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Avian reoviruses (ARVs) cause viral arthritis or tenosynovitis, resulting in poor 
weight gain and increased feed conversion ratios in chickens. In this study, 
we generated three Marek’s disease virus (MDV) recombinants, namely, rMDV-
ARV-σB, rMDV-ARV-σC, and rMDV-ARV-σB  +  C, expressing ARV σB, σC, and 
both σB and σC, respectively. In rMDV-ARV-σB and rMDV-ARV-σC, the σB or 
σC gene was inserted into the US2 gene of MDV vaccine strain 814 using a 
fosmid-based rescue system. In rMDV-ARV-σB  +  C, the σB and σC genes were 
cloned into different expression cassettes, which were co-inserted into the US2 
gene of the MDV 814 strain. In infected chicken embryo fibroblasts (CEFs), the 
recombinant virus rMDV-ARV-σB expressed σB, rMDV-ARV-σC expressed σC, 
and the rMDV-ARV-σB  +  C virus simultaneously expressed σB and σC. These 
recombinant viruses exhibited growth kinetics in CEFs similar to those of the 
parent MDV, and the inserted genes were stably maintained and expressed in 
the recombinant MDVs after 20 passages in cell cultures. These recombinant 
MDVs expressing σB and σC will provide potential vaccines against ARV infection 
in chickens.
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1 Introduction

In chickens, avian reovirus (ARV) infections cause viral arthritis, stunting syndrome, and 
tenosynovitis, resulting in considerable economic losses in the poultry industry worldwide 
(1). Although most birds infected with this virus are infected via the fecal-oral route, ARV 
infection via the respiratory tract and egg transmission have also been reported. Chicken 
susceptibility to ARV infection is age-dependent, with older birds being established to be more 
resistant to both infections and viral-induced lesions (2).
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ARV is a member of the genus Orthoreovirus in the family 
Reoviridae, which includes viruses comprising segmented genomes 
consisting of 10 genome segments of double-stranded (ds) RNA. The 
ARV genome can be divided into three size classes, namely large (L1, 
L2, and L3), medium (M1, M2, and M3), and small (S1, S2, S3, and 
S4), and expresses at least 12 primary translation products, of which 
eight and four are structural and non-structural proteins, respectively 
(3, 4). The σB protein is a minor component of the outer capsid of 
ARV (5, 6) that can induce group-specific neutralizing antibodies (7). 
Notably, σC is the only viral protein present in soluble extracts of 
infected cells, and this protein has been identified as a major protein 
for inducing the production of neutralizing antibodies against ARV 
(3, 8). Given their powerful immunogenicity, the σB and σC proteins 
have become optimal candidates for the construction of novel ARV 
vaccines (9–12).

Marek’s disease virus (MDV) is a highly cell-associated 
herpesvirus that causes Marek’s disease (MD), a neoplastic and 
neuropathic disease in chickens (13). MDV has a large genome, 
several regions of which are non-essential for viral replication. 
Furthermore, MDV vaccines can be inoculated into 1 day-old field 
chicks with high titers of maternal antibodies to establish early 
immunity (14). MDV vaccines can also induce lifetime immunity in 
chickens following the administration of just a single vaccination. 
These features make MDV a highly promising viral vector for the 
development of recombinant vaccines against ARV infections. In this 
study, by inserting the σB and σC genes of ARV into the genome of an 
MDV vaccine strain individually or conjointly, we  succeeded in 
constructing three recombinant MDVs expressing σB, σC, or both σB 
and σC, which were evaluated in vitro for antigen expression, 
replication, and stability.

2 Materials and methods

2.1 Viruses, cells, and antibodies

As the parental virus for producing recombinant MDVs, we used 
the MDV serotype 1 (MDV1) 814 vaccine strain (15). These MDVs 
were propagated in chicken embryo fibroblasts (CEFs) prepared from 
10 day-old specific-pathogen-free (SPF) chicken embryos. The mouse 
anti-σB monoclonal antibodies (MAb) and the mouse anti-σC MAb 
were prepared in our laboratory.

2.2 Construction of fosmids with insertion 
of the ARV σB and σC genes

The ARV σB and σC genes were individually inserted into 
pCAGGS vectors under the control of the CAG promoter (CMV 
enhancer/chicken β-actin promoter), and the resultant σB or σC 
cassette was then used to replace the gus gene in a pENTR-gus vector 
(Invitrogen) to obtain the attL1 and attL2 arms. In our preliminary 
studies, we  constructed five fosmid clones containing genomic 
sequences spanning the entire genome of MDV1 vaccine strain 814 
(16). To simplify the insertion of foreign genes into the MDV genome, 
fosmid 814E was modified by inserting a dual selection marker 
encoding the kanamycin resistance gene (KanR) and ccdB gene 
flanked by attR1 and attR2 sequences into the US2 gene of MDV using 

a Counter-Selection BAC modification kit (Gene Bridges Gmbh, 
Heidelberg, Germany).

To insert the σB or σC cassette into the MDV genome, entry 
plasmids were mixed with the modified fosmid 814E-Kan/ccdB, 
treated with LR Clonase II enzyme (Invitrogen), and then used to 
transform competent Escherichia coli EPI300-T1 cells. The 
resultant fosmids containing σB or σC cassette insertions were 
designated 814E-ARV-σB or 814E-ARV-σC, respectively 
(Figures  1B,C). To construct the recombinant fosmid 814E-
ARV-σB + C co-expressing σB and σC, the σB gene was cloned into 
a pCAGGS vector under the control of the CAG promoter, and the 
σC gene was cloned into a pCI vector under control of the CMV 
promoter. Thereafter, the σB and σC cassettes were simultaneously 
cloned into a pENTR-gus vector and inserted into the US2 gene in 
fosmid 814E (Figure 1D).

2.3 Rescue of recombinant MDV from 
overlapping fosmid DNAs

For virus rescue, we used a set of five fosmids with or without σB 
and σC insertions. Viral DNA inserts were released from purified 
fosmids by digestion and the DNAs of each fosmid were used to 
transfect primary CEFs in 60 mm dishes using a Calcium Phosphate 
Transfection Kit (Invitrogen). Four days after transfection, the cells were 
trypsinized, seeded in 100 mm dishes, and monitored for cytopathic 
effects (CPE), with the CPE-positive samples being harvested and 
characterized by electron microscopy. To verify the correct insertion of 
the σB and σC genes into the MDV genome at the desired sites, the viral 
genomic DNA was analyzed by PCR and sequencing.

2.4 Confirmation of σB and σC expression

Expression of ARV σB and σC by recombinant MDVs was 
confirmed using an indirect immunofluorescence assay. Briefly, CEFs 
in six-well tissue culture plates were infected with the rescued viruses 
for 4 days. Thereafter, having aspirated the medium, the cells were 
fixed with absolute ethanol for 20 min at room temperature. The fixed 
cells were subsequently incubated with mouse anti-σB MAb or mouse 
anti-σC MAb for 60 min at 37°C, then reacted with FITC-conjugated 
goat anti-mouse IgG antibody (Sigma, St. Louis, MO) for 60 min at 
37°C. After being washed five times, the cells were examined via 
fluorescence microscopy.

2.5 Growth properties and stability of the 
rescued viruses

To investigate the growth properties of the recombinant MDVs, 
cells cultured in six-well plates were inoculated with 100 plaque-forming 
units of the rescued viruses. The infected cells were harvested at different 
time points and serial dilutions were inoculated onto fresh CEFs. The 
plaques produced by the different dilutions were counted 5 days later. 
To evaluate the genetic stability of the recombinant MDVs, viruses were 
passaged 20 times in CEFs. Detection of the inserted σB and σC genes 
was carried out by PCR and sequencing. Expression of the σB and σC 
gene was confirmed by fluorescence assays as described above.
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3 Results

3.1 Generation of recombinant MDVs 
containing the ARV σB and σC genes

For the construction of recombinant virus rMDV-ARV-σB and 
rMDV-ARV-σC, σB and σC cassettes were inserted into the US2 gene 
in the MDV genome, respectively, and the resultant recombinant 
fosmids (814E-ARV-σB or 814E-ARV-σC) were co-transfected with 
the parental fosmids into CEFs. For rMDV-ARV-σB + C, the σB and 
σC genes were cloned under the control of the CAG and CMV 
promoters, respectively, and the σB and σC cassettes were 
simultaneously inserted into the MDV genome. Having been blindly 
passaged in CEFs, MDV-typical plaques appeared in the CEFs 
transfected with the DNA combinations (Figure 2). Insertion of the σB 
and σC genes at the correct sites was confirmed by PCR and sequencing.

3.2 Expression of σB and σC from the 
recombinant MDVs

The expression of σB and σC by the recombinant viruses was 
confirmed via an indirect immunofluorescence assay. Cells infected 
with rMDV-ARV-σB or rMDV-ARV-σC reacted with anti-σB and 
anti-σC antibodies, respectively, whereas the cells infected with rMDV-
ARV-σB + C reacted with both the anti-σB and anti-σC antibodies, 
emitting a green fluorescent signal (Figure  3). Contrastingly, 

we detected no reaction between the parental virus-infected cells and 
these antibodies. These results indicate that we  had successfully 
generated recombinant MDVs expressing the ARV σB and σC genes.

3.3 Growth kinetics of the recombinant 
MDVs

Replication of the recombinant viruses was analyzed and compared 
with that of parental viruses in CEFs. CEF cultures infected with the 
viruses were harvested at different time points for titration. The results 
showed that the growth kinetics and magnitude of the three recombinant 
viruses, rMDV-ARV-σB, rMDV-ARV-σC, and rMDV-ARV-σB + C 
were very similar to those of their parental viruses (Figure 4A). As 
shown in Figure 4A, the recombinant viruses and the parental virus 
achieved the highest replication level at 120 h post-infection with the 
viral titers of 104.92, 104.87, 104.89, and 104.90 PFU/mL (p > 0.05), indicating 
that insertion of the σB and σC genes in the US2 site had no significant 
effects on the replication of the MDV vaccine strains in CEFs.

3.4 Genetic stability of the recombinant 
MDVs

To investigate whether the inserted σB and σC genes can 
be stably maintained in the recombinant viruses, we passaged the 
viruses 20 times in CEFs. The σB and σC genes in both recombinants 

FIGURE 1

Construction of fosmids containing the ARV σB and σC genes. (A) The genomic structure of MDV vaccine strain 814. (B) Schematic diagram showing 
the recombinant fosmid 814E-ARV-σB containing the σB cassette inserted within the US2 gene in the MDV genome. (C) Schematic diagram showing 
the recombinant fosmid 814E-ARV-σC containing the σC cassette inserted within the US2 gene in the MDV genome. (D) Schematic diagram of the 
recombinant fosmid 814E-ARV-σB  +  C containing the σB and σC expression cassettes inserted within the US2 gene in the MDV genome.
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could be  detected using PCR amplification (Figure  4B), and the 
inserted genes were correct as detected by sequencing. Furthermore, 
the σB and σC expression in recombinant virus-infected cells could 
still be  detected by immunofluorescence after 20 passages 
(Figure 4C).

4 Discussion

In chicken farms, protection against ARV infections has 
historically been achieved via vaccination with commercial live and 
inactivated vaccines. The primary objectives of vaccination are to 
prevent the vertical transmission of ARV, provide maternal antibodies, 
and prevent clinical disease in progeny. In China, ARV infections have 
been successfully controlled in the past few years through the use of 
vaccines, although the current vaccines against ARV may not provide 
full protection and can cause adverse reactions (12). Since 2013, ARV 
infection has been increasingly detected in broilers in China (17), and 
the viral arthritis and severe immunosuppression caused by ARV 

variants pose a new threat to the broiler industry and breeding stocks. 
Additionally, infection with MDV is a perennial problem, and 
co-infection with ARV and MDV is a frequent annual occurrence in 
China and other countries in which these viruses are endemic. In this 
context, the development of a bivalent vaccine candidate that can 
protect against both these viral infections is of particular importance.

In previous studies, multiple types of genetically engineered 
vaccines have been generated to prevent ARV infections. For example, 
the DNA vaccines SL7207 (pVAX-σB), SL7207 (pVAX-σC), and 
SL7027 (pVAX-σB-σC) have, respectively, been demonstrated to 
confer 50, 75, and 87.5% protection against ARV infections in 
chickens (18). In a further study, the full-length (residues 1–326) and 
two partial fragments of σC (residues 122–326 and 192–326) were 
produced in Escherichia coli, among which, the 122–326 fragment was 
found to induce significantly higher levels of anti-ARV antibodies 
than the shorter fragment or the full-length σC (19). Furthermore, the 
coding sequence of the σC protein has been expressed in 
Schizosaccharomyces pombe, and a high dose of 250 μg purified yeast-
expressed σC protein was found to provide 91% protection against 
ARV infection in chickens (12). Additionally, the σC gene has been 

FIGURE 2

The cytopathic effects (CPE) induced by the recombinant MDVs containing σB and σC genes in chicken embryo fibroblasts (CEFs). CEFs were 
inoculated with the recombinant MDVs for 4 to 5  days prior to assessing CPE. Bar length, 200  μm.

FIGURE 3

Detection of σB and σC expression by the recombinant viruses. Chicken embryo fibroblasts (CEFs) in six-well tissue culture plates were infected with 
the rescued viruses for 4  days, and the expression of σB and σC was determined using an indirect immunofluorescence assay with anti-σB and anti-σC 
antibodies. Bar length, 200  μm.

https://doi.org/10.3389/fvets.2024.1461116
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gao et al.� 10.3389/fvets.2024.1461116

Frontiers in Veterinary Science 05 frontiersin.org

cloned into the NDV genome and the resultant virus rNDV-R2B-σC 
was found to induce both humoral and cell-mediated immune 
responses in birds and conferred complete protection against virulent 
NDV and ARV challenges (20).

The ARV σB and σC proteins are the two main factors that can 
induce the production of neutralizing antibodies in chickens. In this 
study, we used an MDV vaccine strain as the vector to mediate the 
delivery of the σB and σC genes. As an avian herpesvirus, MDV has a 
large genome and is not susceptible to maternal antibodies owing to 
its cell-to-cell transmission properties. Additionally, given the 
persistent nature of MDV infection, MDV-vectored vaccines can 
contribute to inducing a long-term immune response (21, (22). In the 
present study, the σB and σC genes were independently inserted into 
the MDV genome to generate two recombinant MDVs, rMDV-
ARV-σB and rMDV-ARV-σC, expressing σB and σC, respectively. 
Moreover, the σB and σC expression cassettes were conjointly inserted 
into the MDV genome, thereby yielding the recombinant virus 
rMDV-ARV-σB + C expressing both σB and σC genes. We previously 
inserted the VP2 gene of infectious bursal disease virus into different 
sites of the MDV genome, and the recombinant virus r814US2VP2 
with VP2 insertion in the US2 site conferred the highest protection 
level compared to those inserted with VP2 gene in other sites (23); 

we therefore chose the US2 site in this study for the insertion of ARV 
σB and σC genes. Our findings indicated that the inserted σB and σC 
genes were stably maintained in the US2 site and expressed in the 
infected cells, and that insertion of the σB and σC genes in the MDV 
genome had no significant detrimental effects concerning the 
replicative capacity of the parental virus. We  believe that these 
recombinant viruses expressing σB and σC could have significant 
potential applications as MDV-vectored vaccines for combatting ARV 
infections in chickens.
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SUPPLEMENTARY FIGURE S1

Detection of the σB and σC genes inserted in the recombinant MDVs 
passaged 10 (P10) times in CEFs by PCR.
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Detection of the σB and σC genes inserted in the recombinant MDVs 
passaged 20 (P20) times in CEFs by PCR.
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