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Lumpy skin disease (LSD) is an infectious disease currently spreading worldwide 
and poses a serious global threat. However, there is limited evidence and 
understanding to support the use of models to inform decision-making in LSD 
outbreak responses. This review aimed to identify modelling approaches that can 
be used before and during an outbreak of LSD, examining their characteristics 
and priorities, and proposing a structured workflow. We conducted a systematic 
review and identified 60 relevant publications on LSD outbreak modelling. The 
review identified six categories of question to be addressed following outbreak 
detection (origin, entry pathway, outbreak severity, risk factors, spread, and 
effectiveness of control measures), and five analytical techniques used to 
address them (descriptive epidemiology, risk factor analysis, spatiotemporal 
analysis, dynamic transmission modelling, and simulation modelling). 
We evaluated the questions each analytical technique can address, along with 
their data requirements and limitations, and accordingly assigned priorities to 
the modelling. Based on this, we propose a structured workflow for modelling 
during an LSD outbreak. Additionally, we  emphasise the importance of pre-
outbreak preparation and continuous updating of modelling post-outbreak for 
effective decision-making. This study also discusses the inherent limitations 
and uncertainties in the identified modelling approaches. To support this 
workflow, high-quality data must be  collected in standardised formats, and 
efforts should be  made to reduce inherent uncertainties of the models. The 
suggested modelling workflow can be  used as a process to support rapid 
response for countries facing their first LSD occurrence and can be adapted to 
other transboundary diseases.
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1 Introduction

Transboundary animal diseases are infectious diseases that cross 
borders and affect animal and human populations and ecosystems. 
Diseases such as lumpy skin disease (LSD), foot-and-mouth disease 
(FMD), African swine fever (ASF), and high pathogenicity avian 
influenza (HPAI) represent serious threats to humanity as they spread 
to neighbouring countries through trade in live animals, animal 
products, and vectors, causing major animal health and economic 
crises (1, 2). The spread of these diseases has caused significant 
disruptions to global food systems and has highlighted the need for 
effective surveillance and control measures to reduce the spread and 
impact of transboundary animal diseases.

Rapid development and implementation of response strategies 
after the first occurrence of a transboundary animal disease in a 
country are essential for mitigating impacts, with the goal of 
containing the situation and hopefully achieving elimination locally. 
In 2001, when FMD was confirmed in Essex in the UK, the 
government swiftly implemented control strategies, including a ban 
on livestock movement, epidemiological investigation, culling within 
24 h of detection, and a prohibition on all exports of meat and live 
animals, which helped alleviate the risk of international spread and 
minimise losses (3, 4). The COVID19 pandemic has highlighted the 
urgent need for prompt response in infectious disease outbreaks. 
Countries are systematically preparing responses for future animal 
disease emergencies based on experience and available scientific 
information (5, 6). However, there is a lack of useful categorisation 
regarding the modelling necessary to understand and respond to the 
complex situations that arise during an outbreak.

In the context of disease outbreaks, mathematical and statistical 
models can estimate the spread and impact of a disease and evaluate 
the potential effects of control measures to inform when and where 
they should be implemented (7–9). In addition, models can be used 
for timely monitoring of the effects of interventions, identifying 
potential gaps between the available and required resources to support 
control measures, and determining when and where strategic or 
tactical changes may be  needed (10). The information provided 
supports decision-making and helps respond more quickly and 
effectively. Therefore, modelling is an essential tool for mitigating the 
spread of infectious diseases and preventing their escalation into 
animal health emergencies.

LSD is a viral disease primarily affecting cattle that can spread 
by various transmission pathways. The disease is mainly reported 
to be  mechanically transmitted from clinically infected or 
subclinically infected cattle by biting arthropods (11). Direct 
contact with infected animals, or via contaminated objects may play 
a smaller and less defined role in transmission (12). Additionally, 
indirect transmission between cattle through shared water troughs 
has been reported (13). However, the extent to which each of these 
transmission routes contributes to the spread of the disease is not 
well-established. LSD is characterised by nodular lesions in the skin 
and other epithelial tissues (e.g., gastrointestinal tract, respiratory 
tract), fever, loss of appetite, and decreased milk production, 
resulting in significant production losses (12, 14). The virus is 
infectious and spreads quickly within a country after the first 
occurrence (15). To effectively respond to this, a timely modelling 
approach is necessary. However, each modelling approach has 
varying resource requirements and considerations, and the 

resulting uncertainty complicates decision-making. Therefore, 
understanding of the timeliness of modelling approaches is an 
important aspect in planning and executing response 
measures appropriately.

We conducted a systematic review of eligible studies to identify 
and assess currently available models for LSD and their timeliness for 
application, and to review models or analyses that can be developed 
in advance of an outbreak. Therefore, in this study, we examine what 
modelling can be undertaken before and after detection of the first 
LSD occurrence in a country, develop a workflow for performing such 
modelling, and evaluate the limitations of models or the workflow. 
We defined modelling as encompassing all analytical approaches that 
can describe (i.e., back- and now-cast) and forecast the progress of 
epidemics, including analysing epidemic curves, spatiotemporal 
trends and risk factors, and quantitative approaches that use data to 
guide inference and decision-making. This definition is therefore not 
limited to simulation modelling.

2 Materials and methods

2.1 Study protocol and eligibility criteria

This review procedure followed the Preferred Reporting Items for 
Systematic Review and Meta-Analysis Protocols (PRISMA-P) 
guidelines (16, 17). Table 1 summarises the eligibility criteria and 
search strings used. Based on initial review of the literature and 
consultations with government veterinarians and further experts and 
stakeholders included as co-authors of this paper, we categorised the 
six questions of interest to scientists and decision-makers in an LSD 
outbreak: origin, entry pathway, outbreak severity, risk factors, spread, 
and effectiveness of control measures. We included only studies using 
suitable analytical methods to answer questions under these 
categories. The target population and disease were cattle and LSD, 
respectively. The review excluded research that examined 
capripoxviruses other than LSD virus (LSDV). Since we  included 
various research methodologies in the review, it was not possible to 
establish a comprehensive intervention and comparator. Therefore, 
we assigned the corresponding criteria only to risk factor analyses 
with distinct interventions and comparators. There were no 
restrictions on publication year or language.

2.2 Information sources and study 
selection

We searched the databases (PubMed, Web of Science, Scopus, and 
Google scholar) on 8 Feb 2023 using the search string “(Lumpy Skin 
disease OR LSD) AND (modeling OR modelling) AND (epidemiology 
OR outbreak)”. When additional publications related to the review’s 
objectives were discovered through further searches, these were also 
included in the study selection process. We uploaded search results to 
Zotero 6.0 (Corporation for Digital Scholarship, Virginia, 
United States) and removed duplicates. Two independent researchers 
evaluated the eligibility of each study. During the initial assessment, 
two independent researchers reviewed the titles and abstracts, while 
the full text was reviewed in the last assessment. Discrepancies were 
resolved through consensus or independent reviewer mediation.
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2.3 Data extraction

Two independent researchers extracted the following data from 
eligible studies: author, publication year, analysis type, sub-categories 
of analysis type, category of questions of interest, required data, 
country, and study period. We collected only the data presented in the 
article; no contact was made with the authors to gather or confirm any 
information. There were no data assumptions made, and missing data 
were noted as “not available.”

2.4 Summary of review

We classified the models used in eligible studies into five over-
arching types based on their purposes and further subdivided them 
into 17 sub-categories based on their method (see Figure 1).

 1. Descriptive epidemiology: used to evaluate the severity of LSD 
outbreaks and spatiotemporal distribution.
o Basic statistics.
o Epidemic curve plotting, outbreak mapping, analyses 

and interpretation.
 2. Risk factor analysis: various analytical methods to identify 

factors contributing to LSD outbreaks.
o Measures of association.
o Quantitative risk assessment (QRA).
o Machine learning algorithms.
o Hierarchical Bayesian modelling (HBM).
o Generalised linear mixed modelling (GLMM).

 3. Spatiotemporal analysis: a more detailed approach that goes 
beyond descriptive epidemiology and investigates the timing 
and location of disease occurrence.
o Spatiotemporal cluster analysis.
o Ecological niche modelling (ENM). ENMs identify areas 

highly suitable for the presence of LSDV or its carrying 
vectors based on environmental factors, in contrast to Species 
Distributions Models (SDMs) which estimate the actual 
distributions of species (18). Therefore, this paper focusing 

on disease incursion has directed its emphasis solely towards 
ENMs, not considering SDMs.

o Time-series modelling.
 4. Transmission modelling: explicitly exploring and modelling 

the underlying mechanisms of how diseases are introduced 
and spread.
o Phylogenetic analyses.
o Basic reproduction number (R0) and effective reproduction 

number (RE) estimation.
o Spatial kernel-based transmission rate estimation.
o Dynamic transmission modelling. Dynamic transmission 

modelling estimates changes in compartments that represent 
susceptible, infectious, and recovered premises or individuals 
using fundamental epidemiological parameters (19). When 
the SIR model incorporates specific intervention strategy 
scenarios, it is classified as scenario modelling. Conversely, 
when the SIR model is applied using only the basic 
epidemiological parameters without integrating specific 
intervention scenarios, it is categorised as dynamic 
transmission modelling.

o Integrated genomic and epidemiological transmission 
network modelling.

 5. Simulation modelling: simulating future transmission patterns 
and control measure effectiveness.
o Scenario modelling (agent-based modelling (ABM), 

equation-based modelling (EBM), or hybrid modelling). 
Scenario modelling is a strategic planning technique that 
involves creating and analysing various hypothetical 
situations or scenarios to understand their potential 
outcomes and impacts. EBM calculates compartment-
specific population changes based on mathematical 
modelling (20). While ABM simulates a system composed of 
simplified behaviours of diverse individuals (20). There also 
exists a hybrid model that combines ABM and EBM.

o Airborne dispersal and trajectory modelling.

We did not assess the risk of bias across the studies included in 
our review because our review primarily aimed to provide a 

TABLE 1 Eligibility criteria and search strings.

Inclusion criteria Exclusion criteria

Study type Observational studies Experimental studies (including clinical trials or randomized 

controlled trials)

Population Cattle Other animals except cattle

Intervention Lumpy skin disease virus

Potential risksa

Other capripoxviruses

Comparator Population not exposed to potential risksa

Outcomes Outcomes to get answers to the following key questions.

 1. Where did the disease originate?

 2. What is the introduction pathway to the country?

 3. How severe is the outbreak?

 4. What are the risk factors for the spread between farms?

 5. What will the disease spread be like after the outbreak?

 6. Which control measures are effective and efficient in controlling the outbreak?

Others

aDepends on the study type as some do not have intervention and comparator.
Search strings (Lumpy Skin disease OR LSD) AND (modeling OR modelling) AND (epidemiology OR outbreak).
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descriptive overview of the modelling approaches and their 
applications to LSD. We graphically represented the timeliness of 
modelling and the six question categories and assessed each model 
to determine its potential in addressing each of the six question 
categories. We listed the analysis type, sub-category of analysis type, 
what questions the modelling outputs can answer, required data for 
analysis, priority (low, moderate, and high), and other limitations 
to assist researchers in selecting the most suitable model for their 
needs at different stages following an LSD incursion. Priority is 
context dependent and relates to the questions a model is being 
used to answer. We assessed model priorities subjectively based on 
the following four criteria:

 1. Urgency: of the questions the modelling outputs are being used 
to answer,

 2. Timeliness: whether the modelling modality can answer those 
questions in time to be useful for decision support (depending 
on data and resources),

 3. Accuracy: acceptable level of uncertainty given limited 
resources, and

 4. Versatility: the ability of the model to address a variety of 
questions depending on the changing outbreak situation.

2.5 Data analysis and visualisation

We visualised the frequency of modelling approaches (analysis 
types and sub-categories) utilised in eligible publications using a 
nested pie chart created in Excel (Microsoft, Redmond, United States). 
We mapped the year of LSD’s first detection by country using QGIS 

(version 3.28), based on relevant references (21–32). Additionally, 
we illustrated the recent spread of LSD in South and Southeast Asia 
on the map with arrows, based on molecular analysis (33–40).

3 Results

3.1 Study selection

Database and grey literature searches identified 247 documents 
matching the searching strings, and we  additionally identified 21 
documents among those shared by the authors. A total of 181 
electronic records remained after removing duplicates. During the 
title/abstract screening process, we eliminated 121 documents as they 
did not fit the eligibility criteria. In the full-text screening process, 
we  excluded six more documents due to ineligible study design, 
outcomes, and duplicate content. As a result, 54 documents were 
considered suitable for the study. However, we found six additional 
relevant records by examining the reference lists of these documents. 
Thus, 60 documents in total were included in the study (Figure 2).

3.2 Study characteristics

Supplementary Table S1 provides an overview of features of the 
60 studies included in this research (7–9, 13, 15, 30, 33–39, 41–87). 
The analysis types and sub-categories of models are further illustrated 
in Figure 3. It is important to note that studies that reported multiple 
analysis types and sub-categories were included in all relevant 
sub-categories, resulting in a total count in Figure 3 greater than 60. 

FIGURE 1

Applicable modelling approaches for an LSD outbreak. Applicable models were grouped into five analysis types with 17 sub-categories. Analysis types 
positioned further to the right represent more complex modelling approaches and may require additional data, assumptions, and implementation time.
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The most frequent analysis type was descriptive epidemiology, 
employed in 41 studies, while the least used was simulation modelling, 
employed in only six studies. Risk factor analysis was reported in 24 
studies, spatiotemporal analysis in 10 studies, and transmission 
modelling in 28 studies. The complexity of data and parameters 
required to build the models increased in the order of descriptive 
epidemiology, risk factor analysis, spatiotemporal analysis, 
transmission modelling, and simulation modelling. As the complexity 
of these models increased, the number of published studies in each 
model category decreased. The 60 studies were conducted in different 
geographical regions, including Africa, the Middle East, Europe, Asia, 
and Oceania.

3.3 Results of individual studies

Out of 41 descriptive epidemiology studies (7–9, 13, 15, 30, 33–35, 
37–39, 41–47, 49, 51–54, 58, 61, 63, 65, 68–74, 76, 80, 81, 83, 84, 86), 
27 utilised basic descriptive statistics to calculate morbidity and 
mortality rates for determining outbreak severity. Most studies 
reported LSD morbidity rates between 5 and 40%, and mortality rates 

between 0 and 5%. The case fatality rate (CFR) was reported to be <1% 
in Uganda and Bangladesh, but CFR in Thailand was 10% (38, 74, 86). 
Given the very low mortality rates in Uganda and Bangladesh and the 
higher mortality rate in Thailand, the CFR should be  interpreted 
cautiously depending on the region and context (Uganda: 0.03% 
mortality, 0.72% CFR (74), Bangladesh: 0.26% mortality, 0.97% CFR 
(86), Thailand: 3.47% mortality, 10.05% CFR (38)). The temporal and 
spatial patterns of LSD outbreaks using epidemic curves and outbreak 
mapping were visualised in 34 out of 41 descriptive epidemiology 
studies. Most studies reported that LSD outbreaks occurred between 
summer and autumn (fall), except for in Uganda, where a study 
reported occurrence during the dry season (Dec to Feb) (74). This 
appears to be due to different periods of increased vector abundance 
based on the climatic conditions of each country. The abundance of 
vectors tends to increase during the rainy summer (temperate climate) 
or wet season (tropical climate), and a pattern is predominantly 
observed where vector-borne disease occurrence rises in the 
subsequent season (88, 89). Studies with less than 6 months of 
observation period were unable to confirm seasonality but did observe 
a rapid increase in LSD cases between 10 to 20 days after the 
confirmation of the first case in the country (15, 70). When examining 

FIGURE 2

PRISMA-P flowchart representing the screening process for eligible studies.
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the spatial distribution of LSD outbreaks, it was found that they 
tended to occur in areas near lakes and rivers (65, 74, 83).

The intercontinental spread of LSD was observed to have 
originated from endemic regions in Africa and spread to the Middle 
East during the 1990s and 2000s, reaching Türkiye in 2013, and 
eventually extending to the Balkans and Eurasia in 2015 and 2016 
(Figure 4) (8, 9, 13, 45, 52, 53). In 2019, LSD outbreaks were detected 
in India (33), China (68), and Bangladesh (34), spreading to Nepal 
(35), Pakistan (29), Bhutan (29), and Sri Lanka (29). In 2020, LSD 
spread from China to Vietnam (36), and between 2020 and 2021, the 
disease further spread to Southeast Asian countries, including 
Thailand (37), Cambodia (29), Laos (29), Myanmar (39), and Malaysia 
(29). In 2022, the disease reached Indonesia (83), and in 2023, it 
appeared in South Korea (29). This demonstrates that LSD has 
recently spread extensively across countries over a notably 
brief period.

The spread of LSD into Europe was halted by mass vaccination 
and stamping out policies in the Balkans. Southeast Asia experienced 
a rapid spread of LSD among susceptible cattle due to the lack of 

vaccination before the first outbreak (90). Efforts to achieve control 
and eradication are being continuously pursued through the prompt 
implementation and ongoing enforcement of policies such as 
vaccination, stamping out, movement restrictions, active surveillance, 
vector control, and financial compensation (37, 91). As such, 
descriptive epidemiology can aid in understanding the spatiotemporal 
transmission of the disease and serve as a tool to assess the outbreak 
and severity of the situation. This can support the interventions 
needed for the control and prevention of LSD. However, the local 
spread and daily epidemic curves provided in the studies could not 
be generalised due to reporting inconsistencies, highlighting the need 
for additional information and empirical evidence to overcome 
this limitation.

A total of 24 studies evaluated risk factors for LSD occurrence. As 
methods for evaluating risk factors, measures of assessment, 
quantitative risk assessment (QRA), hierarchical Bayesian modelling 
(HBM), machine learning algorithms, generalised linear mixed 
modelling (GLMM) were used in seven (41, 43, 59, 63, 73, 83, 86), five 
(57, 62, 77, 78, 85), two (45, 69), two (42, 82), and 12 papers (9, 48, 59, 

FIGURE 3

The frequency of each analysis type and sub-category of analysis used in the eligible studies (n  =  51). Numbers in parentheses indicate the number of 
papers that used each analysis type or sub-category, noting some studies used more than one type. QRA, quantitative risk assessment; HBM, 
hierarchical Bayesian modelling; GLMM, generalised linear mixed modelling; ENM, ecological niche modelling.
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63, 65, 66, 72, 73, 75, 80, 83, 86), respectively. Of the 12 studies that 
utilised GLMMs, nine were suitable for analysing risk factors 
associated with LSD outbreaks as they assigned the number of LSD 
outbreaks during the study extents as the dependent variable in 
GLMMs (48, 59, 63, 66, 73, 75, 80, 83, 86). On the other hand, the 
remaining three studies employed GLMMs to analyse variables 
affecting vaccine immunity (9) and vector abundance (65), as well as 
to estimate parameters used in subsequent modelling processes (72). 
Therefore, our focus regarding the discussion of risk factors was 
primarily on the former nine studies. Since HBM was used to identify 
meteorological risk factors to be included in ENM (45, 69), these risk 
factors are quite different from those considered in measures of 
assessment and GLMM. Therefore, the risk factors considered in 
measures of assessment and GLMM were reviewed separately from 
those considered in HBM.

Studies using measures of assessment and GLMM commonly 
identified location (73, 80) and cattle introduction (58, 63, 66, 83) as 
high-risk factors. This suggests that the risk of LSD occurrence may 
be higher in areas near rivers or where cattle are introduced from 
external sources. Inconsistent results were found for other risk factors 
including age (41, 73, 75, 80), sex (41, 63, 73, 75), breed (41, 63, 66, 73, 
75, 80), cattle type (43, 63, 80), altitude (41, 58, 59, 73), communal 
water trough (58, 63, 66, 75), contact with other animals (73, 75, 86), 
grazing (58, 66, 75, 83), and herd size (43, 66, 75, 80, 83, 86). Other 
risk factors reported only in single studies were housing type (86), 

increased monthly average temperature (48), increased wind speed 
(48), increased relative humidity (48), and increased average 
rainfall (75).

Both studies that utilised HBM identified increased livestock 
density, land cover, and increased precipitation as associated with LSD 
occurrence (45, 69). Meanwhile, increased mean temperature (45), 
increased maximum temperature (69), reduced vapor pressure (69), 
and reduced wind speed (69) were each reported as risk factors in only 
one reference. Of the five studies that utilised QRA, three studies 
concluded that unregulated cattle movement between countries is 
strongly associated with the risk of LSD entry into countries (57, 78, 
85). Two studies modelled the risk of LSD entry into countries 
through vector introduction via vehicle transportation (77) or wind 
dispersion across oceans (assuming a maritime crossing of 
approximately 1,500 km within 48 h) (62). Machine learning 
algorithms were employed in two studies; one aimed to compare the 
performance of various algorithms describing the relationship 
between the occurrence of LSD outbreaks and meteorological and 
geological factors (42), while the other utilised resampling techniques 
to test factors influencing the precision of models based on biased data 
in the context of low numbers of LSD cases (82). Various methods 
exist for analysing risk factors, but there were differences in the factors 
reported as statistically significant across studies.

Ten studies utilised various spatiotemporal analyses such as 
environmental niche modelling (ENM) (44, 45, 47, 69), spatiotemporal 

FIGURE 4

Map showing the year of first LSD detection by country as of August 2024. Countries shaded in white have not reported any LSD outbreaks. The green 
arrows represent the estimated spread routes of LSD in South and Southeast Asia over the past 5  years. The Americas, where LSD has not been 
reported, are excluded from the map.
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cluster analysis (13, 15, 74, 76, 81), and time-series modelling (46). 
Most of the ENMs identified in these studies were conducted using 
MaxEnt (44, 45, 69), while one study was performed using Quantum 
GIS (47). Commonly employed environmental variables in the ENM 
included land cover (44, 45, 69), livestock density (44, 45, 69), 
precipitation (44, 45, 47, 69), diurnal range (44, 45), and temperature 
(45, 47, 69). Isothermality (the ratio of the annual mean diurnal range 
to the annual temperature range), water vapor pressure, solar 
radiation, and wind speed were included as environmental variables 
in the final ENM in the previous studies (47, 69); however, these 
variables did not include consistently across all final ENMs. 
Spatiotemporal cluster analysis to identify patterns of disease outbreak 
was conducted in five studies (13, 15, 74, 76, 81). Two of these studies 
conducted cluster analyses using various models (space–time 
permutation, Poisson space–time, and Bernoulli space–time models) 
on LSD outbreaks that occurred in different regions of Thailand in 
2021 (15, 76). Depending on the model chosen, clusters of varying 
sizes were depicted in different locations. This was also the case in 
Uganda (74) and Russia (13). The size and location of outbreak 
clusters may vary depending on regional characteristics and the 
selected model, so interpreting the results requires consideration of 
these factors. All five studies exclusively utilised SaTScan™ for 
spatiotemporal cluster analysis, which may have limitations, such as 
the inability to consider non-circular clusters (92). Time-series 
modelling was employed to track trends in the number of LSD 
outbreak cases by continent, and to forecast future cases (46). These 
spatiotemporal analyses provide valuable insights into targeted 
interventions, surveillance, cluster detection, and estimating the 
number of cases by exploring the spatial and temporal distribution of 
LSD occurrence.

Twenty-eight studies explored the origin and spread of LSDV 
using transmission modelling (7–9, 30, 33–39, 44, 51–56, 60, 61, 63, 
64, 70–72, 79, 80, 87). Phylogenetic analyses of LSDV typically use the 
RNA polymerase 30 kDa subunit (RPO30) and the G protein-coupled 
receptor (GPCR) to compare homology with other strains. 
Additionally, the EEV glycoprotein gene (33, 37, 39), the p32 envelope 
protein gene (33, 37), the CaPV homolog of the variola virus B22R 
(35, 39), and whole genome analysis are also utilised in phylogenetic 
studies. The results of the phylogenetic analyses of LSDV by country 
are as follows. The continuous endemic circulation of LSDV was 
confirmed in Egypt during 2017–2019 (51, 56, 64). The spread of 
LSDV to Türkiye was inferred to be from Africa and the Middle East 
(80). LSDV strains collected in north-west China in 2019 shared high 
homology with vaccine-derived recombinant viruses (87), first 
reported from Russia in 2017 and later determined to have arisen 
during seed production of the Lumpivax vaccine (Kenya Veterinary 
Vaccines Production Institute) that was widely used in a mass 
vaccination campaign in Kazakhstan in 2016 (93). The LSDV strains 
from India and Bangladesh in 2019, as well as those from Nepal and 
Myanmar in 2020, exhibited high sequence identity to each other and 
were found to be closely related to LSDV strains from Kenya in 1958, 
rather than to the recombinant vaccine strains from Russia and China 
(33–35, 39). This suggests a possible common source of infection in 
South-Asian countries. Tran et  al. (36) reported that the p32 and 
RPO30 genes of the LSDV strain first identified in Vietnam had 100% 
sequence identity with the Chinese LSDV strain. In Thailand, 
circulating LSDV strains displayed highest genetic similarity with the 
recombinant vaccine strains from China and Vietnam, while showing 

slight molecular differences from the recombinant vaccine strains 
from Russia (37, 38). Similarly, Indonesian viruses from 2022 clustered 
with viruses from China, Hong Kong, Taiwan, Bangkok, Vietnam and 
Thailand collected between 2019 and 2021 (40).

The R0 and RE were estimated allowing for differences in vector 
species (60, 79), the progression of the outbreak (54), the first 
detection time of LSD (71), and variations in livestock production 
systems (72). Indirect transmission via flying vectors played a 
significant role in epidemic spread among various transmission 
methods according to the model, with two studies reporting high R0 
values for spread by stable flies (Stomoxys calcitrans), mosquitoes 
(Aedes aegypti), and biting midges (Culicoides nubeculosus) (60, 79), 
although LSDV transmission from Culicoides sp. to bovines has never 
been experimentally demonstrated. The median value of R0 in Albania 
(54) and Türkiye (71) was 0.9, which gradually decreased over time. 
Molla et al. (72) reported a higher R0 in intensive production systems 
(estimated R0, 1.09) than in crop-livestock production systems 
(estimated R0, 1.07) in Ethiopia. Alkhamis and VanderWaal (44) 
calculated the monthly average RE between 2012 and 2015 as 2.2, 
indicating continuous spread of LSDV in the Middle East.

Seven studies estimated the transmission speed of LSD using a 
spatial kernel approach (7, 8, 30, 52, 53, 55, 61). The average 
transmission distance between farms was estimated to be less than 
2.5 km in the four publications (7, 8, 53, 61). However, assuming a 
maximum value for the kernel parameter and an R0 of 20, the 
transmission distance between farms can reach up to 80 km (55). The 
transmission speed by local spatial spread was calculated to be ~1 km/
day (30, 52), and all studies mentioned the rapid spread over long 
distances due to the movement of infected cattle.

EFSA 2017 mapped the transmission path between farms in 
Türkiye during the outbreak period using transmission network 
modelling; however, the specific modelling tool used was not 
mentioned (52). Magori-Cohen et al. (70) estimated a mathematical 
dynamic transmission model that explained the daily incidence within 
a farm using transmission rate parameters representing direct and 
indirect transmission, and transmission via milking; the authors 
concluded that the daily incidence of LSD within farms was mainly 
caused by indirect transmission via biting insects. The dynamic 
transmission modelling performed in three previous studies predicted 
changes in the susceptible, infected, recovered population of cattle (9, 
71, 72). Among these three studies, EFSA 2020 provided a detailed SIR 
model by additionally incorporating vector life cycle parameters (9). 
Transmission modelling facilitates inferences around the origins of a 
disease, its transmissibility, the distance and the sequence of spread, 
and the contribution of different transmission routes. It provides 
valuable information and parameters regarding the spread of LSD.

Six studies explored the forward spread of LSD and policy effects 
through simulation modelling. Four studies utilised scenario 
modelling (7, 8, 50, 55), while two utilised airborne dispersal and 
trajectory modelling to track vector dispersion (62, 67). Two scenario 
modelling studies suggested effective control measures against LSD by 
forecasting disease spread according to culling criteria and timing, 
and vaccination policy (7, 8). EFSA (55) helped establish effective 
vaccination policies through scenario modelling of how long vaccine 
policies should be implemented depending on vaccine effectiveness 
and coverage for LSD eradication. Casal et  al. (50) employed a 
dynamic simulation model to estimate and validate the required 
quantity of vaccine stock in response to the entry of LSD in France, 
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considering certain assumptions. Hall et  al. (62) examined the 
possibility of LSD entry and expected vector distribution in response 
to climate change. Klausner et al. (67) examined the possibility of 
LSD-infected vectors invading Israel from Egypt in both 1989 and 
2006. Simulation modelling can estimate future changes in population 
and disease spread and provide effective policies and strategies to 
prevent spread.

3.4 Results of synthesis

Considering the characteristics and objectives of each modelling 
approach, we categorised modelling approaches that can answer the 
six key questions we identified to be addressed after the onset of an 
initial outbreak of LSD (Supplementary Figure S1). Among various 
sub-categories, machine learning algorithms and time-series 
modelling were excluded as they are difficult to answer the six 
questions. We  organised the six key questions, using the first 
occurrence of LSD as the reference point, into three periods: questions 
about the past, current, and future events in the outbreak. Questions 
about the past included the origin and entry pathway of LSDV into a 
country or region, while questions about the current period included 
the severity of an outbreak and risk factors. Finally, questions about 
the future included spread and the effectiveness of control measures.

Phylogenetic analyses allow us to use strain evolution to infer the 
direction of cross-border spread. These analyses play a significant role 
in understanding the epidemiology of animal diseases, helping to 
differentiating between endemic and emerging pathogens and aiding 
in the selection of appropriate vaccine strains (94, 95). These are 
particularly relevant for rapidly evolving pathogens like influenza and 
FMD viruses (95). However, for DNA viruses with high genetic 
stability like LSDV, phylogenetic analyses are less prioritised (96). 
Moreover, the process of sampling LSDV during an outbreak and 
analysing genomic sequences can be  time-consuming unless 
prioritised and appropriate systems are in place in advance. Although 
phylogenetic analysis is highly accurate, it is important to consider 
limitations such as geographic sampling bias and the public availability 
of sequences (97). Phylogenetic analyses are useful for inferring 
evolutionary pathways or comparing strains, but they are not as 
versatile for non-genetic epidemiological questions (95). Thus, 
phylogenetic analyses hold a lower priority in the early stages of an 
LSDV outbreak.

QRA is an essential tool for evaluating the likelihood of animal 
disease outbreaks and incursions. QRA for LSD was conducted to 
understand and quantify the potential outcomes and likelihoods of 
LSD outbreaks, identifying high-risk entry routes and formulating 
strategies to mitigate these risks (77). QRA can be conducted based 
on previous data and parameters, thus aiding significantly in the 
development of strategies to prevent LSDV incursion. During LSD 
outbreaks, the new outbreak data can be employed to reassess the 
current risk scenario. The outcomes of QRA are heavily influenced by 
the parameters used; therefore, the employment of inappropriate or 
incomplete parameters can lead to biased results and increased 
uncertainty. Beyond entry route evaluation, QRA is instrumental in 
assessing various risk factors associated with the transmission of 
animal diseases and in developing management strategies. 
Consequently, QRA has been assessed as a moderate priority in 
responding to LSDV outbreaks.

Airborne dispersal and trajectory modelling enable the tracking 
of the distribution of LSDV-carrying vector in relation to climatic 
conditions (62) and their changes (98, 99). This modelling allows for 
the backward tracing of vector movements from the first outbreak 
areas to estimate entry points, or forward tracing from the first 
outbreak areas to estimate potential spread directions (67). Therefore, 
airborne dispersal and trajectory modelling is an effective tool in 
addressing questions related to entry pathways and the spread of 
disease. The urgency of questions regarding entry pathways is 
considered low because, while this modelling can identify 
transboundary spread routes, controlling vectors at borders is 
practically challenging. On the other hand, the urgency of questions 
related to the spread is considered high. Estimating potential spread 
routes is crucial for assessing the effectiveness of control measures and 
facilitating their implementation. Airborne dispersal and trajectory 
modelling, being a sophisticated model requiring high-quality input 
data and intensive labour to operate, may take significant time to 
implement during the outbreak, unless appropriate systems are in 
place for rapid implementation. Estimating the direction and the 
spread strength of LSDV-carrying vectors in response to changing 
climates over time offers valuable insights but also entails a high 
degree of uncertainty.

The severity and context of a disease outbreak can be understood 
through descriptive epidemiology, which includes morbidity, 
mortality, prevalence, epidemic curves, and outbreak mapping. These 
outputs, which involve simple calculations or visualisations, can 
be  quickly generated and are crucial for immediate public health 
decisions like resource allocation and emergency response planning. 
While the results of descriptive epidemiology generally do not contain 
high uncertainty, they do depend on data quality, emphasising the 
need for high-quality data acquisition through active surveillance 
using sensitive and specific detection methods. Monitoring incidence 
risk after applying control measures tracks changes in new cases, 
evaluating the efficacy of these measures. Epidemic curves and 
outbreak mapping can provide useful results such as estimated 
reproduction number (100), estimated dissemination rates (101), and 
kernel density map of infected premises (102). Therefore, descriptive 
epidemiology has been assessed as a high priority.

The risk factors and their contributions to LSD outbreaks 
contributions can be  identified using GLMMs, measures of 
association, and HBM. Understanding these risk factors is critical for 
effective disease management and control during LSDV outbreaks, 
emphasising the importance of these modelling approaches. Prior to 
an outbreak, existing studies can guide risk factor management. 
However, risk factors can vary depending on the outbreak context, 
necessitating efforts to identify country/geography-specific risk factors 
during the outbreak. This requires accumulated outbreak data from 
the first occurrence of the disease in a country with ongoing updates 
to ensure the reliability of identified risk factors. Since disease 
outbreaks result from multiple interacting factors, some level of 
uncertainty is inherent in these results. Additionally, the types of 
questions these methods can answer are limited. Therefore, GLMMs, 
measures of association, and HBM have been assessed as a 
moderate priority.

ENM is a tool for identifying zones that are ideally suited for 
LSDV and its vectors, considering environmental aspects (103). This 
modelling is instrumental in identifying regions with suitable 
conditions for LSD introduction and future spread, particularly useful 
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for countries currently free from LSD. These nations can develop 
ENMs by integrating risk factors from existing research, and 
developed ENMs can serve as dynamic tools, adaptable with 
continuous updates during the outbreak. While ENM estimates the 
potential distribution of LSDV or its vectors, it’s crucial to recognise 
that LSD does not exclusively occur within the estimated distribution, 
and not all vectors carry LSDV. Therefore, there is inherent uncertainty 
in ENM results. Despite these limitations, the ability of ENM to 
identify potential risk areas for resource allocation makes it a valuable 
asset in disease management strategies, leading to its assessment as a 
moderate priority.

The R0 and RE value are key epidemiological indicators for 
predicting the potential spread of diseases and the effectiveness of 
control strategies. These metrics assist in determining the proportion 
of the population that requires vaccination to achieve herd immunity 
and in evaluating the real-time effectiveness of control measures (104). 
Additionally, they are employed in mathematical models to simulate 
disease spread, enabling them to answer urgent questions, which is 
why their priority has been considered high. While R0 and RE can 
be calculated quickly, the accuracy of the results may vary depending 
on the assumptions of the estimators and the precision of the 
data (105).

Spatial kernel-based transmission rate estimation not only aids in 
investigating the spread range from infected premises and 
implementing corresponding control measures, but also, as the 
estimated spatial kernels are incorporated into simulations of 
epidemic spread, there is an urgent need to address this modelling in 
the early stages of an LSD outbreak (106). Spatial kernel estimation 
requires accumulated data, but it can also be empirically estimated 
based on insights from previous studies. However, given the limited 
scope of questions this modelling can answer and the inherent 
uncertainties, this modelling has been assigned a moderate level 
of priority.

Dynamic transmission modelling is valuable for investigating 
patterns and behaviours of disease spread within populations over 
time. The construction of these models requires accumulated data. 
Dynamic transmission modelling, which enables the exploration 
and prediction of disease trends, is somewhat urgently needed in 
the early stages of an LSD outbreak. However, dynamic 
transmission modelling entails high uncertainty due to the 
estimation of parameters based on observed data and the 
subsequent prediction of new infections. Consequently, dynamic 
transmission modelling has been assessed as having a 
moderate priority.

Transmission network modelling is for analysing transmission 
networks between premises. Transmission network modelling is 
created based on accumulated data and provides limited answers, such 
as identifying who infected whom. While the uncertainty of 
transmission network modelling can be reduced with well-prepared 
data, obtaining detailed and accurate contact tracing and surveillance 
data during the early stages of an LSD outbreak is challenging, leading 
to a low prioritisation of transmission network modelling (107).

Scenario modelling enables the estimation of changes in the 
infected population within potential scenarios of LSD spread and 
control measures. This modelling can be applied in various aspects. 
Some previous studies have assessed how the implementation of 
control measures could alter the dynamics of an LSD outbreak (7, 8). 
Others have estimated the necessary duration of vaccination policies 

and required vaccine stock quantities under various scenarios of 
vaccine coverage and efficacy (50, 55). The development of scenario 
modelling requires a considerable amount of data and labour, 
dependent on the complexity of the scenario’s assumptions and the 
accuracy of included parameters. The results of scenario modelling 
carry a high level of uncertainty due to these assumptions and the 
current progress of the disease outbreak. Despite these challenges, 
versatile scenario modelling can support key decision-making 
processes such as strategy development and resource allocation 
following the initial outbreak of LSD. Therefore, scenario modelling 
has to be  urgently addressed in the early response stages and is 
considered a high priority.

3.5 Modelling workflow

Based on the existing literature, we  propose the following 
modelling workflow to address the first LSD occurrence in a country. 
In planning for a potential LSD outbreak in a country, preliminary 
analyses may be conducted using existing international outbreak data 
and estimated parameters. QRA can be used to assess LSD incursion 
risk, while GLMMs, measures of association, and HBM can 
be employed to identify risk factors and their relative contributions in 
past outbreaks. ENM can then be used to identify areas highly suitable 
for LSDV presence, supporting decision-making for preventive 
policies against LSD. Additionally, preparatory work can be carried 
out for models that will be  immediately activated upon outbreak 
confirmation. This includes setting up systems for handling genomic 
and epidemiological data, creating visualisations, and establishing 
analysis routines (i.e., data pipelines).

Descriptive epidemiology is quickly carried out following the first 
LSD occurrence to determine the severity and context of the current 
outbreak using data as they become available. Using outbreak data, 
clusters of cases are detected, and the connections between these 
clusters are tracked through the monitoring of animal movements and 
vector distributions (and perhaps phylogenetic analyses). Information 
on risk factors can be updated using GLMMs, measures of association, 
and HBM based on data from rapidly conducted epidemiological 
studies in the affected country. ENM and QRA results can be updated 
based on the newly identified risk factors and information from field 
investigations, assisting in making informed decisions to mitigate the 
outbreak situation. Phylogenetic analyses may be used to identify the 
origin of an LSDV outbreak, helping to ensure that further 
introductions are prevented, and to inform selection of 
effective vaccines.

After sufficient data have been obtained following the first 
detection of an LSD outbreak, the severity and potential direction of 
spread can be assessed using R0, RE, spatial kernel-based transmission 
rate estimation, and airborne dispersion and trajectory modelling. 
These analyses support decision-making for LSDV control policy 
implementation. When scenario modelling becomes available, 
estimating the progression of the LSD outbreak in various scenarios 
and carefully reviewing them enables the selection of appropriate 
LSDV control measures. Dynamic transmission modelling and 
transmission network modelling may inform the parameterisation of 
scenario modelling or be utilised for back-, now-, and fore-casting, 
and also be  employed to rapidly evaluate the effectiveness of 
implemented measures for LSDV control.
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Above all, to build a model that reflects reality and supports 
informed decision-making, an accurate and precise dataset is essential. 
By identifying the necessary information set for each key stage of the 
outbreak and ensuring that information is continuously updated as 
the outbreak progresses, it is possible to provide updated parameters 
to inform sophisticated simulation models. This approach can enable 
models to guide informed decision-making, help overcome 
information bias, and reduce modelling uncertainty by continuously 
updating and providing valuable information.

4 Discussion

LSD is a transboundary disease, and the current rapid spread of 
the disease from Africa to the Middle East, Eurasia, and Southeast 
Asia indicates the potential for further global spread (62). Although 
scientists and decision-makers will collaborate to discuss the direction 
of disease control and prevention and provide swift responses after the 
first occurrence in a country or region, the available modelling types 
for responding to LSD outbreaks and information regarding their 
timeliness are currently lacking. This systematic review was conducted 
to identify applicable modelling tools that may assist in the response 
to an LSD outbreak, examine their timeliness, and develop a workflow 
to be performed incorporating prioritisation based on the available 
data, urgency, model preparation period, uncertainty, and limitations.

Applicable models were grouped into five analysis types and 17 
sub-categories (Figure 1). The final table for timeliness of modelling 
included 14 sub-categories due to the constraints of some modelling 
(included types: basic statistics, epidemic curve and outbreak 
mapping, QRA, GLMMs, measures of association, HBM, ENM, 
phylogenetics, R0 and RE estimation, spatial kernel-based transmission 
rate estimation, dynamic transmission modelling, transmission 
network modelling, scenario modelling, and airborne dispersion and 
trajectory modelling). These types of analyses and their sub-categories 
have been classified into three time points based on when modelling 
can address specific questions, as indicated in Supplementary Figure S1 
(i.e., past events, current events, and future events). Additionally, they 
have been categorised into three different phases according to 
modelling timeliness, as outlined in the modelling workflow in the 
results section (i.e., pre-outbreak, early outbreak phase from day 0 to 
7, and late outbreak phase spanning weeks to months). In this 
discussion, we have addressed them in the latter sequence.

The following eight modelling approaches—QRA, airborne 
dispersion and trajectory modelling, GLMMs, measures of association, 
HBM, ENM, spatial kernel-based transmission rate, and simulation 
modelling—can be conducted as a preliminary analysis before an LSD 
outbreak, providing the context of LSD spread and potential risk 
factors of the entry of LSD. The major limitation of QRA is that it is 
often based on incomplete data or uncertain assumptions, which can 
affect the accuracy of the risk assessment (108). Airborne dispersion 
and trajectory modelling can be used to estimate the spread of vectors 
between areas, thereby identifying potential pathways of LSD entry 
(62). Airborne dispersion and trajectory modelling are designed 
under the assumption that the dispersion of viruses and vectors is 
similar to particle dispersion. As a result, uncertainty is introduced 
into the outcomes of the modelling (109, 110). Additionally, airborne 
dispersion and trajectory modelling relies on weather and atmospheric 
data with high level of uncertainty, and not all vectors carry LSDV, 
further contributing to uncertainties (62, 111). GLMMs, measures of 

association, and HBM can be  used to identify risk factors that 
contribute to LSD outbreaks. However, these risk factors were 
inconsistent between studies, which could have been influenced by the 
diverse climate and environments of the assessed countries (48, 58, 63, 
66, 73, 75, 80, 86). ENM provides information on areas that could 
be targeted for surveillance before LSD entry, but the accuracy of the 
results depends on up-to-date and accurate data on environmental 
variables (112).

The spatial kernel-based transmission rate is typically derived 
from previous outbreak data in other countries, which makes it 
challenging to apply directly to new outbreak areas until sufficient data 
is available for its estimation in the local context (7, 8, 30, 52, 53, 55, 
61). While no instances of pre-outbreak simulation modelling for LSD 
were found in the relevant literature, simulation modelling can 
be employed for pre-planning and preparedness against transboundary 
diseases like FMD. AusSpread, a regional model developed within a 
Geographic Information System environment, simulates disease 
spread and control across various regions of the Australian continent, 
encompassing diverse environments and production systems (113). 
The Australian Animal Disease Spread Model (AADIS), an extension 
built upon key features of AusSpread, models five independent spread 
methods of FMD transmission within herds, illustrating the paths of 
infection on a map (114). While the epidemiological unit of interest 
of AusSpread is a farm, AADIS utilises herds within farms as its 
epidemiological unit of interest. Therefore, AADIS captures the 
heterogeneity of production systems that manage different species or 
production classes within farms. By crafting plausible outbreak 
scenarios before an LSD outbreak and simulating the spread of disease 
within herds and between farms, the potential repercussions of an 
LSD outbreak can be estimated, facilitating the formulation of control 
measures and contingency plans.

At the early phase of LSD outbreak (from day 0 to 7), the following 
nine modelling approaches can be employed: descriptive epidemiology, 
QRA, GLMMs, measures of association, HBM, ENM, spatial kernel-
based transmission rate, dynamic transmission modelling, and 
transmission network modelling. By identifying the urgency of the 
situation and areas that require immediate action, descriptive 
epidemiology can support decision-making shortly after detection of 
LSD. The remaining eight models require a certain amount of 
accumulated outbreak data; these can be applied from as early as 1 week 
after the first detection of LSD. After the first detection of LSD, accurate 
and systematic data collection and management become essential to 
analyse and prevent disease spread. It is necessary to minimise bias and 
errors during data collection to maintain high data quality, and a 
standardised data format should be  applied to ensure efficient 
management of the data. Data preprocessing is the most time-consuming 
part of the analysis process, and using a standardised data format can 
reduce analysis time and provide rapid results (115). Therefore, collecting 
accurate data and organising it in a centralised and standardised format 
not only enables the immediate implementation of descriptive 
epidemiology and risk factor analysis models but also facilitates the 
prompt application of control measures and higher-level models.

Phylogenetic analyses, R0 and RE estimation, airborne dispersal and 
trajectory modelling, and scenario modelling can be conducted once 
sufficient data has been collected, or when the parameters necessary 
for the models have been calculated (weeks to months). These 
modelling approaches facilitate evidence-based decision-making in 
disease control and provide valuable insights into disease spread, 
infectiousness, and the effectiveness of control measures. These 
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modelling approaches have been widely developed and applied across 
various diseases. In prior studies, researchers applied airborne 
dispersion and trajectory modelling to estimate the potential incursion 
of biting midges concerning the spread of bluetongue virus (99, 116). 
For FMD, diverse scenario models (such as Exodis-FMD™, AADIS, 
and InterSpread+) were developed to estimate disease spread and 
establish the foundation for preventive measures and response 
strategies (117). While phylogenetic analyses, R0 and RE estimation, and 
airborne dispersal and trajectory modelling can be executed relatively 
quickly when the required data become available, implementing 
simulation modelling for LSD may take over a month due to the 
complexity of parameters and hypotheses involved in its application.

In summary, the eight models mentioned above for use prior to an 
outbreak provide information that identifies potential entry pathways 
and risk factors, determines high-risk areas for spread within a country, 
and estimates the scale of spatiotemporal spread. Based on this 
information and rationale, enhanced quarantine measures for potential 
entry pathways and early surveillance of high-risk areas can 
be implemented. Additionally, preventive plans and control measures 
can be established, including providing guidelines to livestock owners 
in high-risk areas, setting up temporary emergency reporting networks, 
and determining the radius of ring vaccination or culling. We can better 
prepare for future LSD outbreaks in a country through these measures. 
However, the aforementioned eight models may be highly dependent 
on the outbreak context and therefore are not always generalisable, 
potentially making them less suitable for direct application in countries 
that have previously been free from LSD. Therefore, to effectively 
respond to future LSD outbreaks, it is crucial to proactively prepare and 
establish models based on the full range of literature parameters prior 
to an outbreak, while accounting for uncertainty.

Following an LSD outbreak, updated outbreak data should 
be utilised to identify relevant risk factors, and regular follow-up should 
be ensured to make informed decisions. In the early stages of an LSD 
outbreak, modelling focuses on understanding the spatiotemporal 
dynamics of spread and identifying risk factors specific to the country. 
This enables the determination of when and where to apply emergency 
responses and allows for the control and hygienic disposal of the 
specific risk factors. Emergency responses may include stamping out, 
movement restrictions, vaccination, enhanced biosecurity, zoning or 
compartmentalisation of infected areas, cleaning, disinfection, and 
application of insecticides (6). The extent and priority of these 
emergency responses may vary depending on national resources. In the 
later stages of an LSD outbreak, more complex methodologies can 
be employed to track and project the spatiotemporal spread and the 
effectiveness of interventions. Eradication of disease from infected 
areas is a long-term project. The results from modelling can inform 
which interventions are effective for medium- to long-term application 
and aid in the development of future strategies and measures.

Optimising parameters and developing simplified versions of 
scenario models during their implementation is necessary to enable 
rapid assessment and understanding of the unfolding epidemic and 
assist with control. Parameter optimisation enables more accurate 
forecasting and informed decision-making based on reliable 
information by reducing estimation errors and uncertainties and 
facilitating model generalisation (118, 119). Developing simplified 
scenario models can support rapid decision-making during the early 
phases of an LSD outbreak, by virtue of their simplicity and ability to 
be  rapidly updated as new information comes in. Although these 
models may have lower accuracy, their speed and agility can make them 

useful tools for quickly responding to the spread of LSD (120). In 
summary, parameter optimisation and the development of simplified 
versions of scenario models are crucial for rapidly forecasting LSD 
spread and supporting outbreak management during the early stages. 
Afterward, the application of more complex and advanced scenario 
models can provide more accurate results, thereby aiding in the best 
decision-making for controlling the initially managed outbreak situation.

Our modelling workflow can be broadly applied to various diseases 
with some modifications, making it a first step in preparing for disease 
introduction into a country. The workflow focuses on models specific to 
LSD, and therefore, modelling implemented for other diseases was not 
considered. To further strengthen the workflow, it would be beneficial to 
incorporate modelling that can be extended through a systematic review 
of modelling for other animal diseases. The priorities and time required 
for modelling implementation can vary. The priorities presented in the 
results were assessed based on four criteria. Among them, we placed 
greater importance on the urgency of the questions that the model can 
address during an LSD outbreak. Therefore, these priorities can change 
depending on which criteria are given more importance. If the necessary 
resources and programs are prepared in advance, modelling 
implementation can be completed quickly; otherwise, it may take several 
weeks to months. For example, the time required for phylogenetic 
analyses can be  shortened if sufficient representative sequences are 
publicly available (121). The implementation time for airborne 
dispersion and trajectory modelling can be reduced by establishing prior 
agreements with meteorological agencies to obtain the necessary 
meteorological data. The implementation could be delayed accordingly 
if more time is required for programme preparation or stabilisation.

The proposed modelling workflow incorporates resource-intensive 
approaches that are beneficial in resource-rich environments. However, 
these modelling approaches may be challenging to implement directly 
in resource-limited settings. In particular, low-resource countries with 
limited personnel and budget may predominantly concentrate on 
direct disease response and control during LSD outbreaks with limited 
capacity for the application of secondary data processing and 
modelling. In such scenarios, if LSD outbreaks occur without 
adequately informed decision-making and control measures, 
significant economic losses and financial burdens on households are 
likely to be unavoidable (122). Consequently, it is recommended that 
countries with limited resources focus more on disease prevention 
strategies. These nations should prioritise the establishment of robust 
biosecurity policies and early detection and reporting systems (32) 
informed by the pre-outbreak modelling workflow proposed in this 
paper, such as estimating LSD entry pathways through QRA and 
preparing models that can be activated immediately upon outbreak.

The models included in Supplementary Figure S1 generally 
involve considerable uncertainty, and the sources of uncertainty vary 
depending on the modelling approaches (123). Failing to account for 
uncertainty in modelling ultimately leads to various issues, including 
inaccurate projections, incorrect decisions, and the inability to 
estimate the actual effects of interventions. To address these issues, 
various methods have been proposed, including data assimilation, 
sensitivity analysis, model validation and verification, and uncertainty 
quantification (119, 123–125). The use of data assimilation enables 
real-time application of dynamic observational data to the model, and 
sensitivity analysis can be  performed to better understand the 
influence of highly variable or uncertain input parameters on model 
outputs. By reducing uncertainty in modelling, we can develop more 
accurate and reliable models to support timely decision-making in 
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response to LSD outbreaks. Ultimately, this will improve our ability to 
prevent and control the spread of the disease. However, the uncertainty 
of modelling is inevitable. Therefore, analytical results and their 
meanings including uncertainty should be communicated to decision-
makers avoiding potential for misunderstanding (126). Additionally, 
modelling findings should never be used in isolation, and should 
always be interpreted in conjunction with field data and observations.

5 Conclusion

In this review we  found descriptive epidemiology studies to 
be  overrepresented, while simulation modelling was 
underrepresented. Descriptive epidemiology can be  immediately 
leveraged during the early stages of LSD outbreaks to provide timely 
support for decision-making, although it may only provide limited 
information about the severity of an outbreak in its early phase. To 
support decision-making in subsequent phases, simulation 
modelling can be  used to evaluate the future spread potential, 
impacts and effectiveness of counter measures. Because the 
implementation of complex simulation modelling is challenging to 
undertake in a timely manner, there is a need to fit and use cruder 
simulation models that can support outbreak decision-making. Our 
modelling workflow offers a structured approach to employ high-
quality modelling tailored to various phases of transboundary 
disease incursion, such as LSD, with potential applicability to other 
diseases. Though, it is recognised that many approaches are resource 
intensive, which may limit their feasibility in resource-poor 
environments. Critically, ensuring high data quality and considering 
uncertainty when interpreting and communicating model results 
are imperative.
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