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This study presents a comprehensive transcriptome analysis of canine intestinal 
epithelial cells following treatment with sulforaphane (SFN), a naturally occurring 
compound found in cruciferous vegetables with established anti-inflammatory and 
antioxidant properties. Through high-throughput sequencing, we identified 29,993 
genes, among which 1,612 were differentially expressed, with 792 up-regulated 
and 820 down-regulated in response to SFN treatment. Our analysis revealed 
significant enrichment of genes in pathways associated with the inflammatory 
response, lipid metabolism, oxidative stress response, and T-cell mediated immunity, 
suggesting SFN’s potential in modulating these biological processes. Notably, 
the PPARγ gene, which plays a crucial role in the body’s oxidative stress and 
inflammatory response, was highly up-regulated, indicating its possible centrality 
in SFN’s effects. Gene–gene interaction analysis further supported SFN’s role in 
alleviating inflammation through PPARγ, with key genes in oxidative stress and 
inflammatory response pathways showing significant correlations with PPARγ. 
Overall, our findings provide molecular evidence for SFN’s protective effects on 
canine intestinal health, potentially through the modulation of inflammatory and 
oxidative stress pathways, with PPARγ emerging as a critical mediator.
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1 Introduction

Vegetables and fruits are considered rich sources of antioxidants that can scavenge 
oxygen-free radicals to protect cells from damage caused by oxidative stress (1). 
Sulforaphane (SFN) is an isothiocyanate compound derived from the cleavage of 
thioglucoside, and it is mainly extracted from cruciferous vegetables like broccoli and 
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cauliflower (2). The black mustard enzyme present in the plant 
tissue or intestinal flora catalyzes the breakdown of sulforaphane 
into radish thiols when the vegetables are chewed or chopped (3). 
Previous studies have highlighted sulforaphane’s multiple 
biological activities (4), particularly its impact on intestinal 
health. Sulforaphane has shown anti-inflammatory properties, 
with its ability to modulate inflammatory responses and reduce 
the intestinal levels of pro-inflammatory factors such as TNFα (5). 
It can also inhibit inflammatory pathways by activating the anti-
oxidative stress defense system, promote the regeneration and 
repair of intestinal cells, and maintain the homeostasis of 
intestinal flora (6). Furthermore, as a potent antioxidant, 
sulforaphane can mitigate damage to intestinal cells by promoting 
the expression or activity of cytoprotective proteins like Nrf2 (7). 
In addition, sulforaphane is thought to prevent intestinal diseases 
and cancer (8). Despite its wide range of benefits, the potential 
adverse effects of sulforaphane require further investigation. 
However, it is very unlikely for a normal diet that radish sulfur 
would be toxic (9).

As the significance of canine health continues to grow, there is a 
heightened need to focus on the health of dogs’ gut (10). The small 
intestine is the main digestive organ, where nutrients are digested, and 
it also plays a pivotal role in the immunoregulation of the gut (11). The 
small intestinal epithelial cells, which constitute the main cell type of 
the small intestinal mucosa, are responsible for nutrient absorption 
and the secretion of digestive enzymes. These cells are highly sensitive 
to external stimuli, such as stress, pathogenic microbial infections, and 
nutritional deficiencies, which can impair their function and integrity, 
leading to compromised intestinal structure and function (12). 
Therefore, protecting the epithelial cells of the small intestine in 
canine is essential for enhancing intestinal barrier function, preventing 
canine intestinal diseases, and is important for the study of 
intestinal health.

However, as a natural product, the effect of SFN on canine 
intestinal epithelial cells has not been investigated (30). Transcriptome 
sequencing has demonstrated the feasibility of mapping differentially 
expressed genes to known pathways, thereby illuminating the 
underlying logic of experimental outcomes (13). Consequently, to 
enhance our comprehension of SFN’s effects on canine intestinal 
epithelial cells and to delineate its functional attributes, we procured 
SFN in a prior study and employed transcriptomic analysis to evaluate 
the transcriptional modulation exerted by SFN on these cells.

2 Materials and methods

2.1 Cell culture and treatment

Canine small intestinal epithelial cells were cultured in high 
glucose DMEM (cytiva, China) medium containing 5% fetal bovine 
serum (Hyclone, USA), 10 ng/mL EGF (Tongli Haiyuan, China), 5 μg/
mL Insulin (Vicente Biotech, China), 20 mM HEPES (Beyotime, 
China), and 1% penicillin–streptomycin (Solarbio, Beijing, China), at 
the incubator concentration of 37°C, 5% CO2. Cells were exposed to 
two treatment modalities: (1) the vehicle control group, and (2) the 
sulforaphane (SFN) treatment group, where cells were incubated with 
4 μM SFN (purity ≥98%, sourced from Bidde, China) for a period 
of 48 h.

2.2 RNA sequencing

RNA was extracted from cells of Vehicle group and SFN-treated 
group using 1 mL trizol (Invitrogen, Waltham, MA, USA), and the 
quality was evaluated by Agilent Bioanalyzer 2100 system (Agilent 
Technologies, CA, USA). High-throughput sequencing was performed 
at Kidio Biotech Ltd. Sequencing was completed using the Illumina 
sequencing platform. Raw data were aligned to the pig gene expression 
reference Sscrofa11 (gff3 dataset v11.1.98 and genomic fasta dataset 
v11.1.98, downloaded from Ensembl). Raw data were processed using 
Trim Galore v0.6.5 (Babraham Bioinformatics - Trim Galore!), STAR 
v2.7.10b (GitHub  - alexdobin/STAR: RNA-seq aligner) and rsem 
v1.3.3.1 Finally, FPKM (Fragments Per Kilobase of exon model per 
Million mapped fragments) was chosen for subsequent data analysis.

2.3 Gene enrichment analysis

The gene set enrichment analysis (GSEA v4.1.0) software was used 
to identify the enriched pathway profiles. In addition, statistically 
enriched biological processes or pathways in differentially expressed 
genes (DEGs) of the GO and KEGG pathways were ranked and 
categorized through the Metascape database2 and DAVID.3 GSEA 
enrichment analysis plots, KEGG enrichment bubble plots, Cnetplot 
volcano plots, and GO-pathway enrichment result circle plots were 
plotted through the online platform used for data analysis and 
visualization.4 Meanwhile, correlation analysis of differential genes 
was performed by STRING online web platform for functional protein 
interactions.5

3 Results

3.1 Gene expression and differential gene 
analysis

A total of 29,993 genes were identified in all samples, including 
14,388 (47.97%) annotated genes and 15,605 (52.03%) unannotated 
novel genes. According to GO analysis, genes were mainly enriched in 
physiological features (1,216 genes), cellular structures (683 genes), 
molecular functions (420 genes), protein post-translational 
modification processes (333 genes), and biological processes (272 
genes). The genes were categorized into 42 KEGG pathways, which 
mainly play a role in signal transduction, immune system, and 
endocrine system.

In the SFN-treated group relative to the Vehicle group, differential 
analysis using the ratio of FPKM was performed to screen for 
differential genes between the SFN-treated group and Vehicle groups. 
The differential expression thresholds of the genes were set at FC > 1.4 
for up-regulated genes and FC < 0.8 for down-regulated genes. A total 
of 1,612 DEGs were identified, including 792 up-regulated DEGs and 

1 https://deweylab.github.io/RSEM/

2 http://metascape.org/

3 https://david.ncifcrf.gov/

4 http://www.bioinformatics.com.cn

5 https://cn.string-db.org/
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820 down-regulated DEGs. The top  10 up-regulated genes were 
HCN3, CDC42BPG, PRRG2, STAP2, IRX3, LGR6, CKM, ARHGDIB, 
SLFNL1 and LOC100688918. The top 10 down-regulated genes were 
LOC100684967, LOC102152884, CALCRL, PON1, LAMC3, ICAM4, 
DCDC1, LOC477724, LRRD1 and MEF2B.

3.2 Analysis of pathway enrichment

To identify key transcriptional pathways regulated by SFN, 
transcriptome analysis was performed using canine intestinal 
epithelial cells from SFN-treated group (4 μM) treated and Vehicle 
groups. We calculated the fold change of FPKM, excluded values that 
were zero or nonsensical, and then enriched the remaining dataset for 
enrichment analysis using GSEA version 4.1.0. The genes in the 
Vehicle/SFN group were highly enriched in the Inflammatory 
response pathway, Lipid biosynthesis process pathway, Lipid catabolic 
process pathway, Response to oxidative stress pathway, and T-cell 
mediated immunity pathway (Figure  1A). Among them, the 
“Inflammatory response pathway” had the lowest p value and the 
highest enrichment factor. The data suggest that long-term intake of 
SFN can help reduce the inflammatory response of the body (14).

The up-regulated differentially expressed genes in the SFN-treated 
group compared to the Vehicle group were enriched in KEGG, and 
the enrichment was mainly concentrated in the Protein digestion and 
absorption pathway, PPAR signaling pathway, Peroxisome pathway, 
Renin secretion pathway, Steroid hormone biosynthesis pathway, 

Retinol metabolism pathway, Metabolism of xenobiotics by 
cytochrome P450 pathway, ether lipid metabolism pathway and Fatty 
acid biosynthesis pathway (Figures 1B,C). Cnetplot illustrated the 
specific genes associated with these pathways (Figure 1C). Down-
regulated differentially expressed genes are centrally enriched in 
KEGG, including Cytokine-cytokine receptor interaction pathway, 
MAPK signaling pathway, NF-κB signaling pathway, Hematopoietic 
cell lineage pathway, Dilated cardiomyopathy pathway, IL-17 signaling 
pathway, Antigen processing and presentation pathway, Primary 
immunodeficiency pathway, Nicotine addiction and Carbohydrate 
digestion and absorption pathway (Figure  1D). Cnetplot shows 
specific genes associated with these pathways (Figure 1E).

Among the genes of these pathways PPARγ gene is highly 
expressed (Log2 (fold change) > 1.5) PPARγ is a nuclear receptor that 
plays a key role in a variety of biological processes, such as oxidative 
stress response and inflammatory response (15). Studies have shown 
that nuclear receptor PPARγ is associated with oxidative stress and 
directly regulates oxidative stress through the regulation of related 
genes involved in oxidative stress such as UCP2, GPX3, HO-1, 
MnSOD, and CD36, and at the same time exerts anti-inflammatory 
and anti-oxidative stress effects through the NF-κB signaling 
pathway (16).

A GO enrichment analysis was conducted. The analysis categorizes 
genes from the most general to the most specific (same color indicates 
the same category), with the total number of genes in the pathway 
indicated, darker colors representing smaller p values, and the number 
of genes up-regulated or down-regulated in the pathway. The 
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FIGURE 1

GSEA, KEGG and GO enrichment analysis of DEGs. Showing GSEA enrichment plot, enrichment bubble plot, Cnetplot and GO enrichment circle plot. 
(A) GSEA analysis showing pathways associated with differential gene expression in canine intestinal epithelial cells in the SFN group compared to 
controls. (B) KEGG enrichment analysis showing upregulated DEGs major enriched pathways, X-axis represents the enrichment rate and Y-axis 
represents 9 KEGG pathways. Count: bubble size indicates the number of genes annotated to KEGG pathways. p value: color indicates the p value of 
enrichment. (C) Cnetplot showing 4 pathway-related crossover genes. (D) KEGG enrichment analysis showing downregulated DEGs major enriched 
pathways. (E) Cnetplot showing 4 pathway-related crossover genes. (F) GO enrichment analysis of up- and down-regulated pathways predominantly 
enriched for DEGs.

https://doi.org/10.3389/fvets.2024.1460500
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Li et al. 10.3389/fvets.2024.1460500

Frontiers in Veterinary Science 04 frontiersin.org

enrichment factor (the ratio of up-regulated or down-regulated genes 
to the total number of genes in the pathway) and the filtering p value 
and enrichment factor are also considered. Among the up-regulated 
DEGs, there is a significant enrichment in tissue structure and protein 
structure pathways, such as cardiac septum morphogenesis 
(GO:0060411), outflow tract morphogenesis (GO:0003151), cardiac 
septum development (GO:0003279), and negative regulation of 
protein-containing complex assembly (GO:0031333). In contrast, 
down-regulated DEGs predominantly enrich in pathways related to 
cytoarchitecture, such as the axoneme (GO:0005930) (Figure 1F).

3.3 DEGs interaction and gene expression 
analysis

In the present study, most of the differential genes in SFN-treated 
canine intestinal epithelial cells were centrally enriched in pathways 
related to oxidative stress response and inflammatory response 
compared with controls. In addition, PPARγ plays a role in 
inflammation and oxidative stress processes (17). Therefore, we selected 
key differential genes of oxidative stress response pathway, inflammatory 
response pathway, and NF-κB signaling pathway, and further STRING 
analysis predicted the relationship between these genes and PPARγ, and 
the results showed that they were highly correlated and interconnected 
by 93 edges. UCP2, UCP3, NQO1, and SOD1 interacted with PPARγ 
(Figure 2A). These data suggest that SFN may alleviate the inflammatory 
response of canine intestinal epithelial cells through PPARγ.

It has been demonstrated that the PPARγ gene is highly expressed 
in the intestine and exhibits a strong correlation with oxidative stress 
pathways (18). We conducted a screen of the expression values for 
differentially expressed genes associated with the oxidative stress 
pathway, normalized the data, and generated a heatmap (Figure 2B). 
Notably, the expression of antioxidant genes, including TLDC2 (19), 
NQO1 (20), BRF2 (21), and UCP2 (22) were significantly 

up-regulated. Furthermore, PPARγ is known to suppress inflammation 
via signaling pathways such as NF-κB (16). We plotted a heatmap of 
differentially expressed genes within the inflammatory signaling 
pathway. This revealed the downregulation of pivotal genes, such as 
TNFAIP3, which is known to suppress the NF-κB signaling pathway 
(23). Additionally, we observed an upregulation of the PPARγ gene, 
as illustrated in Figure 2C.

4 Discussion

The present study provides a comprehensive transcriptomic 
analysis of the effects of sulforaphane (SFN) on canine intestinal 
epithelial cells, revealing significant modulation of genes and pathways 
associated with inflammation, oxidative stress, and immune response. 
Our findings underscore the potential therapeutic implications of SFN 
in canine intestinal health and contribute to the broader understanding 
of its mechanisms of action.

The significant up-regulation of the PPARγ gene in response to 
SFN treatment is particularly noteworthy. PPARγ is a nuclear 
receptor with established roles in regulating inflammation and 
oxidative stress (24, 25). Its activation has been shown to suppress the 
production of pro-inflammatory cytokines and enhance the 
expression of antioxidant enzymes, thereby mitigating cellular 
damage. Our results align with previous studies that have highlighted 
the anti-inflammatory and antioxidant effects of SFN, suggesting that 
PPARγ may be a key mediator of these effects in canine intestinal 
epithelial cells.

The enrichment of differentially expressed genes in pathways related 
to lipid metabolism is another significant finding. SFN’s impact on lipid 
biosynthesis and catabolism could have implications for managing lipid-
related disorders in dogs, such as pancreatitis and atherosclerosis. 
Further research is needed to explore the potential of SFN as a dietary 
supplement for the prevention and treatment of these conditions.

FIGURE 2

STRING analysis for gene correlation analysis and heat map associated with PPARγ. (A) Interactions between key genes involved in PPARγ 
transcriptional regulation of inflammatory response, oxidative stress, and NF-κB signaling pathway were predicted by STRING-ELIXIR analysis. Enriched 
p value: <1.0e-16. (B) Heat map of differentially expressed genes of the oxidative stress pathway. (C) Heatmap of differentially expressed genes of the 
inflammatory pathway.
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Our study also observed the down-regulation of genes associated 
with the cytokine-cytokine receptor interaction and MAPK signaling 
pathways. These pathways are crucial in the propagation of inflammatory 
responses (26, 27). The modulation of these pathways by SFN suggests 
a potential mechanism by which SFN could reduce inflammation in the 
canine intestine, supporting its use as an anti-inflammatory agent.

It is important to consider the translational relevance of our findings. 
The canine model is often used as a surrogate for human gastrointestinal 
research due to similarities in gut physiology and disease pathology (28). 
Therefore, our results may have broader implications for understanding 
the role of SFN in human intestinal health and its potential as a 
therapeutic agent in conditions such as inflammatory bowel disease.

However, our study is not without limitations. The in vitro nature 
of our experiments means that the effects of SFN on the whole organism 
are yet to be determined. Future studies should include in vivo models 
to validate our findings and explore the long-term effects of SFN on 
canine intestinal health. Additionally, the specific concentrations of SFN 
used in this study may not reflect dietary intake levels, suggesting a need 
for dose–response studies to establish optimal therapeutic dosages.

In conclusion, our transcriptomic analysis provides valuable 
insights into the molecular mechanisms by which SFN may exert its 
protective effects on canine intestinal epithelial cells. The modulation 
of key genes and pathways involved in inflammation, oxidative stress, 
and lipid metabolism suggests SFN’s potential as a therapeutic agent 
for promoting intestinal health in dogs (29). Further research is 
warranted to explore these findings in vivo and to translate these 
insights into clinical applications.
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