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Objectives: In veterinary medicine, attempts to apply artificial intelligence (AI)

to ultrasonography have rarely been reported, and few studies have investigated

the value of AI in ultrasonographic diagnosis. This study aimed to develop a deep

learning-based model for classifying the status of canine chronic kidney disease

(CKD) using renal ultrasonographic images and assess its diagnostic performance

in comparison with that of veterinary imaging specialists, thereby verifying its

clinical utility.

Materials and methods: In this study, 883 ultrasonograms were obtained from

198 dogs, including those diagnosed with CKD according to the International

Renal Interest Society (IRIS) guidelines and healthy dogs. After preprocessing

and labeling each image with its corresponding IRIS stage, the renal regions

were extracted and classified based on the IRIS stage using the convolutional

neural network-based object detection algorithm You Only Look Once. The

training scenarios consisted of multi-class classification, categorization of

images into IRIS stages, and four binary classifications based on specific IRIS

stages. To prevent model overfitting, we balanced the dataset, implemented

early stopping, used lightweight models, and applied dropout techniques.

Model performance was assessed using accuracy, recall, precision, F1 score,

and receiver operating characteristic curve and compared with the diagnostic

accuracy of four specialists. Inter- and intra-observer variabilities among

specialists were also evaluated.

Results: The developed model exhibited a low accuracy of 0.46 in multi-class

classification. However, a significant performance improvement was observed in

binary classifications, with the model designed to distinguish stage 3 or higher

showing the highest accuracy of 0.85. In this classification, recall, precision,

and F1 score values were all 0.85, and the area under the curve was 0.89.

Compared with radiologists, whose accuracy ranged from 0.48 to 0.62 in

this experimental scenario, the AI model exhibited superiority. Intra-observer

reliability among radiologists was substantial, whereas inter-observer variability

showed a moderate level of agreement.

Conclusions: This study developed a deep-learning framework capable of

reliably classifying CKD IRIS stages 3 and 4 in dogs using ultrasonograms.

The developed framework demonstrated higher accuracy than veterinary

imaging specialists and provided more objective and consistent interpretations.

Therefore, deep-learning-based ultrasound diagnostics are potentially valuable

tools for diagnosing CKD in dogs.
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1 Introduction

Chronic kidney disease (CKD) is the most prevalent renal

condition in elderly dogs, with an occurrence rate of ∼0.5%−1.5%

in the overall population (1). It is characterized by lasting structural

or functional impairment of the kidneys that persists for at

least 3 months (2). CKD can develop due to various factors,

such as age-related degeneration, genetic predisposition, infections,

toxins, and immune-mediated conditions, presenting with non-

specific symptoms, such as weight loss, vomiting, and lethargy

(3). The diagnosis and staging of CKD follow the guidelines

set forth by the International Renal Interest Society (IRIS).

Various methods, including hematological and imaging tools, have

been used to diagnose CKD. Ultrasonography is a non-invasive

and cost-effective real-time method that plays a key role in

diagnostic imaging.

Canine CKD exhibits several sonographic features,

including irregular contours, increased echogenicity, decreased

corticomedullary differentiation, and decreased renal volume

(4). Moreover, renal function is associated with renal cortical

thickness (5) and these parameters correlate with CKD severity (6).

However, despite these imaging clues, predicting the degree of renal

function impairment through ultrasonography is challenging. The

interpretation of ultrasonograms is subjective, with inconsistencies

in diagnostic criteria. Additionally, the accuracy varies depending

on the radiologist’s experience.

Artificial intelligence (AI) is a comprehensive field of study that

involves creating computer systems to mimic human intelligence,

encompassing problem-solving, learning, and pattern recognition.

Deep learning is a field of AI that involves constructing artificial

neural networks, which are similar in structure to the human

brain, to learn from data. This allows machines to think and make

decisions like humans (7). It is actively used in various industries

such as manufacturing, aviation, aerospace, and electronics, and is

also being extensively researched in the medical field (8, 9). For

example, the U-Net deep learning convolutional neural network

(CNN) based model is primarily used for image segmentation the

biomedical field. It is employed in tasks such as vascular image

segmentation and identifying cells or other pathological features in

tissue samples (10). In humanmedicine, AI represents a pioneering

and efficient approach for the ultrasonographic diagnosis of CKD,

with numerous AI-based ultrasound studies on CKD having been

published (11). These encompass research utilizing traditional

machine learning-based radiomics, as well as deep learning studies

employing CNN-based architectures (12, 13). Some of these studies

have compared AI models with radiologists (14).

In veterinary medicine, various studies applying AI to imaging

diagnosis have been recently published. These studies have

predominantly been conducted in radiographic modalities (15–

17), and there have been recent cases of AI application in other

advanced modalities like MRI as well (18). Regarding the kidney

diseases, there are still relatively few studies applying AI across

all modalities. A study on automatically measuring kidney volume

from CT scans was published in 2022 (19), and a study on renal

calculi detection was reported in 2023 (20). To the best of the

author’s knowledge, there have been no studies applying AI to

kidney ultrasound.

The purposes of this study were to develop a deep learning

model for classifying CKD stages in dogs based on renal

ultrasonograms and to compare its accuracy with that of

radiologists. The goal was to explore the potential of new diagnostic

approaches for enhancing the accuracy and objectivity of medical

image evaluation.

2 Materials and methods

2.1 Ethics statements

Written informed consent was obtained from the canines’

owners for their study participation.

2.2 Study population and database
construction

This study included dogs that visited the Veterinary Medical

Teaching Hospital, Konkuk University, between November 2015

and November 2023. To select the study population, electronic

medical charts were filtered using the keyword “IRIS stage,”

and the medical records of these patients were reviewed. As a

group of patients with CKD, we included those diagnosed and

classified according to the CKD IRIS stage, with both blood

tests and ultrasound examinations conducted simultaneously or

within a maximum interval of 4 weeks. Patients who showed no

abnormalities in either renal function parameters or ultrasound

findings during the same study period were included in the control

group, which was named “IRIS stage 0” for convenience. The

collected clinical data included age, sex, breed, blood symmetric

dimethyl arginine (SDMA) concentration, creatinine level, blood

urea nitrogen (BUN) level, and urine protein creatinine ratio

(UPC). The ultrasonographic examination of each patient was

reviewed, and sagittal plane images were obtained as much as

possible from the optimal frame of the video on both sides and

bilateral still shots of the kidneys. Cases where the kidneys were

not clearly visualized on ultrasonography were excluded from the

analysis. All the images were acquired from two different machines

(Prosound F75 R©; Hitachi-Aloka Medical, Ltd., Tokyo, Japan, and

Canon Apolio i800 R©; Toshiba Medical, Tokyo, Japan), evaluated

using a picture archiving and communication system (INFINITT

PACS; INFINITTHealthcare, Korea), and saved in PNGfile format.

Imaging reports were also documented as the ratio of the renal

length to the aortic diameter. In total, 883 renal images were

obtained from 198 dogs.

2.3 Data preprocessing

Before training, the data was preprocessed to make them

suitable for the learning process. Initially, the image sizes were

standardized. Given that the images varied in size, a center-

cropping approach was employed to resize them, ensuring ease

of application of the model. Subsequently, image-processing

techniques were applied to eliminate annotations drawn by the
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veterinarians during the examination. An image processing library

called “OpenCV” was used for this task. Then, the RGB images

were transformed into the HSV color space, and a binary mask

was created by extracting green tones from the images. This mask

was used to remove any remaining annotations. Next, to further

enhance the image quality, a Laplacian filter was used to sharpen

the images make the information on the ultrasound image clearer.

These preprocessing steps aimed to create a uniform dataset free of

unnecessary annotations and with enhanced image clarity, making

it well-suited for training machine learning models in the context

of veterinary diagnoses.

After preprocessing, the images were labeled for classification.

Labeling involved physically drawing bounding boxes around

selected objects and assigning class names to these annotations as

storedmetadata for a class file. This was performed using the cloud-

based software “Roboflow (Roboflow Inc, USA)”. An experienced

veterinary radiologist (HY) annotated the bounding boxes within

the ultrasonograms to fit around the kidney border and labeled the

IRIS stage. Labeling was assigned in five stages, ranging from 0 to 4

(Figures 1A–E).

2.4 Developing convolutional neural
network models for predicting chronic
kidney disease status

You Only Look Once version 8-n (YOLO-v8-n), a

convolutional network-based object detection model, was

employed in the experimental setup. YOLO-v8-n is a lighter

model with fewer layers than other models, which helps prevent

overfitting by preventing the model from becoming too tuned

to the training data. This implies that the model learns simpler

patterns, trains faster, and operates more efficiently than other

models. In the model, the input image is first divided into an S

x S grid of cells, and each cell predicts multiple bounding boxes.

Each box contains information such as a box confidence score,

indicating the likelihood of containing an object, and a class

confidence score, indicating the accuracy of the predicted class.

Subsequently, to refine predictions, a loss function is computed

to retain only the box closest to the ground truth among multiple

predicted boxes. The model iterates this process during training to

adjust the weights of the network, optimizing them. Once training

concludes, using the optimized weights, predictions of bounding

boxes are made on unseen data for evaluation (21).

The experimental scenarios are divided into two main types:

multi-class classification and binary classification. First, the multi-

class classification scenario involves categorizing stages 0 to 4,

predicting the actual IRIS stage of each renal image.When an image

is input, the AI’s response can be one of five stages (0–4). Next,

the binary classification scenario involves dividing IRIS stages 0 to

4 into two groups and predicting whether each image belongs to

the lower or higher group. For example, it predicts whether a renal

image is below or above IRIS stage 3 (binary). In this case, the AI’s

response indicates the higher or lower group rather than a specific

IRIS stage. There are four possible binary classifications: Stage 0 vs.

1–4, Stage 0–1 vs. 2–4, Stage 0–2 vs. 3–4, and Stage 0–3 vs. 4. We

conducted training and experiments for all 4 cases.

The preprocessed data were divided into training, validation,

and test sets at a ratio of ∼7:1:1 for each experimental setting.

Owing to the small amount of data, the proportions of the

validation and test sets were minimized. To prevent the model

from overfitting the training data, an analysis of the learning

curve was conducted. Early stopping was conservatively set to

30, and the dropout technique was applied at a rate of 30% to

mitigate overfitting.

The data-processing procedure and CNN architecture of the

proposed model are shown in Figure 2.

2.5 Evaluation of model performance

The performance of the models during the training process was

analyzed using training loss and validation loss curves. A confusion

matrix was used to evaluate the performance of the classification

model. The confusion matrix included true positive, false positive,

true negative, and false negative, which were then used to calculate

the accuracy, precision, recall (sensitivity), and F1 score, which

served as performance metrics. These values were calculated as

follows (22–25):

Accuracy=
TP+TN

TP+TN+FP+FN

Recall=
TP

TP+FN

Precision=
TP

TP+FP

F1 score= 2×
Precision× Recall

Precision+Recall

True Positive (TP): Instances correctly classified as positive by

the model.

True Negative (TN): Instances correctly classified as negative

by the model.

False Positive (FP): Instances incorrectly classified as positive

by the model when they were actually negative.

False Negative (FN): Instances incorrectly classified as negative

by the model when they were actually positive.

The receiver operating characteristic (ROC) curve and the area

under the curve (AUC) were used for performance evaluation

(23, 25). The AUC ranged from 0 (indicating that all classes

were diagnosed incorrectly by the classifier) to 1 (reflecting

perfect diagnostic performance across classes). These evaluation

procedures were conducted across five experimental scenarios,

as follows: one for multi-class classification and four for binary

class classification.

2.6 Comparison with radiologists

Four radiologists performed the same diagnostic task using

the test set to compare the performance of the developed

model with that of the radiologist. This comparison was

conducted only in the scenario where the model demonstrated

its highest performance, distinguishing between stages 0–2

and 3–4 using stage 3 as the threshold. Radiologists were
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FIGURE 1

Representative ultrasonograms of the kidney by stages of chronic kidney disease according to the International Renal Interest Society. Each image is

labeled as follows: (A) stage 0, (B) stage 1, (C) stage 2, (D) stage 3, and (E) stage 4.

FIGURE 2

Data preprocessing and overall workflow. P, pooling layer; SPPF, spatial pyramid pooling fusion; C, Concat; U, upsample; C2f, faster implementation

of the C2 module (CSP bottleneck with convolutions); CIoU, class intersection over union; DFL, distribution focal loss; BCE, binary cross-entropy loss.

required to determine immediately whether renal images were

above or below stage 3. This approach reflects the typical

process in clinical practice, where radiologists’ judgments are

influenced by their accumulated experience and are highly

subjective. This process was repeated twice with a one-week

interval. The diagnostic performance of each radiologist was
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evaluated using the same metrics as those used for the

developed model.

The inter- and intra-observer agreements of the radiologists

were calculated. Inter-observer agreement was assessed

using observations from each observer during the initial

evaluation, whereas intra-observer reliability was determined

by comparing each observer’s observations between the initial and

subsequent evaluations.

2.7 Statistical analysis

The study population and clinical data were subjected to

normality test using the Shapiro–Wilk test. All continuous data

are presented as the median and interquartile range (IQR).

Spearman’s correlation analysis was used to analyze the correlation

between the IRIS stage (independent variable) and clinical data

(dependent variables) including LK/AO, RK/AO, SDMA, BUN

and Creatinine. The level of correlation was classified using

the standard recommendation (26). Fleiss’ and Cohen’s kappa

(κ) coefficients of agreement were used to evaluate the inter-

observer agreement and intra-observer reliability of radiologists,

respectively. The interpretation of κ was determined based

on the Landis and Koch criteria: almost perfect (κ ≥ 0.80),

substantial (0.60 ≤ κ < 0.80), moderate (0.40 ≤ κ < 0.60), fair

(0.20 ≤ κ < 0.40), and poor (κ < 0.20) (27). All statistical

significance was set at p < 0.05, and statistical analyses were

performed using R statistical software (version 4.3.2; R Foundation,

Vienna, Austria).

3 Results

3.1 Demographics and clinical data

In total, 198 dogs were included in this study, comprising 39 in

IRIS stage 0, 44 in stage 1, 51 in stage 2, 35 in stage 3, and 29 in

stage 4. The median age of all dogs was 11 years (IQR, 8.00–14.00

years), and the sex distribution was as follows: seven intact males

(3.53%), 104 castrated males (52.52%), 7 intact females (3.53%),

and 80 spayed females (40.4%). The median values for the left and

right kidney length to aorta diameter ratio (LK/AO and RK/AO),

SDMA, creatinine, and BUN of all the dogs were 6.7 (IQR, 5.9–7.5),

7.1 (IQR, 6.1–7.7), 20.0 (IQR, 13.0–36.2), 1.2 (IQR 0.8–2.0), and

28.0 (17.2–51.0), respectively. The UPC was measured in 122 dogs,

with “over” observed in 8 cases, “under” observed in 19 cases, and a

median measurement of 1.0 (IQR, 0.3–2.4) for the rest. The median

ages of each group were 4.0 years (IQR, 2.5–6.0 years) for stage 0,

11.0 years (IQR, 11.0–13.0 years) for stage 1, 13.0 years (IQR, 5.9–

7.2 years) for stage 2, 13.0 years (8.5–14.0 years) for stage 3, and

14.0 years (11.0–16.0 years) for stage 4 (Supplementary Table 1).

The kidney length ratios (LK/AO and RK/AO) did not significantly

change with IRIS stages (p > 0.05). However, SDMA (ρ = 0.913, p

< 0.001), creatinine (ρ = 0.764, p < 0.001), and BUN (ρ = 0.699,

p < 0.001) exhibited strong positive correlations with IRIS stages.

These findings suggest that SDMA, creatinine, and BUN levels are

closely associated with changes in IRIS stages.

TABLE 1 Performance of the developed model in classifying the chronic

kidney disease status of dogs: multi-class classification and binary

classification.

Classification Accuracy F1 score Precision Recall

Multi-class 0.46 0.46 0.50 0.46

Binary

Case 1a 0.65 0.72 0.70 0.65

Case 2b 0.78 0.79 0.78 0.76

Case 3c 0.85 0.85 0.85 0.85

Case 4d 0.80 0.76 0.83 0.80

aExperimental scenario for classifying chronic kidney disease International Renal Interest

Society stages 0 and 1–4.
bExperimental scenario for classifying chronic kidney disease International Renal Interest

Society stages 0–1 and 2–4.
cExperimental scenario for classifying chronic kidney disease International Renal Interest

Society stages 0–2 and 3–4.
dExperimental scenario for classifying chronic kidney disease International Renal Interest

Society stages 0–3 and 4.

3.2 Performance of the classification
model

In multi-class and binary classification, the training loss

decreased as the number of epochs increased, indicating that

the models fit the training data well. When validated using the

validation set, in all cases, as the number of epochs increased, the

validation loss converged to approximately 0.6, with the minimum

validation values ranging between 0.53 and 0.64. The training

progressed well as the validation loss decreased consistently.

In multi-class classification, our model exhibited low

performance, with an accuracy of 0.46. The F1 score, precision,

and recall values were 0.46, 0.50, and 0.46, respectively. Attempting

binary classification with specific stages set as thresholds exhibited

a noticeable improvement in model performance. Across binary

classification cases 1–4, improvements were observed in all

performance metrics. Among these, case 3, which distinguished

between CKD IRIS stages 0–2 and 3–4, exhibited the clearest

classification. The performance achieved an accuracy, F1

score, precision, and recall of 0.85. The performance of the

developed classification models is presented in Table 1. The

confusion matrices for the classification models are shown in

Supplementary Figure 1.

ROC curves were generated for each experimental scenario

(cases 1–4) using binary classification. Notably, the best ROC curve

with an AUC of 0.8975 was observed in case 3 (Figure 3).

3.3 Comparison between the deep
learning model and radiologists

The performance of the four radiologists was evaluated for

the binary classification of case 3, in which the developed model

demonstrated the highest performance. The results confirmed the

superior performance of the model compared with that of all the

radiologists. The radiologist who demonstrated the best results

achieved accuracy, F1 score, precision, and recall values of 0.62,
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FIGURE 3

Comparison of receiver operating characteristic curves of binary classification models for chronic kidney disease status classification. Case 1 of

binary classification distinguishes between chronic kidney disease International Renal Interest Society (IRIS) stages 0 and 1–4, case 2 between stages

0–1 and 2–4, case 3 between stages 0–2 and 3–4, and case 4 between stages 0–3 and 4. Among these, binary classification case 3 achieved the

highest area under the curve, with a value of 0.897.

TABLE 2 Performance comparison between the deep learning model and

radiologists in binary classification case 3a of chronic kidney disease.

Accuracy F1 score Precision Recall

Deep learning

model

0.85 0.85 0.85 0.85

Radiologist

1 0.62 0.70 0.70 0.70

2 0.57 0.65 0.70 0.60

3 0.48 0.54 0.63 0.47

4 0.48 0.53 0.60 0.47

Average 0.54 0.60 0.66 0.56

aExperimental scenario for classifying chronic kidney disease International Renal Interest

Society stages 0–2 and 3–4.

0.70, 0.70, and 0.70, respectively, which were lower than those of

the model across all metrics. The accuracies of the remaining three

radiologists were 0.48, 0.48, and 0.57, respectively (Table 2).

3.4 Inter-observer variability and
intra-observer reliability of radiologists

Inter-observer agreement among the four radiologists was

assessed based on their initial assessments. The obtained kappa

value was 0.602, with a p < 0.001, indicating a statistically

significant moderate level of agreement among the radiologists

(Supplementary Table 2). Additionally, the intra-observer

reliability was measured based on the first and second assessments

by each radiologist. A significant agreement was observed

between the first and second readings of all four radiologists. Two

radiologists (3 and 4) demonstrated almost perfect agreement with

kappa values of 0.879 and 0.855, respectively. The remaining two

radiologists (1 and 2) exhibited substantial agreement with kappa

values of 0.797 and 0.667, respectively. The calculated p-value for

all four radiologists was <0.001 (Supplementary Table 3).

4 Discussion

This study developed a deep learning framework for classifying

ultrasonograms based on the CKD IRIS stages. Although the

five-stage classification showed poor performance, a significant

improvement was observed when simplified into a binary

classification. The top-performing model, designed to distinguish

CKD IRIS stage 3 or higher, exhibited consistently high levels

of accuracy, precision, recall, and F1 score. This study was

designed without data imbalance, indicating that our developed

deep learning framework effectively predicts both positive (IRIS

stage 3 or higher) and negative (IRIS stage <3) classes. The model

achieved accuracy comparable to that of a deep learning model

reported in a similar study conducted in 2019 for distinguishing

CKD IRIS stage 3 or higher from kidney images. In that study,

a model was developed to determine whether an estimated

glomerular filtration rate (eGFR) <60 mL/min/1.73 m² based

on 4,505 ultrasonograms from 1,299 patients with CKD. The

model achieved high-performance metrics with an accuracy of

0.85, AUC of 0.90, sensitivity of 0.61, and specificity of 0.92

(14). Kidney function is particularly susceptible to irreversible

decline once eGFR decreases below 60 ml/min/1.73 m², making

this classification clinically significant (28). If similar criteria are
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established in veterinary medicine, our model is expected to have

even greater clinical importance.

Applying a threshold between IRIS stages 2 and 3 yielded the

best classification performance. However, explaining this result

is difficult because deep learning models learn patterns from

data without explicit programming, which obscures the optimal

features used by the algorithm (7). Interestingly, several previous

studies have reported significant imaging and clinical changes in

CKD IRIS stages 2 and 3. A study investigating renal cortical

thickness using ultrasonography in patients with CKD found a

significant difference in cortical thickness between IRIS stages

2 and 3 (5). Minimal changes in cortical thickness occur in

the early disease stages, with a marked decrease in the later

stages due to compensatory hypertrophy of the outer medulla,

which is typically considered the renal cortex. Furthermore, a

study observed a significant increase in the number of dogs with

three or more abnormal ultrasound findings as they progressed

from CKD IRIS stages 2–4 (4). There have also been reports of

significant differences in prognosis between IRIS stages 2 and 3

(29). According to other research, compared with dogs diagnosed

with IRIS stages 1 and 2, dogs diagnosed with IRIS stage 3 had

a 2.62-fold higher risk of CKD-related death (95% confidence

interval [CI]: 1.14–6.01, p = 0.023), and dogs diagnosed with IRIS

stage 4 showed a 4.71-fold higher risk (95% CI: 1.74–12.72, p =

0.002) (3).

In the task of discriminating IRIS stage 3 or higher, which

exhibited the highest performance in the binary classification, the

performance of AI surpassed that of radiologists. Although kidney

ultrasonography is a routine and straightforward task, the accuracy

of radiologists is presumed to be low because they typically do

not consider the prediction of IRIS stages when conducting renal

ultrasonographic examinations. In contrast, the AI model that

was specifically trained for this classification task demonstrated

excellent performance. Through comparison experiments with

radiologists, it was confirmed that the AI model could be an

effective substitute for experts.

The intra-observer reliability among the individual radiologists

reached a significant level, indicating consistent diagnostic

criteria for each radiologist. However, there was a moderate

level of variability between different radiologists (inter-observer

variability), suggesting divergent diagnostic criteria among them.

In this context, deep learning-assisted ultrasound diagnosis can

improve diagnostic objectivity by providing consistent criteria and

capabilities. Moreover, by serving as a virtual discussion partner for

radiologists, it can aid in decision-making processes.

This study had some limitations. First, as a single-center study

conducted using only two types of ultrasound devices, the dataset

primarily comprised images generated from a single ultrasound

machine owing to the recent introduction of a new device at this

center. Consequently, there is a risk of the AI model becoming

overly adapted to images from specific equipment, potentially

hindering its ability to generalize. Second, compared with similar

studies in human medicine, the present animal study had a

smaller sample size and dataset, which can increase the risk of

overfitting in AI models owing to the lack of data diversity.

Therefore, efforts were made throughout the experimental design

to prevent overfitting, as aforementioned. Hence, further research

using larger multicenter datasets is warranted. Alternatively,

innovative approaches, such as generative models, may offer

potential solutions to address the ongoing challenge of limited

data in veterinary AI research. Finally, this study did not directly

incorporate the glomerular filtration rate (GFR) as a measure

of renal function. Expanding quantitative prediction studies to

include variables, such as GFR or SDMA, could provide valuable

insights into renal function assessment.

In conclusion, this study developed a deep learning

framework capable of reliably classifying CKD IRIS stages 3

and 4 in dogs using ultrasonograms. The developed framework

demonstrated higher accuracy than veterinary imaging specialists

and provided more objective and consistent interpretations.

Hence, deep-learning-based ultrasound diagnostics have

been proven to be potentially valuable tools for diagnosing

CKD in dogs.
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