  8). Specificity, complementary to sensitivity, represents the 
probability of correctly identifying the control cases, i.e., cows not at 
risk, below the threshold. This parameter was close to unity, being 
overall ≥0.96  in calibration and ≥ 0.91  in validation. The sensitivity 
calculated in this study for BHB was 0.33 in validation, and not far from 
the value (0.28) reported by Benedet et  al. (11). This percentage 
indicated that approximately one third of the cows at risk in this study 
were correctly identified. In the case of NEFA and BILT, this percentage 
was slightly higher: 36 and 42%, respectively. The fact that specificity is 
close to unity does not necessarily mean that the model robustness of 
this study is sufficiently good for implementation. In fact, the real aim 
in the field is to precisely identify potentially sick cows rather than those 
that are not. This means that sensitivity instead of specificity should 
be  ideally improved and maximized. Martín-Gómez et  al. (56) 
recommended an optimization based on sensitivity and specificity to 
assess the quality of PLS-DA models that discriminate between two 
classes. The balanced accuracy in calibration was equal to 0.72 for BILT 
and 0.76 for both BHB and NEFA.

Considering that health data and clinical events of dairy cows are 
not routinely recorded in Italy due to the absence of validated 
standardized protocols, binary phenotypes obtained through the 
PLS-DA could be valid indicator traits to be used for various purposes. 
However, further efforts should be made to improve the scalability and 
sensitivity of the models.

4 Conclusion

In the present study, we  investigated non-genetic factors 
affecting the variability of blood traits in healthy Holstein cows in 
the early lactation and we attempted to predict them using milk 
FT-MIR. Most of the plasma traits were significantly affected by the 

fixed effect of parity, distance from calving, and season. The 
performance of the FT-MIR models – especially in classification – 
indicated that the use of milk spectra for monitoring hematic traits 
is advisable, especially for BHB, NEFA, and urea. In regression, 
however, our prediction models were not sufficiently accurate for a 
punctual determination of the concentration of the parameters. 
Despite of the mid to low accuracy, the predictions represent 
nowadays a valid opportunity for farmers and breeders for both 
decision-making and genetic screening at the population level, to 
better identify sick animals or cows at risk. Further efforts should be 
made to understand if the FT-MIR spectra – coupled with additional 
data from other sources, such as sensors and genomic information 
– analysed via alternative machine learning algorithms will result 
into better scalability, sensitivity, and accuracy.
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