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Eimeria maxima (APU1 and APU2) differ in virulence for chickens, due in part to 
the greater fecundity of the former. In a previous study, RNA-seq was used to 
identify a transcripts upregulated in E. maxima APU1 compared to E. maxima 
APU2. In this study, 2 of these upregulated genes (EMWEY 23530 and EMWEY 
48910) were characterized by first confirming upregulation using quantitative 
RT-PCR. For both EMWEY 23530 and EMWEY 48910, RNA transcription was 
fairly consistent during sporulation. The extent of differential expression was 
about 2-fold log2 higher in APU-1 compared to APU-2 (peaking at 18  h for 
EMWEY 23530 and 0  h for EMWEY 48910). EMWEY 23530 and EMWEY 48910 
cDNA were cloned and expressed as polyHis-fusion proteins in Escherichia coli. 
The observed size of recombinant EMWEY 23530 was 24  kDa; the observed 
size of recombinant EMWEY 48910 was 35  kDa, which are consistent with the 
predicted size based on the coding sequences. Immunostaining 2D gel blots of 
E. maxima APU1 and APU2 oocyst/sporocyst protein with antisera specific for 
EMWEY 23530 identified a 33.5  kDa protein with a pH 7.4 isoelectric point (Emax 
p33.5). Similar 2D gel blot analysis with EMWEY 48910 identified a 41  kDa protein 
with a pH 7.2 isoelectric point (Emax p41). The intensity of Emax p33.5 and 
Emax p41 was noticeably greater in oocyst/sporocyst proteins from E. maxima 
APU1 compared to E. maxima APU2. This was corroborated by ELISA wherein 
equal amounts of total E. maxima APU1 and APU2 protein were probed with 
serial dilutions of anti-rEmax p33.5 or anti-rEmax p41. Immunofluorescence 
(IFA) staining of permeabilized unsporulated E. maxima APU1 and APU2 
oocysts revealed Emax p33.5 to be  localized in one end of oocysts, while 
Emax p41 appeared on the surface of oocysts. After sporulation, the p33.5 and 
p41 antigens appeared loosely associated with sporocysts. Taken together, 
these data confirm excess expression of two proteins in the E. maxima strain 
characterized by greater fecundity and virulence, and may provide insight into 
basis for phenotypic differences among different E. maxima.
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Introduction

Avian coccidiosis is an intestinal disease that occurs world-wide in 
poultry causing annual losses in excess of $ 13 billion (1). The losses 
stem from poor weight gain and feed conversion efficiency in infected 
chickens and from increased mortalities due to necrotic enteritis (NE) 
of which coccidiosis is a major predisposing factor. The causative 
organisms are protozoa in the genus Eimeria that are transmitted 
through a fecal-oral route of infection arising from the ingestion of an 
environmentally-resistant oocyst stage that is present in litter. 
Although coccidiosis in chickens can be caused by any of 7 Eimeria, 
the most problematic is Eimeria maxima because it infects a region of 
the gut that is a critical region for nutrient uptake. Moreover, 
E. maxima disrupts the intestinal epithelium and thereby is 
predisposing to invasion and subsequent toxin release by Clostridium 
perfringens leading to NE. In our research, two strains of E. maxima, 
namely E. maxima APU1 and APU2, were characterized as having 
different levels of pathogenicity due in part to differences in fecundity, 
with E. maxima APU1 producing greater numbers of oocysts than 
E. maxima APU2 (2). The genetic basis for these phenotypic 
differences has been explored using RNA-seq. This technology has 
been used to study Eimeria oocyst sporulation (3–5), to compare 
different Eimeria life cycle stages in vivo and in vitro (6–11), to compare 
precocious to virulent Eimeria (12–14), and to compare drug-sensitive 
to drug-resistant isolates (15–23). All of these studies have identified 
genes that may encode proteins involved in parasite development and 
drug resistance. In our research, RNA-seq analysis identified several 
genes whose transcripts were upregulated in the more fecund and 
virulent E. maxima APU1 (24). The present study describes the 
molecular characteristics of these two upregulated transcripts.

Materials and methods

Parasites and preparation of native protein

Eimeria maxima APU1 and APU2 were isolated from commercial 
broiler farms over 10 years ago and have been propagated every 3 mo. 
since isolation in susceptible chickens. Purity of the isolates was 
confirmed after each propagation by microscopy and ITS1-PCR (25). 
Eimeria maxima APU1 and APU2 oocysts were treated for 30 min with 
6.5% sodium hypochlorite to remove contaminating bacteria, washed 5 
times with diH2O with centrifugation at 1850 g for 10 min and suspended 
in Saline A (140 mM NaCl, 5 mM KCl, 4.2 mM NaHCO3, 0.1% glucose, 
pH 7.0). The oocysts were ground in a glass mortar with a Teflon pestle 
75 times to release sporocysts. An aliquot of the sporocysts were 
subjected to in vitro excystation at 41°C by exposure to 0.5% trypsin and 
4% sodium taurocholate (Sigma) plus 1 mM dithiothreitol (DTT) for 
about 45 min. Released sporozoites, intact sporocysts, and oocysts were 
pelleted by centrifugation for 10 min at 13,800 g, followed by 
resuspension in PBS [for IFA (see below)] or 8 M urea, 2% CHAPS, and 
50 mM DTT for isoelectric focusing (see below).

Quantitative RT-PCR

In the previous study detailing RNA-seq in E. maxima strains 
APU-1 and APU-2, oocysts during a sporulation time course were 

collected every 6–12 h up to 48 h (24). RNA and cDNA from oocysts of 
that study were used in the current study for quantitative reverse 
transcriptase PCR. Here, we measured transcription of genes EMWEY 
23530 (encodes 18 kDa cyclophilin) and EMWEY 48910 (encodes a 
hypothetical protein) following similar procedures. In brief, RT-qPCR 
reactions were prepared using SsoAdvanced Universal SYBR Green 
Supermix (Bio-Rad, Hercules, CA, United States), with 400 nM of each 
primer (Table  1), and 1 μL of diluted cDNA in a total volume of 
10 μL. EMWEY 42350 (Beta tubulin, 200 nM) was used as a reference 
to normalize the expression levels of target genes. RT-qPCR consisted 
of an initial denaturing step at 95°C for 30 s, followed by 35 cycles of 
95°C for 15 s, 55°C for 20 s. Melt-curve analysis entailed 55–95°C in 
increments of 0.5°C for 5 s. The abundance of mRNA at time points T0, 
T18, T36 was compared between strains APU-1 and APU-2 in triplicate 
reactions. Gene expression was estimated for the reference and target 
genes after averaging the Cq values for each replicate at each time point. 
The fold change in expression was calculated using an efficiency-
corrected relative expression method (26). Each experiment was 
performed three times, and the mean of expression change (log2 fold 
change (FC)) was calculated for each gene and time point. All primers 
were designed using NCBI Primer-BLAST (27) and synthesized by 
Integrated DNA Technologies (Coralville, IA, United States).

Expression cloning

EMWEY 23530 and EMWEY 48910 sequences were identified in a 
previous RNA-seq analysis to be upregulated at all time-points during 
sporulation of E. maxima oocysts (24). Further comparative 
transcriptome analysis between two strains of E. maxima (APU1 and 
APU2) revealed about a two-fold greater number of EMWEY 23530 and 
EMWEY 48910 transcripts in E. maxima APU1 than in E. maxima 
APU2. The open reading frame of EMWEY 23530 and EMWEY 48910 
were synthesized by a commercial company (GenScript, Piscataway NJ) 
containing 5’ XhoI and 3’ EcoRI sites for cloning into pBluescript II 
SK. The cDNA inserts were excised with XhoI and EcoRI, cloned into 
pTrcHisA (Invitrogen) with DNA ligase, and recombinant plasmid used 
to transform Escherichia coli BL21. Recombinant clones were expanded 
in LB-Amp at 37°C and induced at log phase growth (O.D.600 = 0.5) for 
4 h with 1 mM IPTG. The induced cells were harvested by centrifugation 
at 1850 RPM for 10 min. The cell pellets were extracted first for 30 min 
with NBB containing 0.1 mg/mL lysozyme and protease inhibitors, 
followed by DNase and RNase treatment for an additional 30 min on a 
rocker. The soluble fraction after NBB treatment was collected by 
centrifugation, and the resulting pellet was further extracted with DBB 
for 30 min on a rocker, followed by centrifugation to retrieve denaturing 
soluble (DS) supernatant. Recombinant EMWEY 23530 and EMWEY 
48910 proteins were purified by affinity chromatography using NiNTA 
agarose (Invitrogen) and NiNTA eluates were analyzed by SDS-PAGE 
and immunoblotting (see below).

Preparation of polyclonal anti-EMWEY 
23530 and anti-EMWEY 48910 sera

Eluates from NiNTA-column purification of recombinant EMWEY 
23530 (rEMWEY 23530) and EMWEY 48910 (rEMWEY48910) were 
used to immunize New Zealand White rabbits (2/recombinant antigen) 
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(Pacific Immunology, Ramona CA). Immunizations utilized Freund’s 
Complete Adjuvant in the primary immunization and Freund’s 
Incomplete Adjuvant in booster immunizations at 3, 6, and 10 weeks 
post-primary immunization. Blood was collected prior to primary 
immunization, at various time-points during and after the final booster 
immunization, and processed for serum using standard procedures (28).

Isoelectric focusing

Eimeria maxima APU1 and APU2 oocyst, sporocyst, and 
sporozoite protein from 107 oocysts were extracted with 8M urea, 2% 
CHAPS, and 50 mM DTT at RT for 1 h on a rocker, followed by 
centrifugation for 10 min at 13,800 g. The supernatant protein 
concentration was estimated by BCA assay. Eimeria maxima APU1 or 
APU2 protein (100 μg) was mixed with Rehydration/Sample buffer 
(Bio-Rad, Hercules CA) and adsorbed to ReadyStrip IPG strips pH 
7–10 for 10 h at RT following manufacturer’s instructions (Bio-Rad). 
The IPG strips were then subjected to isoelectric focusing in the 
following steps: Step 1–250 v, 20 min, linear ramp speed; Step 2–4,000 
v, 2 h, linear ramp speed; Step 3–4,000 v to reach 10,000 v-hr, rapid 
ramp speed. After IEF, the IPG strips were rinsed with Equilibration 
Buffers I and II for 10 min each, then inserted into a preparative well 
of SDS-PAGE and overlain with low melting point agarose containing 
trace amounts of Bromophenol Blue.

SDS-PAGE/immunoblotting

Unpurified and NiNTA-purified recombinant EMWEY 23530 
(rEMWEY 23530) and EMWEY 48910 (rEMWEY 48910) proteins 
were analyzed by SDS-PAGE followed by transblotting to Immobilon 
membrane (Millipore-Sigma Burlington MA), followed by 
immunostaining with mouse anti-His antibodies (Invitrogen-Thermo 
Scientific, Waltham MA) using standard procedures (29). For 2D gel 
analysis, IPG strips were subjected to SDS-PAGE for fractionation of 
IEF-resolved native E. maxima APU1 and APU 2 proteins followed by 
transblotting to Immobilon membrane. The membranes were 
immunostained with rabbit anti-rEMWEY 23530 or anti-rEMWEY 
48910 sera using standard procedures (29).

Enzyme-linked immunosorbent assay

Eimeria maxima APU1 and APU2 native protein extracted for 2D 
gel immunoblotting was diluted in carbonate buffer (pH 9.5) and 

adsorbed for 6 h at 37°C onto wells of Immulon II microtiter plates 
(Thermo Scientific) at 1.0  μg/well. The wells were washed with 
PBS-containing 0.05% Tween 20 (BSA-Tw), blocked for 30 min with 
1% BSA in PBS-Tw, incubated for 1 h at RT with serial dilutions of 
rabbit anti-EMWEY 23530 or anti-EMWEY 48910 sera or 
pre-immunization sera, followed by alkaline-phosphatase labeled 
anti-rabbit IgG (Sigma, 1:1000 dilution) for an additional 1 h at 
RT. Binding was visualized by addition of alkaline-phosphatase 
substrate (1 mg/mL p-nitrophenyl phosphate, disodium) and 
measured on a microtiter plate reader (SpectraMax 190, Molecular 
Devices, San Jose, CA) at 405 nm. Antibodies were removed after each 
step by 3 washes with PBS-Tw.

Immunofluorescence assay

Eimeria maxima APU1 and APU2 oocysts, sporocysts, and 
sporozoites (see above) were adhered to the surface of 8-well 
microscope slides (MP Biomedicals, San Diego CA), air-dried, and 
then treated with cold methanol for 5 min, followed by a brief wash 
with PBS-Tw. The wells were first treated with PBS-Tw + 1% BSA, 
followed by a 1 h incubation with a 1:100 or 1:500 dilution of rabbit 
anti-EMWEY 23530 or anti-EMWEY 48910 sera or 
preimmunization sera, followed by a 1 h incubation with a 1:100 
dilution of FITC-labeled goat anti-rabbit IgG (Sigma). The slides 
were washed between each incubation step with PBS-Tw, allowed to 
air dry after the last wash, overlaid with VectaShield (Vector 
Laboratories, Newark NJ) anti-bleaching medium and a coverslip. 
The slides were examined on a Zeiss microscope and images 
captured using software.

Results and discussion

Quantitative RT-PCR

qRT-PCR using primers directed to either EMWEY 23530 or 
EMWEY 48910 corroborated our previous RNA-seq findings in 
that both EMWEY 23530 and EMWEY 48910 were transcribed 
1.5–2.0 log2 higher at all timepoints in E. maxima APU1 compared 
to E. maxima APU2 (Figures  1A,B). In the current study, the 
greatest difference in EMWEY 23530 expression between 
E. maxima APU1 and APU2 was at 18 h sporulation (Figure 1A); 
for EMWEY 48910 was at 0 h sporulation (Figure 1B). These data 
along with the IFA staining pattern suggest that EMWEY 23530 and 

TABLE 1 Oligonucleotide primers used in quantitative RT-PCR analysis of RNA from Eimeria maxima APU1 and APU2 during oocyst sporulation.

Primer name Target Sequence (5′–3′) Amplicon size (bp)

EMWEY 23530-F2 Cyclophilin TGGTTCAGGGAGGGGATGTA 142

EMWEY 23530-R2 TTCGTGTTTGGACCGGCATT

EMWEY 48910-F2 Hypothetical Protein GTTGAAGAACAGCCATTCGGC 177

EMWEY 48910-R2 AGTTGTTTCCTGGTCTCCACTC

EMWEY 43250-F2 Beta Tubulin CACTGGTACACCGGGGAAG 102

EMWEY 43250-R2 GGTGGCATCCTGGTACTGC
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FIGURE 1

Comparison of increased EMWEY 23530 (A) and EMWEY 48910 
(B) transcript levels in Eimeria maxima APU1 vs. E. maxima APU2 at 
different times of sporulation as measured by quantitative RT-PCR 
analysis.

EMWEY 48910 code for proteins that play some role in oocyst 
wall formation.

Expression of recombinant protein and 
identification of relevant native protein

Expression cloning of EMWEY 23530 and EMWEY 48910 as 
polyHis fusion proteins in Es. coli revealed by SDS-PAGE/
immunoblotting a 24–26 kDa protein for the former and a 35 kDa 
protein for the latter (Figure 2). The predicted size of recombinant 
EMWEY 23530 based on the DNA sequence is 20.5 kDa which with 
the addition of the upstream polyHis tail (~5 kDa) would give rise to 
the observed 24–26 kDa protein. The observed (35 kDa) and predicted 
(29.5 kDa) sizes of recombinant EMWEY 48910 is also in agreement 
with the DNA sequence. Employing 2D gel blots of native E. maxima 
protein, polyclonal antisera specific for EMWEY23530 identified a 
native 33.5 kDa protein with a pI = 7.4 (Figure 3). A similar method 
using antisera specific for EMWEY 48910 identified a 41 kDa protein 
with a pI = 7.2 (Figure 3). The difference between observed (33.5) and 
predicted (20.4) sizes of EMWEY 23530 may be  due secondary 
processing such as glycosylation and to 3D folding of the protein. A 

similar size discrepancy between observed (41 kDa) and predicted 
(29.5) EMWEY 48910. Software for predicting N-glycosylation sites1 
and O-glycosylation sites2 found 2 potential N-glycosylation sites and 
8 potential O-glycosylation sites in EMWEY 23530. Similar analyses 
for EMWEY 48910 found 2 potential N-glycosylation sites and 5 
potential O-glycosylation sites.

The higher transcript levels of EMWEY 23530 and EMWEY 48910 in 
E. maxima APU1 compared to E. maxima APU2 was also observed at the 
protein level as observed in 2D immunoblots of E. maxima APU1 or 
E. maxima APU2 native oocyst/sporocyst protein. Eimeria maxima 
APU1 displayed greater amounts of the native 33.5 (Figure 3A) and 
41 kDa proteins (Figure  3B) than E. maxima APU2. The greater 
expression of native EMWEY 23530 and EMWEY 48910 was 
corroborated by ELISA using total native E. maxima APU1 and APU2 
protein probed with anti-rEMWEY 23530 or anti-rEMWEY 48910 sera 
(Figure 4). These data suggest that higher EMWEY 23530 and EMWEY 

1 https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/

2 https://services.healthtech.dtu.dk/services/NetOGlyc-4.0/

FIGURE 2

SDS-PAGE analysis of unpurified (UP) and NiNTA affinity 
chromatography-purified recombinant EMWEY 23530 (upper panel) 
and recombinant rEMWEY 48910 protein (lower panel) visualized by 
Coomassie Blue staining (left panels) or immunoblotting with mouse 
anti-His tag sera (right panels). UP-unpurified, E1-, E2-, E3-NiNTA 
eluate fractions used in generation of rabbit antisera, kDa-relative 
molecular size markers.
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48910 transcript levels leads to greater amounts of Emax p33.5 and Emax 
p41 protein in E. maxima APU1 compared to E. maxima APU2.

Antigen localization by IFA

EMWEY 23530 appeared to localize to antigens found internal and 
external to E. maxima APU1 and APU2 oocysts whereas EMWEY 48910 
was only found inside oocysts and appeared to be  associated with 
sporocysts (Figure  5). The reactivity of antisera, particularly against 
rEMWEY48910, to sporocysts inside oocysts may be explained by the 
variability in morphology of oocysts after grinding and excystation. Many 
oocysts and sporocysts did not react with the antisera (data not shown) 
suggesting that the antigen is present inside oocysts and is released when 
the oocyst wall is completely broken open. No internal labeling of 
sporozoites was observed with anti-EMWEY 48910 sera and no difference 
in the staining pattern between E. maxima APU1 and APU2 oocysts, 
sporocysts, and sporozoites was found (data not shown). The similarity 
in IFA staining of E. maxima APU1 and APU2 which is different than the 
increased binding as observed by 2D gel immunoblotting and ELISA 
probably reflects the more random nature of microscopy staining. 2D 
immunoblots and ELISA utilize total protein which would be  less 
susceptible to effects on morphology.

Conclusion

Previous studies using RNAseq to compare RNA transcripts 
between two different strains of E. maxima during sporulation 
identified a number of upregulated genes in E. maxima APU1 
compared to E. maxima APU2. This study employed qRT-PCR to 
confirm the relatively higher levels of EMWEY 23530 and EMWEY 
48910 transcripts in E. maxima APU1. This greater expression was 
reflected in greater intensity of native Emax p33.5 and Emax 41 protein 

FIGURE 3

2D gel immunoblot analysis of Eimeria maxima APU1 or E. maxima APU2 total oocyst, sporocysts, sporozoite protein resolved by isoelectric focusing 
(IEF) in the first dimension and SDS-PAGE in the second dimension. Equal amounts of total E. maxima APU1 and APU2 protein were subjected to 2D 
gel electrophoresis and immunostained with antisera specific for recombinant EMWEY 23530 (A), or EMWEY 48910 (B).

FIGURE 4

Enzyme-linked immunosorbent assay (ELISA) analysis of equal 
amounts (1 μg) of total Eimeria maxima APU1 (closed 
symbols) or E. maxima APU2 (open symbols) protein adhered to 
Immulon 2 HB plates and probed with serial dilutions of anti-
EMWEY 23530 sera (A) (log reciprocal dilutions 3.4, 3.7, and 4.0) 
or anti-EMWEY 48910 sera (B) (log reciprocal dilutions 2.5, 2.8, 
and 3.1).
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as observed in 2D gel immunoblots and in ELISA using antisera to 
recombinant EMWEY 23530 and EMWEY 48910. The former appears 
to be associated with an antigen inside and outside sporulated oocysts, 
whereas the latter is only found inside oocysts and loosely associated 
with sporocysts. Whether these proteins have any role in the differences 
in fecundity between E. maxima APU1 and APU2 remains unknown.
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