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Integrated metagenomics and 
metabolomics analyses revealed 
biomarkers in β-casein A2A2-type 
cows
Jinyan Zhao 1,2†, Chuanchuan Wang 1,2†, Jiahuan Hu 1,2, 
Ruoshuang Ma 1,2, Baojun Yu 1,2, Wei Zhao 1,2, Hua Wang 1,2, 
Yaling Gu 1,2 and Juan Zhang 1,2*
1 Key Laboratory of Molecular Cell Breeding for Ruminants, Yinchuan, China, 2 Ningxia University 
College of Animal Science and Technology, Yinchuan, China

In Holstein cows, β-casein, one of the most critical proteins in milk, exists in two 
main genotypes, A1 and A2. Herein, 45 Holstein cows [categorized into three 
groups based on β-casein A1A1, A1A2, and A2A2 genotypes (N  =  15)] with the 
same feeding management and litter size were enrolled to explore differences 
in rumen microflora and metabolites across various β-casein genotypes. 
Rumen fluids were collected for metagenomics and metabolomics analyses. 
Metabolomics and weighted gene co-expression network analysis (WGCNA) 
revealed that arachidonic acid (AA), adrenic acid (AdA), glycocholic acid (GCA), 
and taurocholic acid (TCA) were significantly and positively correlated with milk 
fat % in dairy cows (p  <  0.05). Furthermore, macro-genomics and Spearman’s 
correlation analysis revealed significant positive correlations (p  <  0.05) 
between the characteristic flora (g_Acetobacter, g_Pseudoxanthomonas, 
g_Streptococcus, and g_Pediococcus) and the five characteristic metabolites 
in the rumen of A2A2 dairy cows. Moreover, functional enrichment analysis 
revealed more genes enriched to the TRP channel’s inflammatory mediator-
regulated pathway and the mTOR signaling pathway in A2A2 genotyped cows. 
Additionally, the regulatory effects of AA on bovine mammary epithelial cells 
(BMECs) were examined using CCK-8, EdU, and qRT-PCR assays, revealing that 
AA promoted triglyceride (TG) synthesis and upregulated the milk fat marker 
genes including SREBF1, ACSS2, AGPAT6, and FASN. Overall, we  identified 
characteristic microorganisms and metabolites in A2A2 Holstein cows and 
established that AA could be a biomarker for higher milk fat %.
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Background

Milk, one of the body’s primary sources of nutrients, is rich in lactose, triglycerides 
(TGs), proteins, minerals, and vitamins (1). Milk proteins are classified based on their 
solubility into casein (~80%), whey proteins (~14%), and fat globule membrane proteins 
(~6%), with casein-soluble proteins being the most abundant and further classified into 
four categories: α1-casein, α2-casein, β-casein, and κ-casein (2). The structure of 
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β-casein depends on the dairy cow’s breed and genotype, with A1 
and A2 as the two main isoforms (3). The disparity between the 
two isoforms stems from a mutation at position 67, which induces 
a transformation of the amino acid from histidine (in A1) to 
proline (in A2), and this is attributed to genetic predetermination 
(4, 5). Cows with the β-casein A2A2 genotype produce the 
popular “A2 milk” (3). Additionally, A2A2 genotyped cows have a 
higher milk fat % than their A1A1 and A1A2 counterparts (6). 
Furthermore, during digestion and metabolism, A1 β-casein 
produces β-casein-7, which has been linked with Gastrointestinal 
(GI) issues and lactose intolerance disorders in humans (7, 8). It 
is also noteworthy that A1 β-casein possesses pro-inflammatory 
properties that can synergize, negatively affecting GI, endocrine, 
neurological, and cardiovascular systems. On the other hand, A2 
milk (9, 10), which is free of A1 β-casein, has beneficial effects on 
human health and is easier to digest in lactose-intolerant 
individuals (11), making it a feasible alternative solution for 
individuals with pertinent GI disorders (12).

In ruminants, the rumen is the primary organ responsible for 
converting plant feeds into nutrients and energy (13, 14). 
According to research, microorganism derivatives, diet 
composition, and host metabolism influence rumen metabolite 
concentrations and colony structure, with all three factors 
collectively shaping the mechanisms underlying microbiota-host 
interactions (15). Rumen microbes have been established to 
be crucially involved in ruminant productivity and health (16). 
For instance, cows with mastitis exhibited significant alterations 
in inflammation-associated microbial communities and 
metabolite abundance in their rumen (17). Additionally, Zhang 
et  al. (18) employed rumen fluid metabolomics to identify 
potential milk production biomarkers in high- and low-yielding 
cows. Biohydrogenation-linked rumen microbial populations 
were also associated with individual milk fat % in dairy cows (19). 
Although scholars both at home and abroad have extensively 
assessed A2 β-casein genotypes in cows, they mostly used milk or 
genetic tests (3, 20). Furthermore, to the best of our knowledge, 
no studies have characterized biomarkers and their roles in the 
rumen of A2-type β-casein dairy cows. Consequently, we explored 
the rumen microbiomes and metabolomes of different genotyped 
cows and examined the roles of characteristic metabolites and 
microorganisms in A2A2 genotyped cows using an integrated 
approach involving weighted gene co-expression network analysis 
(WGCNA) and Spearman correlation analysis.

Herein, 45 Holstein cows of three different β-casein genotypes 
[A1A1, A1A2, and A2A2 (N = 15)] from the Ningxia Nongken 
Helanshan dairy farm were included. Their rumen fluids were 
analyzed using metagenomics and metabolomics techniques. 
Metabolite clustering analysis and association analysis of 
characteristic metabolites with their characteristic microorganisms 
were performed using the WGCNA-Spearman integrated 
approach to further elucidate the contribution of metabolites to 
milk fat synthesis. Additionally, the regulatory role of AA on 
BMECs was explored using CCK-8, EdU, and qRT-PCR assays. 
Our analysis of the differences between rumen flora composition 
and metabolic pathways in cows of different β-casein genotypes 
could provide an essential reference for subsequent studies on the 
molecular genetic mechanisms of the characteristics of Holstein 
cows with the A2 pure genotype.

Materials and methods

Animals and experimental design

Holstein cow rumen fluids were collected from the Ningxia 
Nongken Helanshan dairy farm. The experimental cows were fed the 
same balanced total mixed ration (TMR) diet (Supplementary Table S1). 
Notably, the cows were previously typed using the competitive allele-
specific PCR (KASP), and three genotypes were obtained: A1A1, 
A1A2, and A2A2 (21). For each genotype, 15 Holstein cows were 
selected in good condition and in their first lactation, in which the 
milk fat and protein content were similar across the three groups 
(Supplementary Table S2).

Sample collection

Two hours after the morning feeding, the rumen contents were 
collected using a rumen fluid collection tube. Specifically, after 
inserting the rumen fluid collection tube, rumen vesicle contents were 
aspirated and collected under negative pressure. To avoid 
contamination with saliva, the first 150 mL of the collected rumen 
contents were discarded. Subsequently, 100 mL rumen content was 
collected and filtered using four sterile gauze layers, portioned, quickly 
frozen in liquid nitrogen, and stored in a −80°C refrigerator, awaiting 
further use. The Institutional Animal Care Committee of Ningxia 
University approved our experimental protocol (Approval Number: 
NXU-2024-065).

Microbiota analysis

First, total DNA was extracted from the rumen fluid and purified 
using a DNA extraction kit (TruSeq Nano DNA LT Sample 
Preparation Kit, Illumina, United States), following the manufacturer’s 
instructions. Subsequently, DNA concentration and quality were 
assessed using 1.0% agarose gel electrophoresis and a NanoDrop 
spectrophotometer. Following that, purified and tested DNA samples 
underwent fragmentation and end repair using the Covaris S220 
before attaching the Y-junctions to the sample ends. We  then 
performed PCR amplification to recover the target fragments and 
create a library. Subsequently, the libraries were sequenced on the 
Illumina HiSeq  2000 platform at the Shanghai Ouyi Biomedical 
Technology Co., Ltd. Following that, the genes were filtered and 
quality-controlled using Trimmomatic (v0.36) and Bowtie2 (v2.2.9) 
before splicing the sequences using MEGAHIT (v1.1.2) software. The 
spliced contigs’ open reading frames (ORFs) were predicted using 
Prodigal (v2.6.3) software. Finally, clustering was performed using 
CDHIT (v4). After predicting the ORF of the spliced contig, 
we constructed the non-redundant gene set of the predicted genes 
using CDHIT (v4.5.7) software.

The obtained set of non-redundant genes was compared to the 
GeneBank non-redundant (NR) database of nucleic acid sequences1 
using DIAMOND (v0.9.7) software. The sequences with an e-value 

1 https://www.ncbi.nlm.nih.gov/guide/taxonomy/
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≤l × 10−5 were considered meaningful for obtaining species annotation 
information. Differences in α-diversity indices, including Shannon, 
Simpson, and ACE, were examined to detect the median, dispersion, 
maximum, minimum, and outliers of species diversity, yielding 
insights into rumen microbial diversity. The rumen fluid characteristic 
microorganisms of dairy cows across the three genotypes were 
screened using the Linear discriminant analysis Effect Size (LEfSe) 
approach based on the LDA >2 and p < 0.05 criteria. Finally, the 
predicted genes were integrated with the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database2 to obtain the gene function 
annotation information.

Untargeted metabolomics

First, the stored sample was thawed slowly on ice before obtaining 
1 mL from the SPE solid-phase column and precisely adding 3 mL 
methanol. After blow drying, the sample was further dried through 
nitrogen blowing using a nitrogen blowing instrument before adding 
300 μL methanol-water mixture (V:V = 4:1, containing 
L-2-chlorophenylalanine, 4 μg/mL) to redissolve it. Subsequently, the 
sample was vortexed for 1 min, sonicated for 10 min in an ice-water 
bath, and incubated at −40°C for 30 min. The sample was then 
centrifuged at 12,000 rpm for 10 min at 4°C before aspirating 150 μL 
of the supernatant using a syringe, which was filtered through a 
0.22 μm organic-phase pinhole membrane, transferred to a liquid 
chromatography-mass spectrometry (LC-MS) injection vial, and 
stored at −80°C, awaiting LC-MS analysis.

Metabolite detection was performed using a liquid-mass 
spectrometry platform comprising an ACQUITY UPLC I-Class plus 
ultrahigh-performance liquid chromatography-tandem system and a 
QE plus high-resolution mass spectrometer. The LC-MS instrument 
was equipped with a preset ACQUITY UPLC HSS T3 chromatography 
column (100 mm × 2.1 mm, 1.8 μm), operated at a flow rate of 0.35 mL/
min and a temperature of 45°C. Mobile phase A consisted of water 
and 0.1% formic acid, whereas mobile phase B comprised 100% 
acetonitrile. Supplementary Table S3 shows the elution process of the 
mobile phases. Each sample (2 μL) was injected into an autosampler 
set at 4°C. The spray voltages for the positive and negative modes were 
set at 3.8 kV and 3.0 kV, respectively. Other parameters were the same 
for both the positive and negative modes (capillary 
temperature = 320°C; aux gas heater temperature = 350°C). The raw 
peaks were extracted, analyzed, and quantified using the LECO-Fiehn 
Rtx5 database, and normalization analyses were performed (22). To 
obtain precise qualitative and relative quantitative results, the peaks 
were compared to those in various databases such as mzCloud,3 
mzVault, and MassList. Statistical analyses were performed using R 
v3.43, Python v276, and Cent vOS66 software.

MetaX, a metabolomics data processing software, was used to 
perform principal component analysis (PCA) and partial least squares 
discriminant analysis (PLS-DA). Statistical significance (p-value) was 
evaluated using one-way analysis of variance, and marker metabolite 
screening was aided by the variable importance for the projection 

2 http://www.genome.jp/kegg/pathway.html

3 https://www.mzcloud.org/

(VIP) of the (O)PLS-DA model variables. Metabolites with VIP >1, 
p < 0.05, FC ≥2, or FC ≤0.5 were considered differential expressed. 
Annotation and metabolite pathway analysis was performed using 
metabolites obtained from the KEGG (see text footnote 2), HMDB,4 
and LIPID MAPS5 databases.

Metabolite co-expression module 
construction

To obtain precise qualitative and relative quantitative results, the 
peaks were compared to those in databases such as mzCloud (see text 
footnote 3), mzVault, and MassList. Statistical analyses were 
performed using R v3.43, Python v276, and CentOS66 software (23). 
For network construction, we used the soft threshold power (β) based 
on an R-value of 0.96. The smallest module comprised 35 genes 
(minimum module size = 35), and the merged module had a height of 
0.25. Correlations between modules and cow milk fat % were 
determined to identify modules that affect milk fat, and metabolomics 
was used to enrich for metabolites within those modules.

Statistical analysis

Univariate ANOVA (t-test) was used to assess statistical 
significance (p-value), with p < 0.05 and p < 0.01 indicating significant 
and highly significant differences, respectively. GraphPad Prism 8 was 
used to plot histograms. Dominant rumen flora (R > 0.6, p < 0.05) were 
correlated with milk fat-related metabolites using Spearman 
correlation analysis, and all significant correlation networks were 
visualized using Cytoscape (3.8.2). Receiver operating characteristic 
(ROC) curves were plotted, and the corresponding area under the 
curve (AUC) values were computed using the ROCR software 
package (24).

Cell culture

Mammary epithelial cell lines from dairy cows were cultured and 
frozen in the preliminary phase of this experiment. Specifically, 
BMECs were grown in a DMEM/F12 growth medium supplemented 
with 10% fetal bovine serum (FBS) (Cell Max, Beijing, China) in a 5% 
CO2 and 37°C incubator. Passaging and culture treatments were 
performed at ~70–80% cell density.

AA master mix configuration

To prepare AA mother liquor at a 10 mM concentration, 10 mg 
AA dry powder (Sigma, America) was first weighed and then 
transferred into a 5 mL centrifuge tube before adding 3.28 mL 
anhydrous ethanol to dissolve it at room temperature (RT). After 
thorough mixing, the solution was filtered to remove bacteria, 

4 https://hmdb.ca/metabolites

5 http://www.lipidmaps.org/
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dispensed into 200 μL centrifuge tubes, and stored at −20°C in a 
refrigerator in the dark for spare use. The experimental group received 
AA at final concentrations of 1, 5, and 10 μM, whereas the control 
group (NC) received anhydrous ethanol.

CCK-8 cell viability and cell proliferation 
EdU assays

First, cells were inoculated into 96-well plates, and the optimal 
concentrations from the AA treatment and experimental groups were 
selected for the EdU assay. Following the instructions in the EdU assay 
kit (Beyotime, Shanghai, China), the 2xEdU working solution was 
prepared in equal volumes and added into petri dishes after seeding 
cells in optimal growth conditions into 6-well plates. The cells were 
then observed under an inverted fluorescence microscope DMi8 
(Leica, Germany) and counted using ImageJ software.

TG content determination

The treated cells were tested for TG content using the cell-specific 
high-fat sample TG enzymatic assay kit (E1025, Prilosec, Beijing, 
China). Based on the reagent instructions, the lysed supernatant was 
added to the prepared working solution, and the reaction was 
conducted at 37°C for 15 min. Each tube’s optical density (OD) value 
was detected at 550 nm, and the TG content was adjusted based on 
protein concentration per mg.

RT-qPCR-related gene expression 
detection

Total RNA was extracted using TRizol reagent (Invitrogen, 
Thermo Fisher, United  States) and then reverse-transcribed into 
complementary DNA (cDNA) using Prime Script RT Reagent Kit 
(Takara, Dalian, China). Following the manufacturer’s instructions, 
SYBR Premix Ex Taq™ II (Takara, Dalian, China) was used to extract 
RNA from the cells for RT-qPCR on the Bio-Rad CFX96 Touch™ 
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, 
United States). The primers used were designed using the Primer 
Premier 5.0 system (Supplementary Table S4). The 2−ΔΔCt technique 
was used to analyze the relative mRNA expression in different 
treatment groups. Gene expression was normalized to GAPDH, and 
all results were subjected to ANOVA using SAS software (version 9.2, 
SAS Institute, Cary, NC). Three replicates were set up for each gene, 
and results or differences with p < 0.05 and p < 0.01 were considered 
significant and highly significant, respectively.

Results

Structural analysis of microbial 
communities

Herein, rumen fluid samples from 45 Holstein cows were 
subjected to macro genome sequencing. According to the results, 
the samples’ clean reads and contig N50 statistics were distributed 

in the 10.01–16.63 G and 299–475 bp ranges, respectively, and the 
number of ORFs in the constructed gene catalog (non-redundant 
genes) after de-redundancy was 15,361,808 
(Supplementary Table S5). Furthermore, sample size significance 
was determined using core-pan gene dilution curve analysis. 
According to the results, the number of subjects selected for the 
study (n = 45) was sufficient (Supplementary Figure S1A). A 
comparison of specific genes across the three groups (A1A1, 
A1A2, and A2A2) revealed that their proportions were 2.23, 3.29, 
and 2.58%, respectively (Supplementary Figure S1B). Additionally, 
we  determined the rumen flora α diversity indices based on 
species abundance (Supplementary Table S6). According to the 
results, the three groups showed no significant differences in the 
three α diversity indices (Shannon, Simpson, and ACE) (p > 0.05). 
Conversely, PCA revealed microbial β diversity differences in the 
rumen fluid of the dairy cows with different genotypes 
(Supplementary Figure S1C). Furthermore, Analysis of Similarities 
(ANOSIM) revealed that the differences among the three groups 
were significantly greater than those within each group, indicating 
meaningful subgroup distinctions (R = 0.078, p < 0.05; 
Supplementary Figure S1D). The top 15 most abundant phyla and 
genera among the 45 cows were plotted using a species relative 
abundance bar chart (Figures 1A,B). The dominant phylum- and 
genus-level microorganisms were p_Bacteroidetes and p_
Firmicutes and g_Prevotella and g_Clostridium, respectively. The 
potential biomarkers in the rumen of the three different dairy cow 
genotypes were further examined through LEfSe analysis. 
According to the results, 55 characterized microorganisms were 
enriched in A2A2 cows (Supplementary Table S7), of which the 
key biomarker genera were g_Stenotrophomonas, g_Fusobacterium, 
g_Mannheimia, g_Acetobacter, g_Xanthomonas, 
g_Pichia, g_Pseudoxanthomonas, g_Pediococcus, g_Gluconobacter, 
g_Komagataeibacter, g_Glomus, g_Luteimonas, g_Pasteurella, and 
g_Streptococcus (Figures 1C,D).

Analysis of marker bacteria in the rumen of 
dairy cows across the three different 
genotypes

Differential KEGG functional enrichment through STAMP 
analysis revealed that arrhythmogenic right ventricular 
cardiomyopathy (ARVC) and jak-STAT signaling pathway, among 
others, were the functions enriched in A1A1 and A1A2 genotyped 
cows. On the other hand, TRP channels’ inflammatory mediator 
regulation and the mTOR signaling pathway, among others, were 
the functions enriched in A2A2 genotyped cows (Figure 2).

Analysis of metabolomics results

Differentially expressed metabolites (DEMs) in the rumens of 
Holstein cows across the three different genotypes were detected 
using UPLC-MS metabolomics technology. A total ion 
chromatogram (TIC) overlap plot was obtained via superimposition 
of the mass spectra of the QC samples from the positive and 
negative ion detection modes on the TIC data 
(Supplementary Figures S2A,B), revealing that the peaks’ response 
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intensities and retention times overlapped and had stable baseline 
values. These findings confirmed the reliability of the experimental 
data. According to the PCA and PLS-DA results, metabolites in the 
three dairy cow genotypes showed inter- and intra-group disparities 
(Supplementary Figures S2C,D). Furthermore, the OPLS-DA score 
plots of metabolites showed significant differences across the rumen 
metabolite groups of the three dairy cow genotypes, and the 
permutation test revealed that all OPLS-DA models were reliable 
and did not overfit (Supplementary Figures S3A–F). Venn diagrams 
of DEMs and differential metabolic pathways among the three 
groups showed that the two comparison groups overlapped 
significantly (Supplementary Figures S2E,F). Statistical analysis of 
mass spectrometry-identified metabolites revealed 691 DEMs in the 
rumen fluid of the A1A1 and A1A2 dairy cow groups (Figure 3A 
and Supplementary Table S8) and 283 DEMs in the rumen fluid of 
the A1A1 and A2A2 dairy cow groups (Figure  3B and 
Supplementary Table S9). Furthermore, the analysis of the rumen 
fluid of the A1A2 and A2A2 dairy cow groups revealed 1,025 DEMs 
(Figure 3C and Supplementary Table S10). The top 50 DEMs were 
then analyzed for their respective enrichments 
(Supplementary Figures S4A–C). The substances enriched in the 

A2A2 group were arachidonic acid (AA), adrenic acid (AdA), 
taurocholic acid (TCA), and glycocholic acid (GCA). To better 
understand differential metabolite enrichment across the three 
groups, the top 20 metabolic pathways of differential metabolites 
were identified (Figures  3D–F), including those related to 
cholesterol metabolism, vascular smooth muscle contraction, 
ovarian steroidogenesis, primary bile acid biosynthesis, the GnRH 
signaling pathway, AA metabolism, Fc gamma R-mediated 
phagocytosis, and necroptosis.

WGCNA

We constructed co-expression networks between the identified 
metabolites and milk fat % using WGCNA to better understand the 
relationship between metabolites and milk fat % in Holstein cows. Ten 
co-expression modules were identified after merging modules with 
similar characteristics (Figure 4A). Furthermore, the results showed 
that MEturquoise correlated positively with milk fat content 
(Figure 4B) and 1,308 metabolites from this module were selected for 
further analysis.

FIGURE 1

Structural analysis of rumen microbial communities. (A) The relative abundance of the 15 most abundant bacteria at the phylum level. (B) The relative 
abundance of the 15 most abundant bacteria at the genus level. (C) Branch diagram of LEfSe analysis of the three groups. (D) Histogram showing the 
distribution of LDA values among the three groups; higher LDA scores indicate greater importance of the bacteria.
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Metabolic pathway analysis

MEturquoise metabolites were significantly positively 
correlated with milk fat % (cor = 0.6, p = 7.7 × 10−48) 
(Supplementary Figure S5A). Notably, enrichment analysis of the 
1,308 MEturquoise metabolites yielded 35 DEMs (VIP >1.00, 
p < 0.05), including AA, GCA, and TCA 
(Supplementary Figure S5C). All 35 DEMs, as well as those 
between the three groups, were subjected to metabolic pathway 
enrichment (661 metabolites, VIP >1, p < 0.05) (Figures 5A,B). 
According to the results, pathways such as cholesterol metabolism, 
vascular smooth muscle contraction, ovarian steroidogenesis, 
ferroptosis, primary bile acid biosynthesis, the GnRH signaling 
pathway, AA metabolism, Fc gamma R-mediated phagocytosis, 
and necroptosis were co-enriched (Supplementary Figure S5B). 
Furthermore, the metabolites included in the co-enrichment 
pathway were AA, AdA, GCA, TCA, and 8,9-Epoxyeicosatrienoic 
Acid (8,9-EET) (Supplementary Table S11). Specifically, AA, AdA, 
GCA, and TCA were significantly enriched in A2A2 cows, 
whereas 8,9-EET was significantly enriched in both A2A2 and 
A1A1 cows (p < 0.05) (Figures 5D–I).

Correlation analysis of key metabolites in 
rumen milk fat with characteristic flora in 
A2A2 genotyped dairy cows

Herein, we  employed Spearman’s correlation analysis to 
examine the relationship between characteristic genera (LDA >2; 

p < 0.05) and key differential rumen metabolites of milk fat in the 
rumen fluid of A2A2 dairy cows in order to characterize the 
relationship between the rumen flora and key metabolites of milk 
fat (Figure 6A). According to the results, some of the genera and 
metabolites correlated significantly and strongly (|R| > 0.6, p < 0.01) 
(Figure 6B). Among them, g_Acetobacter, g_Pseudoxanthomonas, 
g_Streptococcus, g_Pediococcus, g_Mannheimia, g_
Stenotrophomonas, g_Komagataeibacter, g_Gluconobacter, and g_
Luteimonas correlated significantly positively with both primary 
bile acid biosynthesis (GCA and TCA) and AA metabolism (AA 
and 8,9-EET). It has been established that AA regulates milk lipid 
synthesis and secretion (25). In this regard, it is noteworthy that 
biomarker prediction using ROC curves to identify significantly 
enriched characteristic metabolites and flora in A2A2 cows 
revealed that the model had a good prognostic effect, with AUC 
values for AA of 0.713  in groups A1A1 vs. A1A2 and 0.846  in 
groups A1A2 vs. A1A2 (Supplementary Figure S6). We will focus 
more on AA in the subsequent sections.

Effects of the candidate marker 
metabolite AA on BMEC proliferation

After culturing BMECs in vitro for 12 and 24 h, different AA 
concentrations were added to the culture medium, and their effects 
on BMEC viability were evaluated using the CCK-8 assay. 
According to the results, 5 μM AA was the optimal concentration, 
with the cells reaching the highest viability after 24 h (Figures 7A,B). 
Furthermore, the EdU results showed that the 5 μM AA-treated 

FIGURE 2

Functional analysis of rumen microorganisms in dairy cows. (A–C) The proportion of abundance of different KEGG functional entries between groups 
at the functional level, with the proportion of differences within the 95% confidence interval shown in the middle, and the rightmost value is the p-
value, with p  <  0.05 indicating a significant difference. (D) Violin plot of the key KEGG functional entries in cows of the A2A2 genotype.
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FIGURE 3

Rumen metabolome analysis. (A) Volcano plots of differential metabolites between A1A1 and A1A2 groups, (B) A1A1 and A2A2, (C) A1A2 and A2A2. 
(D) The circle plots of KEGG enrichment analysis between groups A1A1 and A1A2, (E) A1A1 and A2A2, (F) A1A2 and A2A2. There are 4 circles from the 
outside to the inside: the first circle: the classification of enrichment, the outside of the circle is the scale of the number of metabolites, different colors 
represent different classifications; the second circle: the number of the classification in the background metabolism and the p-value. The more 
metabolites the longer the bar is, the smaller the value the redder the color is, and the bigger the value the bluer the color is; the third circle: the bar of 
the proportion of the metabolism in the up and down-regulated metabolism, light red represents the proportion of the metabolism in the up-regulated 
metabolism, light blue represents the proportion of metabolism in the down-regulated metabolism; the specific values are shown below; and the 
specific values are presented below. Proportions, specific values are shown below; fourth circle: RichFactor values for each category, each cell of the 
background auxiliary line represents 0.2.

FIGURE 4

Association of metabolites with MFP based on WGCNA. (A) The clustering dendrogram of the average network adjacency for the identification of 
metabolite co-expression modules. (B) Heatmap of the correlation of module trait genes with MFP. Each row corresponds to a trait module, and the 
each column represents a trait. The plot is color-coded by correlation according to the color legend, and each module contains the corresponding 
correlation and p-value. MFP, milk fat percentage.
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group exhibited enhanced BMEC proliferation after 24 h of 
incubation (Figures 7C,D).

Effects of the candidate marker 
metabolite AA on milk fat synthesis

We treated BMECs with 5 μM AA for 24 h to further determine 
whether AA influences the cells’ milk lipid synthesis. We  then 
assessed TG concentration and expression levels of milk lipid 
marker genes. According to the results, the 5 μM concentration 
AA-treated group exhibited a significantly elevated TG 
concentration (p < 0.01) (Figure 8A), as well as the upregulation of 
lactolipid marker genes, including SREBF1, ACSS2, AGPAT6, and 
FASN (Figures 8B–E).

Discussion

A triad of flora, metabolites, and organismal immunity has been 
established to regulate the internal rumen environment, 
significantly impacting dairy cow health and performance (15). In 
the rumen, flora digest polysaccharides from feeds into Short-Chain 
Fatty Acids (SCFA) such as acetate, butyrate, and propionate, 
contributing up to 70% of animals’ total energy intake (14). 
Metabolites are important markers of biochemical reactions in the 
rumen microecosystem and are sensitive to changes in rumen 
microbiology (26). According to research, β-casein is essential for 
individual cow health and lactation performance (27, 28), a 
phenomenon consistent with our findings, which demonstrated 
that A2A2 genotyped cows exhibited a higher milk fat % than the 
other two genotyped groups. Furthermore, A1β-casein and 

FIGURE 5

Differential metabolites and differential metabolic pathway analysis. (A) Top 20 differential metabolic pathways enriched in differential metabolites 
among the three groups (MEturquoise). (B) Top 20 differential metabolic pathways enriched in differential metabolites among the three groups; color 
gradient and circle size indicate the significance of pathways sorted by p-value (red: higher p-value, blue: lower p-value) and pathway impact scores 
(the larger the circle, the higher the impact score), respectively. (C) Nine co-enrichment pathways corresponding to metabolite chordograms. (D–I) 
Levels of adrenic acid, AA, glycocholic acid, 8,9-EET, and taurocholic acid in the rumen of dairy cows of three genotypes.
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FIGURE 6

Correlation analysis of key flora and metabolites for differences among groups. (A) Heatmap of the Spearman correlation coefficient matrix between 
key rumen metabolites for milk fat synthesis and key microorganisms of group A2A2; ** represents a significant p  <  0.01, * represents a significant 
p  <  0.05. (B) A correlation network map; the colors of the lines represent positive and negative values of the correlation coefficients between the two 
(blue for negative correlation, red for positive correlation, only correlation with |R|  >  0.6 and p  <  0.01), and the thickness of the lines is directly 
proportional to the absolute value of the correlation coefficients; degree: centrality, the number of other nodes to which each node is connected, 
gradient according to the size of the centrality value.

FIGURE 7

The effects of AA on cell proliferation. (A,B) Effects of different concentrations of AA on the viability of BMECs at 12  h and 24  h. (C) EdU cell proliferation 
staining images. (D) EdU proliferating cell counting analysis.
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A2β-casein can impact colony fermentation, and the rumen flora 
structure could affect colony metabolites and milk fat synthesis 
processes (29, 30). Nonetheless, whether rumen flora and 
metabolites differ in β-casein A1A1, A1A2, and A2A2 genotyped 
cows remained unclear. Consequently, we  screened the 
characteristic metabolites related to milk fat synthesis in A2A2 
genotyped cows using an integrated metabolomics and WGCNA 
approach. We then examined the rumen characteristic flora and 
functions in cows with different β-casein genotypes using 
metagenomics technology. Finally, Spearman correlation analysis 
was employed to determine the relationships between characteristic 
flora and metabolites of A2A2 genotyped cows.

Our findings revealed that AA, AdA, GCA, and TCA were 
significantly upregulated in A2A2 cows (p < 0.05). According to 
research, AdA, as a substance downstream of AA, has anti-
inflammatory effects (31, 32). On the other hand, TCA and GCA 
are mainly enriched in the primary bile acid synthesis and 
cholesterol metabolism pathways, which are critically involved in 
lipid homeostasis and inflammation regulation (33, 34). 
Furthermore, TCA can inhibit the production of inflammatory 
mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and 
histamine, exerting anti-inflammatory effects (35). Additionally, 

TCA can regulate ACACA, FASN, AACS, and LPL expression, 
potentially promoting adipogenesis. On the other hand, GCA has 
been established to lower the serum levels of NO and Leukotriene 
B4 (LTB4), as well as PGE2 levels in inflammatory tissues, exerting 
an anti-inflammatory effect (36). Notably, AA is enriched in the AA 
metabolic pathway (part of the lipid metabolic pathway) and is 
closely related to lipid synthesis (37). According to research, AA can 
be converted to PGE2 and LTB4 via the cyclooxygenase pathway, 
inhibiting inflammatory cell migration and activation, thus exerting 
anti-inflammatory effects (38, 39). Furthermore, as an ω-6 
Polyunsaturated Fatty Acid (PUFA), AA regulates milk lipid 
synthesis and secretion via PPARγ activity modulation (25). 
Research has also shown that AA can act via a specific G Protein-
Coupled Receptor (GPR120) (40), and GPR120 activators can 
promote milk fat synthesis through SREBP1 and FASN upregulation 
(41). Herein, the AA-treated group exhibited SREBF1 and FASN 
upregulation. Similarly, AGPAT6 and ACSS2, key genes involved in 
fatty acid and TG synthesis regulation (42–44), were upregulated in 
the AA-treated group, resulting in enhanced TG synthesis. Based 
on these findings, we deduced that AA, a characteristic metabolite 
in the rumen of A2A2 genotyped cows, promotes milk fat synthesis. 
We  further hypothesized that the higher milk fat % and 

FIGURE 8

The effect of AA on milk fat synthesis. (A) TG content; (B–E) relative expression of milk lipid synthesis marker genes SREBF1, ACSS2, AGPAT6 and FASN. 
** In the figure represents a significance p  <  0.01, and * in the figure represents a significance p  <  0.05.
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anti-inflammatory effect of “A2 milk” on the GI tract of A2A2 
genotyped cows may be  related to AA, AdA, GCA, and 
TCA enrichment.

Rumen microbiota composition has been established to 
significantly impact milk production and composition in dairy 
cows (29). Herein, consistent with previous research (45, 46), the 
dominant phylum- and genus-level microorganisms in the flora 
content were p_Bacteroidetes and g_Prevotella, respectively. At the 
genus level, several significantly differentially expressed species 
were identified in the rumen of A2A2 cows, primarily belonging to 
genera g_Pseudomonas, g_Acetobacter, g_Streptococcus, and g_
Pediococcus. According to research, g_Pseudomonas secrete lipase, 
which breaks down lipids in feeds into free fatty acids (FFAs), 
promoting saturated fatty acid accumulation in meat and milk (47, 
48). On the other hand, g_Acetobacter oxidizes sugars to produce 
acetate, the precursor of milk fat synthesis, thus facilitating milk fat 
synthesis in the mammary glands (49). Furthermore, Edward et al. 
(48) discovered that g_Acetobacter can promote milk fat synthesis. 
Based on these findings, we hypothesized that milk fat synthesis in 
A2A2 genotypes cows could be  linked to g_Acetobacter and g_
Pseudomonas content. Moreover, g_Streptococcus and g_Pediococcus 
are lactic acid bacteria that produce lactic acid, which can be used 
as a substrate for secondary fermentation to produce precursors for 
milk fat synthesis: acetate, propionate, and butyrate (50, 51). In 
addition to increasing energy conversion efficiency to milk fat 
through its involvement in amino acid biosynthesis and energy 
substrate metabolism, g_Streptococcus has also been positively 
associated with serum bile acid levels (52, 53). Furthermore, not 
only is g_Pediococcus positively correlated with bile acid content, 
but its Pediococcus pentosaceus strain KID7 can regulate bile acid 
regulation via the bile salt hydrolase BSH (54–56). It is also 
noteworthy that bile acids promote fatty acid transport and 
absorption in the body (57). We also found that g_Streptococcus and 
g_Pediococcus were significantly positively correlated (p < 0.01) with 
primary bile acids (GCA and TCA). These findings collectively 
suggest that g_Streptococcus and g_Pediococcus may modulate the 
synthesis of GCA and TCA, among other bile acids, potentially 
impacting milk fat synthesis. However, additional research will 
be required to verify the specific contribution of these genera in 
milk fat synthesis.

Functional enrichment results in the KEGG analysis for the 
colony revealed that the JAK-ATAT pathway was enriched in cows 
containing β-casein A1. This pathway has been implicated in the 
occurrence of cardiovascular disease, diabetes mellitus, 
inflammation, and immune regulation (58, 59). Type A1 β-casein 
has negative effects on gastrointestinal, endocrine, neurological, 
and cardiovascular systems by promoting inflammation via the 
JAK-ATAT pathway (9, 10). A2A2 genotype cows The genes 
involved in inflammatory mediator-regulated and mTOR signaling 
pathways of the TRP channel, which inhibit inflammation and milk 
fat synthesis, respectively (60, 61). The high rate of milk fat in the 
A2A2 genotyped cows and the suppressive effect of “A2 milk” on 
the intestinal inflammation may contribute to this effect.

Taken together, these results suggest that the rumen fluid 
characteristic flora and metabolites of A2A2 genotyped dairy cows are 
involved in milk fat synthesis and inflammation inhibition. Studies 
have demonstrated that the mechanisms and pathways of milk fat 
synthesis are complex, and are not were understood. In this study, 
significant correlations were observed between the rumen characteristic 

flora (g_Streptococcus, g_Pediococcus, g_Acetobacter, and g_
Pseudomonas) and metabolites involved in milk fat rate (AA, adrenic 
acid, taurocholic acid, and glycocholic acid) of the A2A2 genotypic 
dairy cows. Furthermore, we found that the characteristic metabolite 
AA enhances milk fat synthesis. However, this study only screened 
rumen characteristic flora and metabolites without conducting a joint 
analysis with serum and milk metabolites. In future, the characteristic 
metabolites in serum and milk of A2A2-type cows need to 
be investigated to identify biomarkers in rumen fluid and understand 
the mechanisms of milk lipid synthesis in A2A2-type cows.

Conclusion

In conclusion, cows with the A2A2 genotype in herds with similar 
body condition exhibited higher milk fat rates, with rumen signature 
metabolites including AA, adrenic acid, taurocholic acid and 
glycocholic acid, and signature genera including g_Acetobacter, g_
Pseudoxanthomonas, g_Streptococcus and g_Pediococcus. Among 
them, the signature metabolite AA promotes the synthesis of milk 
lipids in BMECs, suggesting that they may serve as potential 
biomarkers in the A2A2 genotyped cows.
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