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The lipidomic secretions of embryos provide a unique opportunity to examine 
the cellular processes of the early conceptus. In this study we  profiled lipids 
released by the early equine conceptus, using high-resolution mass spectrometry 
to detect individual lipid species. This study examined the lipidomic profile in 
embryo-conditioned media from in vivo-produced, 8–9  day-old equine embryos 
(n  =  3) cultured in vitro for 36  h, analyzed over 3 timepoints. A total of 1,077 lipid 
IDs were recorded across all samples, containing predominantly glycerolipids. 
Seventy-nine of these were significantly altered in embryo conditioned-media 
versus media only control (p  <  0.05, fold-change >2 or  <  0.5). Fifty-five lipids were 
found to be released into the embryo-conditioned media, of which 54.5% were 
triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also 
identified and secreted in significant amounts as embryos developed. Further, 24 
lipids were found to be depleted from the media during culture, of which 70.8% 
were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As 
lipid-free media contained consistently detectable lipid peaks, a further profile 
analysis of the various components of non-embryo-conditioned media consistently 
showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media 
increased in response to incubation under mineral oil, and contained ceramides, 
diacylglycerols and triacylglycerols. These results emphasize the importance of 
a defined embryo culture medium and a need to identify the lipid requirements 
of the embryo precisely. This study sheds light on early embryo lipid metabolism 
and the transfer of lipids during in vitro culture.
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1 Introduction

Early pregnancy is one of the most challenging and enigmatic facets of mammalian 
reproduction. It comprises a precarious pre-implantation phase, in which the embryo is yet to 
develop placental attachments and the mother is yet to establish stable systemic support of the 
pregnant state. The early conceptus relies on localized embryo-maternal interactions for survival, 
including signaling its presence to the maternal environment and in turn receiving metabolic 
support through endometrial secretions. In women, pre-implantation embryo loss is estimated at 
10–40% and overall pregnancy loss from fertilization to birth is approximately 40–60% (1). The 
equine pregnancy poses similar challenges with an estimated 20–30% of conceptions failing prior 
to implantation (2, 3). The role of embryo-maternal communications is particularly pertinent in 
the horse, as this species features a long period (40–45 days) before the development of definitive 
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placentation (4), while the signal that facilitates maternal recognition of 
pregnancy (MRP) remains undiscovered (5). Along with proteins and 
miRNA, lipids are anticipated to play a key role in both signaling between 
embryo and endometrium, as well as in nourishing and supporting the 
early embryo during this early period (6). While the abundance and 
function of some of these compounds in the embryo environment have 
begun to be investigated, the secreted lipids engaged in embryo-maternal 
signaling have yet to be profiled in any mammalian species.

For studying Assisted Reproductive Technology (ART), the horse 
is a fitting model for human clinical procedures. Women and mares 
are both mono-ovulatory, and have similar follicular dynamics and 
embryo developmental kinetics until the blastocyst stage (7). In 
addition, both species share infertility concerns due to obesity and 
aging (8–12), which are believed to influence the lipid composition 
of the oocyte. In comparison with many other species, the lipid 
content of equine oocytes and embryos is notably higher (13, 14). 
Embryonic cytoplasmic lipid droplets, in the form of triglycerides, 
represent the most abundant energy source and are accumulated 
during embryo development (15). In addition, the embryos of both 
equine and human species are particularly sensitive to both ambient 
and culture environments (16–18). In humans, it has been suggested 
that microtubule spindles are thermosensitive (19), and spindle 
integrity can be  irreversibly altered by temperature (20). This 
sensitivity to the culture environment is particularly pertinent for the 
mare, where effective in vitro fertilization (IVF) has proven to be a 
major challenge and is not yet commercially available (21, 22). As 
such, intra-cytoplasmic sperm injection (ICSI) is currently the only 
commercial method for producing equine embryos in vitro. 
Reciprocal knowledge May be gained through the comparative study 
of equine and human ART and infertility treatments, helping to 
define the optimum in vitro requirements for oocyte maturation and 
embryo culture.

Lipids are expected to play roles in embryo maternal signaling. 
They regulate reproductive cyclicity and are intrinsically linked to 
pregnancy [reviewed in Lawson et al. (14)]. With the high metabolic 
rate of the early embryo, functionally, lipids serve as a primary energy 
source, but, they also serve as a molecular membrane scaffold that 
regulates cellular signaling (23). Acting primarily through their 
interactions with proteins, many of the pathways by which lipids 
modulate these proteins are not yet fully understood (24). Hence, 
understanding lipid biosynthesis and hormone structure will lay the 
groundwork for better understanding embryonic requirements and 
how this May influence maternal signaling. In equine embryos, 
researchers have previously identified proteins secreted by the early 
equine embryo (25–29), and attempted to identify a putative MRP 
factor secreted by the conceptus (30, 31). In a previous study of the 
protein component of the embryo secretome it was found that 
proteins involved in lipid-associated and lipoprotein function were 
consistently over-represented (29). Embryo-produced mediators, 
such as the phospholipid Platelet-activating factor (PAF) have been 
suggested to have an early stimulatory effect (32, 33) and precursors 
such as arachidonic acid and docosahexaenoic acid, which are 
essential constituents of membrane lipids in other species, have been 
postulated to play a crucial role in equine embryonic development 
(34). Such findings suggest lipids are potential regulators of the 
embryo-signaling response and, as such, warrant investigation into 
the lipidomic profile of equine embryos for investigations into 
MRP. This leads to the hypothesis that lipids themselves and the 

interactions between proteins and lipids have important roles in 
embryo-maternal signaling as well as equine embryo development.

Apart from maternal signaling, at the pre-implantation stage of 
development, embryos require the biosynthesis of lipids, particularly 
for energy metabolism, cell membrane construction and signaling 
events involved in gene activation (34). It is well established that until 
approximately day 22 after ovulation, the equine embryo is encased in 
a glycoprotein capsule (35), which covers the equine blastocyst after it 
loses its zona pellucida (36). The capsule is believed to play a protective 
role, and participate in fetal-maternal interface communication (37). 
Importantly for the study of lipids resent research suggests that 
exosomes and other extracellular vesicles secreted by the conceptus 
membranes May play important roles in equine embryo-maternal 
communication during this early period (38). However, despite this 
capsule embryos are able to produce and continue to secrete 
prostaglandin E2 and other prostaglandins, such as PGF2α and PGI2 
(39–41). More recently, prostaglandin synthesis enzymes were shown 
to be involved in embryo-driven forward motion motility, due to their 
location on the “peri-embryonic” pole (42). Prostaglandins are lipid 
autacoids derived from arachidonic acid by the cleavage action of 
phospholipase A2s (PLA2s). PLA2s are known to be  functionally 
involved in diverse cellular events, including phospholipid metabolism, 
immune functions and signal transduction, and their actions generate 
bioactive lipid mediators (43). Such de novo biosynthesis of lipids 
indicates that equine embryos autotrophically produce their own lipid 
supply, contributing directly to the steroid environment of the 
intrauterine lumen (44). Such findings implicate the role of lipids and 
protein–lipid complexes in supporting the early equine embryo, 
particularly at the pre-implantation stage. As the lipidomic component 
of embryonic secretions have not been well described, defining what 
lipids are released by embryos will help delineate the signaling 
pathways important for a successful pregnancy. Therefore, this research 
sought to comprehensively describe the profile of lipids released by 
early equine embryos using high-resolution mass spectrometry.

Lipidomics is a systems-level analysis and characterization of 
lipids. Like other omics technologies, such as transcriptomics or 
proteomics, lipidomics is a global profiling of lipid species present in 
cells, tissues or extracted body fluids (45). The applications of 
lipidomics technology are rapidly evolving and currently it allows 
detection of a broad range of lipid classes, categories, and quantification 
of lipid species. The approach has also provided valuable information 
on biomarkers for disease pathophysiology, and shed light on the 
detailed biophysiological functions involved in reproductive biology 
(46). Currently, the LIPID MAPS® classification system organizes lipids 
into eight categories: fatty acyls, glycerolipids, glycerophospholipids, 
sphingolipids, sterol lipids, prenol lipids, saccharolipids and 
polyketides. Each category can be divided into numerous classes with 
individual lipid identities (47). Recent advances in mass spectrometry-
based lipidomics technology have meaningfully improved the detection 
of a vast array of lipids (48). The technology allows for the detection of 
minute, yet biologically significant fluctuations in lipid levels. For 
example, it has recently been used to profile the fatty acid content of 
spermatozoa from different species (49). As such, the precision of 
lipidomic technology now offers opportunities to answer many of the 
remaining unanswered questions. Therefore, in this study we aim to 
profile the lipids secreted by the early equine embryo in an in vitro 
setting, and in addition, to examine the embryo culture model, by 
carrying out lipidomic profiling of embryo culture media.
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2 Materials and methods

2.1 Artificial insemination

All procedures undertaken in this study were reviewed by the 
University of Newcastle Animal Ethics Committee and approved 
under the Australian code for the care and use of animals for 
scientific purposes (approval number A-2018-804). Standardbred 
mares (n = 3) were housed on pasture. Mares’ reproductive cycles 
and ovulations were monitored by transrectal palpation and 
ultrasonography. Upon signs of impending ovulation, ovulation was 
induced with a synthetic analog of gonadotrophin-releasing 
hormone (GnRH), then inseminated with semen containing at least 
5 × 108 motile spermatozoa, obtained from one of three fertile 
stallions, extended in SpermSafe (University of Newcastle, 
Callaghan, Australia), and stored for up to 3 days at 17°C. All mares 
received the same routine post-mating treatment consisting of an 
intrauterine infusion with 1 L of saline followed 8 h later by an 
intramuscular administration of oxytocin.

2.2 Embryo collection and culture

A visual summary of the experimental procedure, from embryo 
recovery to mass spectrometry lipid analysis, is presented in Figure 1. 
Embryos (n = 3) were obtained by transcervical uterine lavage 
8–9 days after confirmed ovulation, from mares aged between 10 and 
11 years, as per the method described by Swegen et al. (29). Briefly, 
this was done using a 34 French-gage silicone Foley catheter with a 
100 cc balloon and Y-tube (MAI Animal Health, Elmwood, WI, 
United  States). For the collection of embryos, warmed Emcare 
Complete Ultra flushing medium (1000–2000 mL per flush; ICPbio 
Reproduction, Auckland, New Zealand) was used and uterine fluidic 
content was collected through an Em-Con embryo filter (MAI 
Animal Health). Filter contents were transferred to search dishes, and 
embryos were recovered under a dissecting microscope before being 
transferred to transport media. This transport medium consisted of 
Hepes-buffered DMEM/F12 (11330–032; Gibco, Grand Island, NY, 
United States) supplemented with 0.5% w/v fatty acid-free bovine 
serum albumin (BSA; ICPbio), 10 units/mL penicillin-G and 10 μg/
mL streptomycin sulphate. After transport (<30 min) to the 
laboratory, each embryo was assessed morphologically and rinsed by 
moving the embryo through dishes of BSA-containing culture 

medium (bicarbonate-buffered DMEM/F12 11320–033; Gibco) with 
0.5% w/v BSA, 10 units/mL penicillin-G and 10 μg/mL streptomycin 
sulphate, deposited in a 50 μL droplet of BSA-containing culture 
medium under oil, and incubated for 2 to 3 h at 38.5°C in a 
humidified atmosphere of 5% O2, 6% CO2 and 89% N2. Embryos were 
then washed twice in BSA-free culture medium (bicarbonate-buffered 
DMEM/F12 with 0.1% polyvinyl alcohol, 10 units/mL penicillin-G 
and 10 μg/mL streptomycin sulphate). Finally, embryos were 
transferred to a 50 μL droplet of BSA-free culture medium under oil 
and incubated at 38.5°C in a humidified atmosphere of 5% O2, 6% 
CO2 and 89% N2. Following the initial incubation in protein-
containing (BSA) medium, embryos were cultured for a total of 36 h 
in protein-free medium. Within this culture period, embryo-
conditioned media were collected every 12 h. At each collection point 
embryos were imaged under a stereomicroscope (SMZ1500; Nikon 
Corporation, Kawasaki, Kanagawa, Japan) and their diameter 
measured to verify continued blastocyst development and expansion. 
Thereafter embryos washed and transferred to a droplet of fresh 
BSA-free culture medium before being measured. Embryo-
conditioned medium was centrifuged at 14000 ×  g for 5 min to 
remove debris, and supernatants were transferred to cryovials, and 
immediately placed in liquid nitrogen, and stored at −80°C until 
further analysis. Medium-only controls were also collected at 
each timepoint.

2.3 Chemicals and materials

All solvents used were HPLC grade or higher. Glass pipettes and 
tubes were used wherever possible and the use of plasticware was 
minimized during lipid extraction to avoid contamination of samples. 
Glass tubes and glass transfer pipettes were purchased from Sigma and 
vWR. Lipid internal standards (ISTDs) were purchased from Avanti 
Polar Lipids Inc. (Alabaster, AL, United  States). These include 
phosphatidylcholine (19:0_19:0), sphingomyelin (18:0_12:0), 
phosphatidylethanolamine (17:0_17:0), phosphatidylglycerol 
(17:0_17:0), phosphatidylserine (17:0_17:0), phosphatidic acid 
(17:0_17:0), ceramide (d18:1, 12:0), diglyceride (1,3 18:0 d5), 
cholesteryl ester (19:0), monoglyceride (17:0), triglyceride mix d5 
(Avanti Code LM-6000), diglyceride mix d5 (Avanti Code LM-6001), 
phosphatidylinositol (17:0 14:1), C12 GluCer, C12 sulfatide, C17 
ceramide, C17 sphingosine, C17 S1P, C12 C1P, D3 C20 fatty acid, and 
C12 LacCer. Lipid internal standards were prepared as a mixture at 

FIGURE 1

Visual summary of methods used to profile the lipids released and depleted by equine embryos. Image created with BioRender.

https://doi.org/10.3389/fvets.2024.1439550
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lawson et al. 10.3389/fvets.2024.1439550

Frontiers in Veterinary Science 04 frontiersin.org

10 pmol/μl in methyl-tert butyl ether and methanol (MTBE:methanol, 
1:1 v/v).

2.4 Lipid extraction

Lipids were extracted using chloroform, methanol, and 
isopropanol (Sigma Aldrich, St. Louis, MO, United  States) and 
ultrapure water (Millipore). Medium lipid extraction was based on 
the Bligh and Dyer method; briefly, medium samples were thawed 
on ice and 80 μL aliquots were transferred into glass tubes. 
Methanol (600 μL), chloroform (1,000 μL) and ultrapure water 
(500 μL) were sequentially added with vortexing between each 
addition, followed by spiking with 10 μL of the aforementioned 
internal standards. Samples were then centrifuged at 300 x g for 
10 min at room temperature. The lower solvent phase was collected 
and transferred to a new glass tube using a glass Pasteur pipette. 
Chloroform (600 μL) was added to the upper phase, vortexed and 
centrifuged at 900 x g for 10 min. The lower phase was collected 
and transferred into the same glass tube and dried under nitrogen 
gas. Dried lipid samples were reconstituted in 100 μL of 
isopropanol/methanol (1:1) and stored at −80°C in glass LC–
MS vials.

2.5 Lipidomics mass spectrometry

Lipid extracts (10 μL) were analyzed using a Q-Exactive Plus 
Mass Spectrometer coupled to a U3000 UPLC system 
(ThermoFisher Scientific) according to the methods of Phan et al. 
and Castro-Perez et al. (50, 51). Chromatography was performed at 
60°C on a Waters CSH C18 UHPLC column 2.1 × 100 mm, 1.8 μM 
with VanGuard guard column. Solvent A was 6:4 acetonitrile: water 
and Solvent B was 1:9 acetonitrile:isopropanol, both with 10 mM 
ammonium formate and 0.1% formic acid. Briefly, a 30 min gradient 
running from 30 to 100% of solvent B was performed, eluting lipids 
in order of hydrophobicity. Column eluate was directed into the 
electrospray ionization source of the mass spectrometer where a 
HESI probe was employed. Source parameters were broadly 
optimized on a range of lipid standards prior to the analysis. The 
mass spectrometer was run in data dependent acquisition mode. A 
survey scan over the mass range 200–1,200 at resolution 70 K was 
followed by 10 data dependent MS/MS scans on the most intense 
ions in the survey at 15 K resolution. Dynamic exclusion was used 
to improve the number of ions targeted. Cycle time was 
approximately 1 s. Samples were run in both positive and negative 
polarities. The samples were run in a random order (generated 
using Microsoft Excel) to avoid batch and replicate effects. Data 
were analyzed in LipidSearch sofware 4.1.16. Data were searched 
against the standard LipidSearch database with all common 
mammalian lipid classes included. The search results were then 
grouped according to sample type and aligned for differential 
analysis. Aligned data, containing lipid identity, retention time, 
peak area were exported to Excel software (Microsoft Corporation, 
WA, United States). Relative abundance of lipids was obtained from 
peak areas normalized to internal standards. LipidSearch-derived 
identities of fatty acid chain (fatty acid, FA1, FA2, FA3), CalcMz, 
IonFormula, retention time (RT) and peak intensity were 

additionally obtained in both embryo conditioned media 
(Supplementary Table S1) and in media only experiment 
(Supplementary Table S2).

2.6 Analysis

Identified intensity peaks were filtered with m-Score threshold 
(>5.0) and ID quality filter (A and B and C). Adducts included +H, 
+NH4, +Na and + H-H2O in positive mode, and-H, +HCOO, -2H 
and-CH3 in negative mode. Statistical analyses were performed using 
MetaboAnalyst software module1 and Excel. For comparisons between 
time points and control groups, a two tailed students t-test was applied 
with statistical significance set at p < 0.05 in addition to fold changes 
between embryo-conditioned samples and media only control 
samples. Graphical representations of the data were generated using 
the MetaboAnalyst.

2.7 Media only samples

In further experiment, the various components of culture media 
were additionally examined. Different components of culture media 
were placed in a humidified atmosphere of 5% O2, 6% CO2 and 89% 
N2 for 12 h at 37°C. Samples were incubated either under a mineral oil 
overlay or without a mineral oil overlay and included bicarbonate-
buffered DMEM/F12 with and without 10 units/mL penicillin-G and 
10 μg/mL streptomycin sulphate. Pure mineral oil was also incubated. 
Incubating media under oil was done to determine whether incubating 
under oil affected lipid quantification. Thus, a total of five media 
components/variations were assessed in addition to an ultrapure water 
(Millipore) in duplicate. Lipids extracted and intensity peaks were 
analyzed and as per the embryo conditioned media. For the media 
only samples, ion peaks were compared using one-way analyses to 
examine whether incubation under oil, DMEM/F12, or penicillin/
streptomycin influenced the presence of each lipid in the media. The 
blocking function was used to account for possible interactions 
between influencing factors; i.e., analysis for the effect of incubation 
under oil was ‘blocked’ for presence of DMEM/F12, while analyses for 
effect of DMEM/F12 and penicillin/streptomycin were ‘blocked’ for 
incubation under oil to remove the effect of these parameters as 
confounding factors. Finally, lipid ion peaks in mineral oil were 
compared against those in all the aqueous media samples (blocking 
for incubation under oil as a possible confounding factor). These 
analyses were conducted in JMP (SAS Corp., NC) and p-value for all 
effects set at p < 0.05.

3 Results

3.1 Embryo experiment

Embryos (n = 3) were cultured in vitro in a protein-free medium 
over a period of 36 h, with each embryo expanding between 20 and 

1 www.metaboanalyst.ca
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30% in diameter during that time (30.17, 25.40, 20.42%). In the 
secreted media collected, a total of 1,077 lipids IDs were recorded 
across all samples, with 222 lipid IDs remaining after filtering for high 
confidence. Lipids which were both significantly different, in embryo 
conditioned media versus media only control samples (p < 0.05) for 
at-least one time point, and also had a fold change of greater than 2, 
were further examined for this study, which was a total of 79 individual 
lipid ions (Table 1). Of these, 55 individual lipids were detected to 
be more abundant in embryo-conditioned media (henceforth termed 
‘secreted’ lipids), and 24 individual lipids were found to be depleted in 
embryo-conditioned media (henceforth termed ‘depleted’ lipids). The 
heatmaps depicted (Figure 2) show two distinct populations of lipids: 
those that were secreted into the media by the embryos during culture 
(Figure 2A), and those that were depleted from the media during 
culture (Figure 2B). Of the 55 lipid identities found elevated in the 
embryo conditioned media (Table 1), 30 were triacylglycerols (TGs) 
(54.5%), 13 were ceramides (23.6%), 4 were diacylglycerols (DGs) 
(7.3%) the sterol lipid cholesterol was also identified along with 
ubiquinone Co (Q9) and a single sphingomyelin. The 24 lipids found 
to be depleted from the embryo conditioned media comprised of 17 
DGs (70.8%), 4 TGs (16.7%) and 3 ceramides (12.5%). Note that these 
are the numbers of individual lipid species identified and percentages 
do not represent quantities of lipid secreted or consumed by embryos.

In addition, a volcano plot analysis was carried out to pinpoint the 
differential change of individual lipids between the groups, with a 
cut-off for those lipids that had fold-change >2 and p-value <0.1. This 
was done for each individual time point, 12 h, 24 h and 36 h. In the 
embryo secreted group, ceramides and TGs were the predominant 
classes found to increase compared to the control. From the depleted 
lipid group, DGs were observed to be the dominant class (Figure 3). 
In total, the classes of lipids came from 5 lipid categories, including 
glycerolipids, sphingolipids, glycerophospholipids, sterol lipids and 
prenol lipids (Figure 4), with a greater diversity of classes observed in 
secreted lipids compared to depleted lipids. Comparisons of several 
individual relevant lipids, which were both significant and had a fold 
change >2 in the embryo conditioned media, are detailed in Figure 5.

3.2 Culture media only experiment

Lipid-free reagents had been used to prepare media for embryo 
lipidome experiments, so the detection of lipids depleted following 
embryo culture was unexpected. We therefore conducted a follow-up 
analysis several months later to validate the presence of lipids in 
non-conditioned (control) media and its individual components. For 
the media only experiment, a total of 137 lipid species were identified 
present across all 5 media samples (DMEM/F12 with and without 
10 units/mL penicillin-G and 10 μg/mL streptomycin sulphate, both 
of these under a mineral oil overlay or without a mineral oil overlay 
and lastly pure mineral oil). These predominantly belong to the 
glycerolipid category. Of these, 109 lipid ions were significantly 
different between groups. Higher abundance of 18 lipids (15 TGs, 2 
DGs, 1 PS) was associated with inclusion of DMEM/F12  in the 
formulation (predominantly glycerolipids; 94%). The inclusion of 
penicillin-G/streptomycin sulphate to DMEM/F12 medium had no 
influence on abundance of any of the lipids detected. Incubation 
under oil increased the abundance of 44 lipid species in media (90% 
were glycerolipids; 34 TGs and 5 DGs). In pure mineral oil, 47 lipid 

species were detected (i.e., showed p < 0.05 versus water only control). 
Of these, 91% were glycerolipids (28 TGs and 15 DGs), and 6% (3) 
were ceramides. Of the 24 DGs originally found to be depleted in 
embryo-conditioned media, promisingly only 5 indivuiduals were 
detected in the follow-up media analysis. Of these, two lipids were 
detected in mineral oil alone and were influenced by incubation under 
mineral oil [DG (18:0_17:0) + NH4 and DG(18:0_18:1) + NH4]; one 
lipid was detected in mineral oil but not affected by incubation under 
oil [DG(40:0) + NH4].

4 Discussion

This study used high-resolution mass spectrometry-based 
lipidomics to examine the changes in lipid profiles of media following 
culture of equine embryos. A total of 55 lipid species were found to 
be  significantly increased in the embryo-conditioned media, 
compared to the control, and hence were presumed to be released or 
secreted by the embryo over time. In addition, 24 lipids were identified 
to be  significantly decreased in the embryo-conditioned media 
following embryo incubation when compared to the embryo-free 
controls. These lipids were presumed to be taken up or depleted from 
the media by the embryos. After identifying this population of 
depleted lipids, a more comprehensive analysis was carried out of 
media without embryos. This was conducted to clarify which lipids or 
lipid categories were detectable in culture media, and in turn which 
components of the culture environment they were coming from. In 
this subsequent study we found that 109 lipids were contributed by the 
various media components, the majority of these being glycerolipids.

For those lipids found to be increased in the embryo-conditioned 
media, the dominant lipid categories identified were glycerolipids 
(66%) followed by sphingolipid (23%); the dominant lipid classes 
were TGs (56.6%) and ceramides (20.8%). Those depleted from the 
media in the presence of embryos again tended to be glycerolipids 
(88%), with the main class of these found to be DGs (70.8%). The 
depleted lipid groups May contribute to meeting the embryo’s energy 
demands, whereas the secreted lipid groups are likely to either 
be involved in maternal signaling, or to be released in response to 
stress/increased bilayer fluidity. TGs are esters consisting of a glycerol 
backbone and three fatty acids; they represent the main form of lipid 
storage in adipose tissue and lipid droplets. TGs are synthesized in 
times of energy excess or hydrolyzed to DGs and fatty acids to 
be used for ATP generation in times of energy need. Thus, from a 
metabolic perspective, release of TGs by equine embryos indicates 
that energy stores May be adequate or excessive. Closer examination 
of the exact identities of TGs being secreted will be important in 
elucidating their potential roles in embryo-maternal signaling. Most 
of the secreted TGs that were identified contain medium-chain fatty 
acids. Medium chain fatty acids have been shown to enhance 
progesterone synthesis and improve embryo implantation in rats, 
albeit via a mechanism of dietary supplementation of fatty acids to 
the mother (52). It is worth investigating the direct effects of medium 
chain fatty acid TGs on the endometrium and whether their secretion 
by the embryo is able to influence pathways upstream of luteinisation 
and luteal maintenance, such as reduced PGF2a synthesis. The 
product of TG hydrolysis, DGs, consist of a glycerol covalently 
bonded to two fatty acid chains. They are typically found in both 
plant and animal fats, and are often used as emulsifiers (53). DGs are 
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TABLE 1 Individual lipid species secreted and depleted in embryo-conditioned media according to lipid category.

Result Lipid species Category Percentage according to lipid category

Lipids increased in embryo 

conditioned media

Cer(d18:1_25:0)-H Sphingolipids [SP] 25%

Cer(d18:1_26:0) + H Sphingolipids [SP]

Cer(d18:2_26:0) + H Sphingolipids [SP]

Cer(d22:0_24:0) + H Sphingolipids [SP]

Cer(d22:0_26:0) + H Sphingolipids [SP]

Cer(d42:0 + O) + HCOO Sphingolipids [SP]

Cer(t18:0_22:0 + O) + H Sphingolipids [SP]

Cer(t18:0_26:0) + HCOO Sphingolipids [SP]

Cer(t20:0_26:0) + H Sphingolipids [SP]

Cer(t34:0) + H-H2O Sphingolipids [SP]

Cer(t42:0 + O) + HCOO Sphingolipids [SP]

SM(d34:1) + H Sphingolipids [SP]

ChE() + H-H2O (cholesterol) Sterol Lipids [ST]

Co(Q9) + NH4 (ubiquinone) Prenol Lipids [PR]

DG(18:0_24:0) + NH4 Glycerolipids [GL] 2%

DG(20:1e) + NH4 Glycerolipids [GL] 2%

DG(25:0_18:0) + NH4 Glycerolipids [GL] 64%

DG(26:0_18:0) + NH4 Glycerolipids [GL]

DG(39:1) + NH4 Glycerolipids [GL]

TG(12:0_12:0_12:0) + Na Glycerolipids [GL]

TG(15:0_14:0_15:0) + NH4 Glycerolipids [GL]

TG(15:0_14:0_16:1) + NH4 Glycerolipids [GL]

TG(15:0_16:0_16:1) + NH4 Glycerolipids [GL]

TG(15:0_16:1_18:1) + NH4 Glycerolipids [GL]

TG(16:0_12:0_14:0) + NH4 Glycerolipids [GL]

TG(16:0_13:0_14:0) + NH4 Glycerolipids [GL]

TG(16:0_14:0_14:0) + Na Glycerolipids [GL]

TG(16:0_14:0_14:0) + NH4 Glycerolipids [GL]

TG(16:0_14:0_16:1) + NH4 Glycerolipids [GL]

(Continued)
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Result Lipid species Category Percentage according to lipid category

TG(16:0_18:2_18:3) + NH4 Glycerolipids [GL]

TG(16:0_18:2_20:4) + NH4 Glycerolipids [GL]

TG(16:0_8:0_18:1) + NH4 Glycerolipids [GL]

TG(16:1_14:0_14:0) + NH4 Glycerolipids [GL]

TG(16:1_14:0_16:1) + NH4 Glycerolipids [GL]

TG(16:1_14:0_18:1) + NH4 Glycerolipids [GL]

TG(16:1_16:1_17:1) + NH4 Glycerolipids [GL]

TG(16:1_16:1_18:1) + Na Glycerolipids [GL]

TG(16:1_16:1_18:2) + Na Glycerolipids [GL]

TG(16:1_17:1_18:2) + NH4 Glycerolipids [GL]

TG(16:1_18:2_18:2) + Na Glycerolipids [GL]

TG(16:1_18:2_20:4) + NH4 Glycerolipids [GL]

TG(18:1_17:1_18:2) + Na Glycerolipids [GL]

TG(18:1_18:2_18:3) + Na Glycerolipids [GL]

TG(18:2_17:1_18:2) + NH4 Glycerolipids [GL]

TG(18:3_18:2_18:2) + Na Glycerolipids [GL]

TG(20:3_18:2_18:2) + NH4 Glycerolipids [GL]

TG(20:5_20:5_20:5) + NH4 Glycerolipids [GL]

TG(4:0_16:0_16:0) + Na Glycerolipids [GL]

TG(8:0_10:0_10:0) + Na Glycerolipids [GL]

PC(16:0_18:1) + HCOO Glycerophospholipids [GP]

PC(18:0_18:2) + HCOO Glycerophospholipids [GP]

PC(34:2) + H Glycerophospholipids [GP] 7%

PC(36:1) + H Glycerophospholipids [GP]

Cer(d18:1_19:0) + H Sphingolipids [SP]

Cer(d19:2_23:0 + O) + H Sphingolipids [SP]

(Continued)

TABLE 1 (Continued)
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Result Lipid species Category Percentage according to lipid category

Lipids depleted in embryo 

conditioned media

Cer(d20:0_20:0) + H Sphingolipids [SP] 13%

DG(15:0_16:0) + NH4 Glycerolipids [GL]

DG(16:0_16:0) + H Glycerolipids [GL]

DG(16:0_16:0) + NH4 Glycerolipids [GL] 88%

DG(16:0_17:0) + NH4 Glycerolipids [GL]

DG(16:0_18:1) + NH4 Glycerolipids [GL]

DG(16:0_18:2) + NH4 Glycerolipids [GL]

DG(18:0_16:1) + NH4 Glycerolipids [GL]

DG(18:0_17:0) + NH4 Glycerolipids [GL]

DG(18:0_18:1) + H Glycerolipids [GL]

DG(18:0_18:1) + NH4 Glycerolipids [GL]

DG(18:1_18:1) + NH4 Glycerolipids [GL]

DG(18:1_18:2) + NH4 Glycerolipids [GL]

DG(18:1e) + H Glycerolipids [GL]

DG(18:1e) + NH4 Glycerolipids [GL]

DG(19:1_18:0) + NH4 Glycerolipids [GL]

DG(32:1) + NH4 Glycerolipids [GL]

DG(40:0) + NH4 Glycerolipids [GL]

TG(4:0_14:0_16:0) + NH4 Glycerolipids [GL]

TG(4:0_16:0_18:2) + NH4 Glycerolipids [GL]

TG(4:0_18:0_18:0) + NH4 Glycerolipids [GL]

TG(10:0_12:0_12:0) + NH4 Glycerolipids [GL]

TG(10:0_12:0_12:0) + NH4 Glycerolipids [GL]

TG(10:0_12:0_12:0) + NH4 Glycerolipids [GL]

TABLE 1 (Continued)
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not only metabolic substrates but can activate certain lipid-sensitive 
receptors. Cellular DGs can bind to members of the protein kinase C 
(PKC) family, which leads to their activation and translocation to the 
plasma membrane and subsequent phosphorylation of interacting 
proteins (54). PKCs have been identified in developing embryos, and 
PKC inhibition halts embryo development beyond the eight to 16-cell 
stage in bovine embryos (55). Considering these observations, it is 
plausible that DGs in embryo culture media or mare uterine fluid 
have the capacity to support embryo development both as an energy 
source and as a messenger system that activates developmental 
processes via receptor activation. As DGs are metabolized by the 
lipase pathway for prostaglandin synthesis, while prostaglandins are 
suspected to stimulate the myometrial contractions that propel the 
conceptus throughout the uterine lumen during days 10–16 after 
ovulation (39, 56). If equine embryos do indeed actively deplete DGs 
from their direct environment, this May be related to their known 
ability to produce and continue to secrete prostaglandin E2 and other 
prostaglandins (39).

In this study most importantly, several individual lipids were both 
significantly increased and had a fold change of at least 2  in the 
embryo conditioned media (Figure 6). The sterol lipid cholesterol 
increased across all time points, including an approximate 8-fold 
increase at 12 h. In reproduction, the role of cholesterol is essential in 
early conceptus development as it maintains the integrity/fluidity of 
cell membranes and plays an important role in cell signaling (57). The 
lipid moderates important nuclear receptors, such as fetoprotein 
transcription factor, and is therefore involved in the most fundamental 
signaling pathways during embryonic development (58). Cholesterol 
is also the precursor of all steroid hormones (59) from which both 
progesterone and oestradiol are synthesized through the precursor 
steroid, pregnenolone. As such, the detection of cholesterol is 
particularly pertinent as oestradiol production by the early equine 
conceptus is considered very significant to the establishment of 
pregnancy (60) with substantial quantities of estrogens known to 
be produced by day 12 equine conceptus (61, 62). Another individual 
lipid, Ubiquinone Co(Q9), which is categorized as a prenol lipid (63) 

FIGURE 2

Heatmap visualization of identified lipid abundance (average peak intensity), representing lipid peaks identified. Those secreted (A) into embryo culture 
medium, and those which are depleted (B) from the medium. Each column represents the reading from one individual embryo, and each row depicts a 
different lipid identity. Medium were exchanged every 12  h and embryo-conditioned samples are compared against non-conditioned (embryo-free) 
control media. The heatmap color scale denotes the relative concentration of each lipid mass relative to the minimum and maximum of that lipid for 
all groups and is shown on the right-hand side of the figure. Values are measured by Euclidean distance with a Ward clustering algorithm (n  =  3 per 
group). *p  <  0.05 for each comparison with a fold change of greater than 2.
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FIGURE 3

Volcano plot of lipid IDs from embryo secreted (red) and depleted (blue) medium. On the y-axis lipids with p  <  0.1 are shown, with fold change (FC) >2 
depicted on the x-axis and significance on y-axis.
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FIGURE 4

Pie graph of lipid categories secreted (A) and depleted (B) in embryo-conditioned media.

FIGURE 5

Individual identified lipids secreted (A) and depleted (B) in embryo-conditioned media. Representations of the intensity peaks for individual species with 
box and whisker plots. Each individual lipid is both significantly different between time points and has a fold has a fold change >2. Axis Y: Normalized 
peak intensities (areas) shown.
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was significantly elevated in the media across all time points 
(Figure 6). Co(Q9) is an essential component of the mitochondrial 
electron transfer chain and thus is required for ATP synthesis. The 
presence of such lipids and their subsequent increase over time is 
encouraging, as they indicate embryos are producing a lipid profile 
that is bioactivity relevant. The cascade of events that occurs around 
the time of MRP indicates that lipids, such as Cholesterol, May play a 
more important role in the establishment of pregnancy both in terms 
of what the embryo is synthesizing and how the maternal 
endometrium is changing in response to such precursors.

For investigations into mare MRP, studies have examined the 
endometrial gene expression changes in response to the presence of a 
conceptus during MRP (64–68). Genes involved in lipid metabolism 
and those that serve a lipid biosynthetic process were found to 
be upregulated and overrepresented in the luminal epithelium of early 
pregnant mares (69). The prostaglandin transporter gene SLCO2A1, 
changes cyclically during the menstrual cycle in the human 
endometrium. In the bovine early embryo (70) and porcine early 
embryo (71, 72), its expression has been reported to increase. This 
gene was also found to be upregulated within the luminal epithelium 
of the pregnant mare (73), highlighting the importance of lipid-
associated gene expression around the time of MRP. Interestingly, 
many of the genes upregulated in endometrial epithelium are involved 
in sphingolipid metabolism and signaling. The sphingolipid ceramide 
is known to be involved in regulation of proliferation via its signaling 
role (74), and thus embryo-secreted ceramides, such as those found 

in this study, could form part of the embryo-maternal signaling 
mechanism that stimulates or regulates proliferation of endometrial 
glands, which support the embryo’s nutritional demands. Interestingly, 
ceramides can mimic the actions of progesterone in inducing 
maturation of amphibian oocytes in vitro, via the non-classical 
(membrane) progesterone receptor (75). Given the central role 
progesterone plays in supporting the early pregnancy, the influence of 
ceramides during in vitro culture requires further attention.

While we initially set out to profile the lipids increased in the 
media by the presence of equine embryos, the results of this study 
demonstrate that the “lipid-free” media contained consistently 
detectable amounts of lipids. The detection of MS peaks of residual 
lipids in the control media samples was an unexpected finding; 
some of these were significantly lower in the embryo-conditioned 
media than control media. The additional analysis of 
non-conditioned medium confirmed the presence of numerous 
glycerolipids in embryo-free culture media, the majority of which 
were DGs and TGs. Furthermore, lipid peaks in non-conditioned 
medium increased in response to culture under mineral oil, while 
mineral oil itself evidently contained ceramides, DGs and TGs, 
these were surprising findings. To our knowledge, the alteration of 
culture medium lipid composition by mineral oil overlay has not 
been described previously. Given the influence of lipids on 
preimplantation embryo development, the effect of culturing 
embryos in medium with and without an oil overlay warrants 
additional investigation. As this is the first lipidomic study of the 

FIGURE 6

Lipid IDs whose detection was influenced by inclusion of DMEM/F12 or by incubation under mineral oil, and those detected in mineral oil. Cer, 
Ceramide; CL, Cardiolipin; DG, Diacylglycerol; PS, Phosphatidylserine; TG, Triacylglycerols. All lipids shown are those with p  <  0.05 contribution from 
media components indicated (as determined by one-way analysis).
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embryo secretome in mammals, the identification of potential 
glycerolipid uptake by embryos is of relevance to all mammalian 
embryos cultured in vitro. The definitive origin of these lipids 
remains uncertain but DMEM/F12 and mineral oil could not 
be ruled out as a potential source. Other possible origins include, 
but are not limited to, pipette tips, petri dishes, cryovials, 
streptomycin, or the ever-present possibility of sample 
contamination during handling. We propose that the predominant 
source of unknown lipids in our media was transfer from the fresh 
mineral oil. Furthermore, the identification of this lipid population 
highlights the capacity of the technology to detect and identify 
minute amounts of lipids in samples.

As reported in animal models, the lipid composition of 
culture medium can disturb embryo metabolism and gene 
expression and have consequences on preimplantation 
development and the health of resulting offspring following 
embryo transfer (76, 77). The presence and uptake of an 
unspecified population of lipids May indeed influence future 
development. As the embryo requirements for lipids during in 
vitro culture are not well understood, this area of enquiry has 
gained increasing attention over the past decade. Studies in which 
culture media were supplemented with different quantities and or 
different types of lipids have shown a range of effects on embryo 
development in various species (78). Notably the mare has 
recently gained traction as a particularly suitable model for 
investigations of human fertility and pregnancy, given it is a 
mono-ovulatory mammal with a gestation of a similar duration, 
as well as pertinent similarities in embryo development trajectory 
and mechanisms of pregnancy loss (7, 79, 80). In humans, 
different commercial embryo culture media have been reported 
to alter embryo quality and influence birthweight, with one study 
finding that supplementing embryo culture media with Human 
Serum Albumin (HSA) that contained high levels of residual 
lipids correlated with poorer pregnancy and fetal outcomes (81). 
The type of lipid is of great importance, as illustrated by 
supplementation of embryo culture media with saturated fatty 
acids, which was associated with metabolic stress, developmental 
delays, increased ROS production, and reduced implantation rates 
(81, 82). In addition, in the context of maternal communication, 
the ability for extracellular vesicles (EVs) to transfer molecular 
cargo, such as lipids, from one cell to another has generated a 
growing interest (83), and is relevant for our findings. Embryo-
derived EVs have been pointed to as modulators of embryo 
communication in vitro (84), and embryos cultured in vitro have 
been confirmed to secrete EVs into their immediate environment 
(84, 85). Such research suggests that lipids and lipid-containing 
molecule, such as liposomes May also be secreted in the form of 
EVs by equine embryos, and hence the role of EVs and lipid 
transfer through media warrants further investigation.

In acknowledging the limitations of this study, the small sample 
size must be noted, along with the potential for the in vitro environment 
to induce a stress response. The in vitro culture conditions did support 
continued embryo growth and survival in this study, but it would still 
be prudent to assume that the change in environment elicited some 
stress in the embryos. Therefore, we do not know whether the ceramide 

secretion seen here is physiological or a response to the stress of in vitro 
culture. In liver, skeletal muscle, heart, kidney, and pancreatic β cells, 
elevated ceramide secretion has been observed in response to cellular 
stress and lipotoxicity, leading to apoptosis (86–88). Experiments 
examining the direct effects of ceramides on the endometrium will 
help to determine if these molecules play a role in embryo-maternal 
signaling. Lipotoxicity seems an unlikely cause for ceramide release in 
the present study, since the medium used for embryo culture was 
essentially lipid-free, even though residual levels of lipids were detected 
in the medium-only controls. Nevertheless, it must be considered that 
early embryos May be very sensitive to the lipid milieu and the precise 
requirements and sensitivities of the mammalian embryo need to 
be better understood, especially with regard to lipids in the immediate 
embryonic environment. Of note is that phytoceramides (tCer) are 
much less abundant in mammalian cells than in yeast (89) and are 
predominantly recovered in plants (90) a few of which were identified 
in the current data by LipidSearch, using diagnostic fragment ions 
(with all common mammalian lipid classes included). So, although 
mammalian cells do contain phytoceramides (91, 92), the subcellular 
localisation of their synthesis is still a matter of debate. As with any 
emerging technology, the field of lipidomics is still being refined. 
Further confirmatory work with targeted LC–MS analysis utilizing 
authentic standards, would be helpful to confirm whether these are 
secreted phytoceramides or mislabelled by the software. Thus, despite 
not being abundant in mammals, the identification of tCers warrants 
both inclusion in these findings, and future deeper investigation.

To summarize, this study presents the first high-resolution 
lipidomic profile of the pre-implantation embryo secretome in any 
mammalian species. Predominantly glycerolipids, and in particular 
triglycerides, were consistently released by early equine embryos into 
their culture environment. While the precise functions of defined 
lipids remain to be investigated, many of the lipids identified in this 
study have documented roles in cell signaling, metabolism and 
embryo development. Meanwhile, a cohort of lipids were depleted 
from media during culture, predominantly diglycerides. Since 
diglycerides have a documented capacity to regulate embryo 
developmental processes, these findings emphasize the importance of 
a defined embryo culture medium and a need to identify the lipid 
requirements of the embryo precisely. We also highlight that culture 
media formulated as “lipid-free” contains detectable amounts of a 
wide range of lipid species, many of which are absorbed by the early 
embryo. The profiles described contribute new knowledge about early 
embryo lipid metabolism and production during a critical period of 
pre-implantation development, which will contribute to our 
understanding of early equine pregnancy. Further investigation of the 
specific lipid ions identified in this study can clarify their functional 
roles in early equine pregnancy as well as the uptake of lipids present 
in the embryo culture environment.
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