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Of potential new treatment
targets and polythetic approach
in meningoencephalitis of
unknown origin: a review

Jasmin N. Nessler* and Andrea Tipold

Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover,

Foundation, Hannover, Germany

Meningoencephalitis of unknown origin (MUO) represents an umbrella term for

inflammatory, non-infectious central nervous system (CNS) diseases in dogs.

Current therapeutic approaches, involving long-term glucocorticosteroid use,

often fail to provide adequate relief or cure, and the e�ectiveness of additional

immunosuppressive medications remains uncertain. Future advancements

in MUO treatment may benefit from patient-specific therapies, potentially

enhancing treatment precision, e�cacy, and minimizing side e�ects. However,

significant challenges impede this progress, including ambiguity in MUO subtype

classification, uncertainties regarding the autoimmune nature vs. infectious

triggers, and the lack of reliable diagnostic biomarkers. Clinical heterogeneity

and overlapping signs with other encephalopathies further complicate diagnosis

and treatment. This review gives an overview about diagnostic findings and

immunological features of MUO. It advocates for a more overall characterization

of MUO by using a polythetic system to better characterize MUO subtypes,

identify immunological treatment targets, and establish a conceptual foundation

for future therapeutic trials. Addressing these themes may lead to more e�ective

and less burdensome treatments, improving the quality of life for dogs a	icted

with MUO and their owners.
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canine (dog), meningoencephalitis of unknown origin (MUO), diagnostic, clinical signs,
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1 Introduction

Meningoencephalitis of unknown origin (MUO) is an inflammatory, non-infectious

disease of the central nervous system (CNS) in dogs (1, 2). MUO primarily functions

as an umbrella term, frequently utilized for diagnostic purposes in the absence

of histopathological confirmation and specific classification (3, 4). Most commonly

mentioned subtypes encompass granulomatous meningoencephalomyelitis (GME),

necrotizing meningoencephalitis (NME), and necrotizing leukoencephalitis (NLE) (4)

often summarized as necrotizing encephalitis (NE) (2). Less common entities, such

as eosinophilic meningoencephalitis, greyhound encephalitis, idiopathic cerebellitis, and

autoantibody encephalitis are occasionally excluded from the MUO category in certain

literature (4). Steroid-responsive meningitis-arteritis (SRMA), a predominant neutrophilic

meningitis and vasculitis, remains a distinct entity and is not subsumed within the MUO

terminology (4, 5).

MUO lacks an identifiable infectious trigger and typically respond positively to

immunosuppressive therapy, primarily through long-term glucocorticosteroid application
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(4, 6–9). Despite a variable and sometimes insufficient response

to therapy and the high incidence of side effects, the treatment

regimen has remained largely unchanged for the last 10 to 20

years (9).

The current state of therapeutic approaches for MUO

in cats and dogs is unsatisfactory. Long-term therapy with

glucocorticosteroids improves the outcome in treated patients

compared to untreated patients; but the efficacy of commonly used

additional immunosuppressive medication remains inconclusive

(9–11). This treatment results in often intolerable burden of side

effects and failing to sufficiently provide long-term relief from

clinical manifestations, let alone cure the disease.

For the future, a patient-specific therapy would be desirable as

it might have several advantages (12):

Precision medicine: Patient-specific therapy might allow for a

more precise and targeted approach to treatment. By understanding

the unique characteristics of the pet’s autoimmune CNS disease,

medications and interventions could be customized to address the

specific mechanisms driving the condition. Tailoring treatment to

the individual patient’s needs could enhance the effectiveness of

interventions while minimizing potential side effects.

Optimized efficacy: Different dogs may respond differently

to standard treatments. Personalized therapy takes into account

the specific molecular and cellular factors contributing to the

autoimmune response and the stage of the disease, increasing the

likelihood of a more effective treatment outcome.

Minimized side effects: Standard treatments for autoimmune

diseases often involve pan immunosuppression that can affect

various bodily functions (13). Tailoring therapy to the individual

patient might help minimize unnecessary exposure to medications,

reducing the risk of adverse effects.

Improved quality of life (QoL): By customizing treatment to

the unique characteristics of the dog’s autoimmune CNS disease,

veterinarians could optimize the balance between suppressing

clinical signs and preserving the dog’s overall wellbeing. This can

lead to an improved quality of life for the patients and their owners.

Development of satisfactory and patient-specific treatment

necessitates a profound understanding of the etiopathogenesis of

MUO, identifying potential treatment targets. Three significant

challenges hinder this understanding:

First, the ambiguity persists regarding whether all MUO

subtypes constitute a single disease entity or if histopathological

subtypes represent distinct independent diseases with varying

etiopathogenesis (2).

Second, uncertainties remain regarding the clear autoimmune

nature of these diseases or the potential involvement of a relevant

infection triggering and initiating excessive inflammation (9).

Third, there is a lack of consensus on how to diagnose

MUO or its subtypes ante mortem without histopathological

confirmation via biopsy, which is an expensive, time-consuming,

and potentially risky procedure, not routinely employed. Currently,

no single biomarker or combination thereof reliably establishes

the diagnosis of MUO or distinguishes between subtypes (14).

Clinical signs and laboratory findings of dogs with MUO exhibit

heterogeneity and occasionally, MRI and/or cerebrospinal fluid

(CSF) findings are normal: Abnormal MRI with normal CSF is

present in 9%, normal MRI and abnormal CSF in 6%, and normal

MRI and CSF in 3% of dogs with MUO (15), in general 13%

of dogs with MUO show normal CSF (4). Dogs of any breed

and age may be affected, challenging breed specific predisposition

patterns. Clinical signs and findings also overlap significantly

with other encephalopathies (16). Strict adherence to previously

suggested definitions of MUO would exclude a considerable

number of affected dogs and could even include dogs with other

diseases (4).

To advance new and more effective therapies

with less side effects for patients with MUO, this

review aims to lay the conceptual foundation for

future therapeutic trials by addressing the following

overarching themes:

• Characterizing diverse MUO subtypes beyond the

conventional subtypes of GME and NE observed in dogs.

• Identifying potential treatment targets within the

immunological disease process.

• Advocate for a more overall characterization of MUO by using

a polythetic approach.

2 History of MUO

First described in 1968, GME was initially referred to

as reticulosis and predominantly considered neoplastic (17).

However, in the subsequent decades, particularly in the 70s

and 80s, it became increasingly evident that this entity is more

appropriately characterized as an inflammatory disease (18–

23). Despite extensive investigations, no infectious agents were

identified, and the underlying cause remained unclear (18, 19).

Various theories were postulated, including the suggestion that

GME might represent an aberrant reaction to canine distemper

virus infection or vaccination, a retrovirus infection stemming from

vaccine contamination, or involvement of other viral, parasitic, or

infectious agents (24). None of these theories could be substantiated

through immunohistochemical examinations, polymerase chain

reaction (PCR) analyses, viral inoculation, or microbiological

cultures, failing to reveal a conclusive infectious agent triggering the

inflammatory response (8, 24–26). Early reports also proposed an

overstimulation of the immune system due to the antiparasitic drug

levamisole (27) or a T-cell-mediated delayed-type hypersensitivity

reaction as potential causes for GME (24, 28); however, none of

these hypotheses could be definitively proven.

Subsequently, NME- in Pug dogs often referred to as Pug dog

encephalitis due to its strong breed disposition (29)- and NLE in

Yorkshire Terriers were documented (6). Once again, no infectious

agents were identified (25, 30).

Clinical examination, CSF analyses, and computed tomography

(CT) scans proved insufficient in differentiating between

the various histopathological subgroups (4, 31). As a result,

these meningoencephalitides were amalgamated for clinical

purposes and described under diverse names such as idiopathic

inflammatory brain disease, non-infectious meningoencephalitis,

and sterile meningoencephalitis, among others (1, 2, 4, 32). Over

time, MUO has emerged as the prevailing and widely accepted
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term (4, 33). Presently, MUO stands as one of the most common

encephalitis, accounting for 52%−69% of dogs with encephalitis

(5, 34).

Despite the array of names and classifications, therapeutic

approaches have shown limited evolution in recent years (4, 9).

Early manuscripts outlined the utilization of glucocorticosteroid

therapy in individual dogs diagnosed with MUO (19). Given

the variability in outcomes, additional immunosuppressive

drugs such as mycophenolate mofetil, leflunomide, cyclosporine,

azathioprine, and even radiation protocols were introduced

alongside glucocorticoids (35–44). While the available data

may exhibit some contradictions, on the whole, none of these

therapies seems to demonstrate superiority over others in terms

of efficacy and side effect profiles (9). Furthermore, uncertainties

persist regarding whether combination therapy offers a significant

advantage over the use of glucocorticoids alone (11, 45, 46).

To the author’s knowledge, there are no studies evaluating the

effectiveness or side effect profiles of other immunosuppressive

drugs without concurrent application of glucocorticosteroids

in MUO (9). Additionally, there is only one comparative

study assessing combined therapy with glucocorticosteroids

and an additional immunosuppressive drug against treatment

with glucocorticosteroids alone in a prospective, double-blinded

approach (9, 11).

Presently, one of the most commonly employed treatment

regimens entails the administration of parenteral cytarabine

in conjunction with long-term glucocorticosteroids (10).

However, the prolonged use of glucocorticosteroids is associated

with numerous side effects, including polyuria/polydipsia,

gastrointestinal symptoms, alopecia, calcinosis cutis, and others

(13, 47). These side effects significantly impact QoL of the dog

and the owner (48). Attempts to reduce glucocorticoid doses often

result in deterioration or relapse of clinical signs (40). Even with

appropriate doses, treatment frequently yields insufficient clinical

improvement, and the mortality rate of MUO can reach up to

30%−56% within 100 days after diagnosis (33, 40, 49).

For a detailed review on therapeutic options used at the

moment and treatment results, we would like to refer the reader

to the latest reviews, for example by Jeffery and Granger (9).

3 Clinical diagnosis of MUO

Clinical signs vary with lesion localization and reflect focal or

multifocal lesions in the CNS, commonly involving seizures, ataxia,

proprioceptive deficits, vestibular signs, blindness, and multiple

cranial nerve deficits, sometimes accompanied by head or neck

pain (24). Systemic signs like fever are rare (4). GME mainly

causes signs of lesions in the forebrain, brainstem, or both (4,

19) and blindness in the ocular variant (50, 51). Large breed

dogs presented significantly more often with decreased mentation

compared to small breed dogs (33). NE mainly causes signs of

forebrain lesions with seizures (6, 29, 30, 52, 53). Rarely, GME can

occur as meningomyelitis and cause paresis and spinal ataxia, with

approximately 9.5%−13% involving the spinal cord only (4, 54, 55).

To assess the severity of clinical signs objectively, two

neurodisability scales (NDS) have been developed so far

(37, 56) which attribute scores to different clinical signs.

While Goncalves et al. (5) showed good interobserver

agreement in prospective cases, this was worse in retrospective

evaluation of patient records. Therefore the authors do

not encourage the use of this score for retrospective

data (56). Which of the scores is superior at any level

was not evaluated so far, but it seems they show good

correlation (57).

Pug dogs with NME tend to be younger (median 18 months)

than other dogs with NE (2–4 years), and dogs with GME tend to

be older (median 55 months; range: 6 to 144 months) when the first

signs of encephalopathy occur (2, 4, 53).

Diagnostics may involve advanced imaging, preferably

magnetic resonance imaging (MRI), of the brain and/or spinal

cord, CSF analysis, and exclusion of regional infectious agents (4).

MRI findings can vary significantly, but the classic presentation

typically consists of multifocal, intra-axial, ill-defined lesions with

mild mass effect and inhomogeneous contrast enhancement (33).

But MRI findings in MUO can be normal in up to 7%−9% (4, 15).

In GME, MRI reveals focal, multifocal, or diffuse T2-

weighted (T2w) and fluid attenuating inversion recovery (FLAIR)

hyperintense lesions in the forebrain, brainstem, or cerebellum in

both white and gray matter. The degree of contrast enhancement

in the CNS parenchyma varies, with little to minimal contrast

enhancement of the meninges (58).

MRI findings for NE differ slightly among affected breeds but

exhibit significant overlap. In Yorkshire Terriers with NE, lesions

are mostly multifocal, uni- or bilaterally asymmetrical lesions in

the forebrain, including the diencephalon. Predominantly, these

lesions occur in the periventricular and subcortical white matter,

often sparing the cortical gray matter (59, 60). The brainstem is

often less severely affected, while the cerebellum and spinal cord

typically remain unaffected. These lesions are usually T2w and

FLAIR hyperintense, although in more chronic cases, FLAIR signal

might be suppressed (59, 60). Contrast enhancement is mostly mild

and inhomogeneous to patchy (59).

MRI in NE in Pug dogs and Chihuahuas exhibit multifocal

or diffuse, asymmetrical forebrain lesions, most severe in occipital

and parietal lobes, with the frontal lobes less frequently affected.

Diencephalic lesions are less common, and brainstem or cerebellar

lesions are possible but rare (61). The border between white and

graymatter is often blurred, andmost lesions are present in the gray

matter. Lesions are usually T2w and FLAIR hyperintense, although

in more chronic lesions, FLAIR signal might be suppressed (59,

60). Contrast enhancement is mostly mild and inhomogeneous to

patchy (59).

CSF shows increased protein and predominantly

mononuclear pleocytosis, but mixed to neutrophilic pleocytosis,

albuminocytologic dissociation are not uncommon, and up to 22%

of dogs with MUO display normal CSF (4). C-reactive protein

(CRP) in CSF is not significantly different from healthy dogs (62).

Blood tests and extracranial findings are generally within

physiological limits, which is often in contrast with infectious

meningoencephalitis. For instance, in cases of neosporosis, blood

creatine kinase activity may be elevated (63).

Based on clinical signs, blood tests, MRI, and cerebrospinal

fluid findings, as well as the patient’s place of residence and
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travel history, possible infectious agents should be excluded

with appropriate investigations. There can be no uniform

recommendation for all cases, as the appropriate pathogen

investigations can vary significantly depending on the

individual case.

For research purposes, currently, the most widely adopted

inclusion criteria to diagnose MUO encompass the following

points (4):

• Age: > 6 months.

• Evidence of a multifocal CNS disease demonstrated by either

multifocal or diffuse lesions suspected after the neurological

examination and multiple, single, or diffuse intra-axial

hyperintense lesions on T2w MR images, or a unifocal lesion

suspected after the neurological examination and multiple or

diffuse intra-axial hyperintense lesions on T2w MR images.

• CSF analysis should be hypercellular, with>50%mononuclear

cells (preferably monocytes/lymphocytes).

• Infectious diseases should be ruled out.

The accuracy of these inclusion criteria has not been thoroughly

examined and there is debate among researchers on these points.

Recent reports about MUO in dogs younger than 6 months might

additionally question the age at inclusion (64).

Diagnosis can be complicated by overlapping clinical, MRI,

and CSF findings with other conditions such as neoplasia (16).

Confirming the diagnosis requires histopathological confirmation

of sterile inflammation (65). Therefore, the identification of the

histopathological subtype of GME or NE through clinical diagnosis

alone is limited. Due to this limitation, a uniform definitive

consensus on the diagnosis of MUO for clinical or research

purposes has not been established (14).

4 Prognostic factors of MUO

Prognosis is guarded with MUO, and various diagnostic

indicators appear to be linked to mortality risks (2, 3, 33, 35, 40,

46, 55, 66, 67). Clinical manifestations such as reduced mentation,

seizures, and signs related to multifocal or caudal cranial fossa

lesions are indicative of a less favorable prognosis (55). In general,

severity of clinical signs expressed as higher clinical NDS seem to

be associated with 1-week-survival but not with long term survival

in dogs with NE (56, 57).

Additionally, dogs with higher body weight or advanced age

and juvenile dogs tend to face a worse outcome (33, 64, 67).

Elevated and/or neutrophilic CSF cell counts, and

hyperlactatemia are correlated with shorter survival times

(66, 67).

MRI lesions seem to be correlated with prognosis to some

degree. Severe MRI findings, such as the loss of the CSF signal

of the cerebral sulci and foramen magnum herniation, are

associated with an increased risk of mortality (40). High T2w

lesion burden might be correlated with worse long term prognosis

(68) while unremarkable MRI findings seem to be associated with

better prognosis (69). Increased contrast enhancement might be

correlated with increased risk of relapse (68).

5 MUO in cats

MUO is not limited to dogs, with infrequent reports of

its occurrence also in cats (1, 70). Additionally, although not

explicitly named “MUO,” feline meningoencephalitides have

been documented from authors proposing an infectious agent

without having been able to identify it (71–73). A similar

scenario is observed in Staggering disease: The term Staggering

disease describes a clinical syndrome caused by non-suppurative,

lymphohistiocytic meningoencephalomyelitis (74, 75). Initially

believed to result from a viral infection, Borna virus (BoDV-1)

was evaluated as a potential causative agent (76). While

experimental infections demonstrated BoDV-1-induced neurologic

disease in domestic cats (77), consistent detection with independent

diagnostic methods proved elusive (78, 79). Consequently, BoDV-1

is no longer considered the causative agent for staggering disease,

leaving it classified as a meningoencephalitis with an unknown

trigger for some time. Recent evidence, however, suggests that some

cases of staggering disease may be caused by Rustrela virus (RusV),

as it has been detected in several affected cats (80). Nonetheless,

there are still cats with clinical signs of MUO or staggering disease

where no infectious agent, including RusV, can be identified (80,

81). This suggests that staggering disease may represent a spectrum,

with both unknown (MUO) and infectious causes, depending on

the individual case.

In cats, reports on histopathologically confirmed MUO in

combination with clinical signs are rare (81). The median age of

cats is 7 years, older than the median age of cats typically presented

to the clinic for infectious encephalitis (81). The breed distribution

of cats with MUO is comparable to the general clinical population,

while pedigree cats appeared to be more common among cats with

infectious encephalitis (81). Besides acute or chronic neurological

signs, systemic signs of illness or blood leukocytosis were frequently

present. CSF changes appeared subtle, with albuminocytologic

dissociation being the most common finding. Histopathology

revealed a multifocal, lympho-histiocytic inflammation in the

CNS (81).

Diagnostic and therapeutic strategies forMUO in cats primarily

arise from canineMUO research; treatment commonly involves the

use of prednisolone (70). However, therapeutic guidance remains

largely anecdotal.

6 The search for infectious agents

In canineMUO, several attempts failed to reveal any underlying

infectious diseases (8, 24–26, 82). Although some potential

infectious agents like bacteria or viruses were identified in

individual animals, none were consistently detected across the

entire patient cohort, ruling out that they are the underlying cause

of MUO (8, 24, 26, 82). This strengthens the hypothesis that

MUO might not be triggered by a specific infectious agent but is

a genetic disease. On the other hand, RusV was detected in the

CNS of cats initially diagnosed with MUO (80). RusV ribonucleic

acid (RNA) and antigen were shown by metagenomic sequencing,

real-time quantitative polymerase chain reaction (PCR), in-situ

hybridization, and immunohistochemistry in brain tissues of 27

out of 29 cats with non-suppurative meningoencephalomyelitis
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without a previously identifiable cause (80). Screening of possible

reservoir hosts in Sweden revealed RusV infection in Wood mice

(Apodemus sylvaticus) (80). RusV is a relative of the rubella virus

and associated with encephalitis in various mammalian hosts,

includingWoodmice, lions, and wallabies (83–85). It demonstrates

a broad host spectrum and extensive geographic distribution,

raising the possibility of its involvement in neuropathologies across

diverse mammalian species, potentially even humans (80, 83–86).

However, the absence of RusV in some cats with

lymphohistiocytic meningoencephalitis shows that MUO

might still be a distinct entity in felines, albeit seemingly less

prevalent than in canines (80). The divergence in results between

cats and dogs with MUO suggests difference in the underlying

pathogenic or genetic mechanisms between the two species. While

in MUO in dogs a lack of identifiable infectious agents and breed

predispositions (4, 82) point toward autoimmune etiology, the

prevalence of RusV in cats implies a more prominent role of

infectious agents in feline CNS inflammation.

The interspecies difference is most probably influenced by

various factors. Lifestyle distinctions, such as dogs being more

leash-restricted and less prone to consuming prey, may reduce

their exposure to infectious agents (87). In contrast, the outdoor

habits of cats, including hunting, may increase their vulnerability

to pathogens like RusV.

The broader exposure to antigens during their outdoor pursuits

could contribute to the development of a more diverse and

potentially regulated immune system in cats, potentially reducing

the susceptibility to autoimmune disorders: The so called “hygiene

hypothesis” proposes that reduced early-life exposure to infections

and a cleaner, more sanitized environment may contribute to

the increased prevalence of autoimmune diseases (88). This

theory suggests that limited microbial exposure early in life may

lead to an improperly regulated immune system, increasing the

risk of allergic and autoimmune diseases (88, 89). Additionally,

gastrointestinal parasite infections are immune modulatory (90),

and the potential predisposition of cats to such infections due to

their outdoor lifestyle might save them from overreacting immune

responses, although, no discernible difference in deworming

practices between cats and dogs emerges from existing studies

(87, 91).

In human medicine, there is a latitude difference in prevalence

of Multiple sclerosis (MS): Individuals residing in countries

closer to the equator during their initial years of life exhibit

a lower incidence of MS possibly related to sunlight exposure

and higher vitamin D levels (92, 93). Pets like dogs have a

different mechanism of synthesizing vitamin D (94, 95), but

a certain influence from exposure to sunlight might still be

possible. The outdoor lifestyle of cats may influence the developing

immune system differently compared to the immune system of

young dogs mostly held indoors. It might be possible that early

exposure to sunlight is beneficial to developing a healthy immune

system (89).

Most likely, the cause for an increased prevalence of

autoimmune CNS disease in dogs compared to cats is the

difference in the genetic background (6, 29, 96–98). Cats, especially

the more common European shorthaired cats, may be less

inbred than dogs, leading to a reduced genetic predisposition

to MUO.

7 Genetic base of MUO

A genetic basis for MUO is highly probable, and distinct breed-

specific patterns are evident (6, 52, 55, 59). NE predominantly

affects toy breeds, while NME is prevalent in breeds such as

Pug dogs, Maltese, or Chihuahuas (29, 52, 99). On the other

hand, NLE is more commonly observed in Yorkshire Terriers and

French Bulldogs (6, 30, 59). The distribution of GME appears

more heterogeneous, primarily affecting toy and terrier breeds, but

approximately one third of affected dogs belong to larger breeds

with a body weight exceeding 15 to 20 kg (4, 33, 55, 100).

In the context of genetic predisposition, heritability of NME

specific to the Pug dog is 0.67 (101). NME is particularly associated

with the Major Histocompatibility Complex II (MHC II) haplotype

featuring DRB1-010011, DQA1-00201, and DQB1-01501 (102,

103). Also, Maltese dogs and Chihuahuas seem to be at increased

risk to develop MUO with a certain MHC II haplotype (99, 104).

MHC II plays a crucial role in antigen presentation and has been

correlated with various autoimmune diseases in both canines and

humans, including Vizsla polymyositis and MS (105, 106).

8 Histopathological findings in MUO
and classification of MUO subtypes

MUO mostly serves as an umbrella term, predominantly

employed for diagnostic purposes in the absence of

histopathological confirmation and classification. Noteworthy

subtypes include GME and necrotizing encephalitis (NE)

(comprising NME and NLE). Less frequent entities such as

eosinophilic meningoencephalitis, greyhound encephalitis, optic

neuritis, idiopathic cerebellitis, and other unclassified sterile

meningoencephalitides are occasionally excluded from the MUO

category in some publications (4).

Histopathological characteristics exhibit specificity for each

MUO subtype. GME is classified by asymmetric angiocentric

or nodular granulomatous lesions arising from the focal

eccentric nodular proliferation of macrophages within histiocytic

perivascular cuffs in the Virchow-Robin space, primarily evident in

the cerebellum, medulla oblongata, and spinal cord (19–21, 107).

NE manifests as non-suppurative perivascular inflammation

and necrotic lesions predominantly in the white matter of the

cerebrum and brain stem, or the gray matter and meninges of the

telencephalon in NLE or NME respectively (6, 29, 30, 107).

GME, NME, and NLE all show a predominance of CD3-

positive T cells, along with macrophages and plasma cells. The

differences between these MUO subtypes are relatively subtle

(108). In NME and NLE, macrophages are frequently observed

in the malacic neuroparenchyma, where they likely help remove

cellular debris (108). In contrast, in GME, macrophages are

more commonly found in the perivascular cuffs, suggesting their

role in forming granulomatous lesions as part of the immune

response (108).

In NME and NLE, CD3-positive T cells adhere to astrocytes

in malacic regions, with this interaction occurring in different

areas: in the cortex for NME, and in the white matter for NLE

and GME (108). Furthermore, astrocytes stain positive for IgG in
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NME andNLE (but not in GME), in distinct regions—protoplasmic

astrocytes in the cortex in NME and fibrous astrocytes in the

white matter in NLE (108, 109). This suggests that different target

structures may be involved in the inflammatory processes of NME

and NLE.

However, the distinctiveness of histopathological features is

not universally observed, with frequent overlap between NME and

NLE, leading to their collective designation as NE (2).

Although there is general scientific agreement that typical

and distinct features regarding age of onset, clinical signs, and

histopathologic findings in GME and NE exist, it could be shown

that there is more overlap between MUO subtypes and more

distinct subtypes than previously known.

In one study, we have shown that it is possible to detect

concomitant histopathological features of GME and NE in the

brain of a single dog: Microscopically, in four dogs, areas

of marked necrosis were evident in the cerebral hemispheres,

cerebellar white matter, or brain stem with mainly lymphocytic

perivascular infiltrates (110). At the same time, all four dogs also

had focal or multifocal high-grade angiocentric granulomatous

inflammatory lesions in the cerebrum, and rhombencephalon.

Meningitis was found in all dogs. Infectious agents were excluded.

This study suggests that there might be additionally significant

overlaps between GME and NE. Those dogs were dogs from

breeds traditionally considered to suffer from NE variants

(6, 30, 52, 99, 110).

Additionally, another breed predisposition in Australian

Shepherds was described, which experience MUO at a senior

age and likely suffer from GME (100). This underscores an age-

dependent susceptibility to MUO in Australian Shepherds.

Furthermore, we have discovered an as-yet-undescribed variant

of lympho-histiocytic meningoencephalitis with CNS vasculitis

of unknown origin (111). Dogs exhibited clinical signs of

severe forebrain disease, rapidly progressing to involve the

brainstem, ultimately leading to death. Extracranial clinical signs

were only mild (111). MRI examination revealed generalized

swelling of cerebral gray matter and subsequent features of

increased intracranial pressure, as well as signs of cerebellar and

brainstem hemorrhage or transtentorial herniation (111). CSF

analysis indicated hemorrhage and lymphocytic dominance in cell

differentiation. In necropsy, the brains displayed varying degrees

of edema, cerebellar herniation, and hemorrhages. Microscopically,

the primary findings comprised lympho-histiocytic inflammation

in the brain and/or spinal cord with associated vasculitis (111).

An infectious causative agent could not be determined. This

highlights that MUO exhibits a much more extensive diversity than

previously reported.

This raises the question, what factors contribute to the

expression of different inflammatory patterns. The current

consensus suggests a multifactorial pathogenesis for MUO (9).

Some authors propose a genetic predisposition and a triggering

factor like an infectious agent or that exogenous antigens activate

T-cells cross-reacting with self-antigens, called molecular mimicry

(1, 8, 112). However, as no exogenous triggers have been found in

the last 60 years in canine MUO (1, 8, 25, 82, 113), it seems more

and more likely that there might be none.

Another theory postulates a multistep pathogenesis of

autoimmune disease (114). An autoimmune disease might be

caused by a failure of immunological self-tolerance caused by

multiple inherited and somatic mutations within the immune

system (114). According to current knowledge, autoimmune

diseases arise when T and B-cells responding to self-antigens cause

misguided and over-reactive inflammation (115, 116).

Physiologically, immunological self-tolerance involves multiple

control systems to prevent the accumulation of autoimmune

lymphocytes. The first step is central immune tolerance, involving

the purging of autoimmune cells in the thymus (117, 118). Here, up

to 40% of autoreactive cells escape central immune tolerance (117).

Several subsequent mechanisms are involved in the peripheral

immune tolerance to limit auto-reactive immune cell responses

(114, 116). Peripheral immune tolerance is enforced through cell-

intrinsic (inhibitory pathways) and cell-extrinsic (regulatory T-cells

= Tregs) mechanisms (118). Tregs, characterized by their anti-

inflammatory properties, suppress autoimmune reactions through

various means, including the secretion of anti-inflammatory

cytokines (IL-10, TGF-β, and IL-35) and induction of apoptosis in

effector cells (119, 120).

Intrinsic regulatory mechanisms involve rendering T-cells non-

responsive to antigens (anergy), if they engage a MHC molecule

on an antigen-presenting cell without concurrent engagement of

co-stimulatory molecules (121, 122). Co-stimulatory molecules,

upregulated by pro-inflammatory cytokines during acute

inflammation, are essential for T-cell activation. An absence of

pro-inflammatory cytokines results in the non-expression of

co-stimulatory molecules, leading to anergy (122–125). Therefore,

auto-reactive T-cells stay inactive although they have contact with

“their” auto-antigen as long as no pro-inflammatory reaction

is present.

Moreover, anatomical barriers, such as the blood-brain barrier

surrounding CNS parenchyma, can impede the interaction between

auto-reactive lymphocytes and antigens (126, 127).

The development of autoimmune diseases necessitates the

bypassing of several of these regulatory mechanisms. While

a singular gene defect has not yet been identified as the

causative factor for MUO, the prevailing hypothesis leans toward

multigenetic defects (96, 98, 99, 104, 114). This suggests that

the failure of multiple safeguard mechanisms contributes to the

development of autoimmune diseases. In the context of genetic

predisposition, Pugs exhibit a recognized susceptibility, particularly

associated with a specific MHC II haplotype (102). Before even

presenting any clinical signs of MUO, asymptomatic pugs already

display variations in their immune system and in their serum anti-

glial fibrillary acidic protein (GFAP) antibodies can be detected

(128, 129). GFAP is mainly part of intermediate filaments in

the cytoplasm of astrocytes (130). The presence of anti-GFAP

antibodies in the periphery means auto-reactive B cells were

activated to produce immunoglobulins (131). These findings

indicate that antigen presenting cells had contact with GFAP (131).

GFAP is mostly expressed intracellularly but can be released into

the blood after astrocyte damage where peripheral auto-reactive

immune cells might have contact to GFAP and initiate anti-

GFAP antibody production (132). On the other hand, peripheral
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auto-reactive immune cells could have crossed a pre-damaged

blood brain barrier (126, 127).

Additionally, asymptomatic Pug dogs with the high-risk MHC

II haplotype show low numbers of pro-inflammatory CD4+
cells in peripheral blood as well as high plasma levels of the

anti-inflammatory chemokine IL-10 (128). This might be a

compensatory mechanism of the peripheral immune tolerance to

keep controlled auto-reactive immune cells. Failing mechanisms

may lead to clinically apparent NME.

A genetic predisposition to autoimmune diseases may suggest

early onset, although this assertion is only partially accurate.

SRMA (a suspected immune-mediated meningitis) typically occurs

between 3–18 months of age, while Pugs exhibiting NE typically

manifest initial signs of central nervous system dysfunction around

18 months of age on average (53, 97). Other breeds susceptible to

NE generally present signs at a slightly older age, ranging from 2 to

4 years (4). Dogs affected by GME tend to be even older, with an age

range of 4–8 years, and Australian Shepherds are even diagnosed in

their senior years (4, 100).

This can be explained by the theory of multistep pathogenesis

of autoimmune disease, which includes an explanation of delayed

stochastic penetrance, where physiologicmutations in T-cells might

lead to auto-reactive cells (114): physiological and unphysiological

activation of lymphocytes by antigens triggers clonal lymphocyte

proliferation. In this process, T-cell receptors can change from one

T-cell generation to the next. Physiological mechanisms of somatic

recombination, gene conversion, and somatic mutation constantly

equip the T and B-lymphocytes system with different receptors

for detecting antigens (114). Those processes generate random

rearrangements of gene segments and result in novel amino acid

sequences in the antigen-binding regions of immunoglobulins

and T-cell receptors to be equipped for novel antigens (114).

This increases the possibility that the immune system can detect

a wide variety of external antigens. However, more than half

of all antigen receptors generated randomly through somatic

recombination also possess the capability to recognize self-antigens

(114). Consequently, increased lymphocyte activation increases

the risk of auto-reactive memory cells that accumulate with

advancing age. This partly amplifies the susceptibility to developing

autoimmune diseases with increased age.

Due to the overlap of signalment, clinical signs, and

histopathological findings, it seems reasonable to talk of MUO

as a disease spectrum rather than an umbrella term summarizing

different diseases. In addition, it seems reasonable to include all

suspected autoimmune CNS diseases and not only GME and NE

as some authors do at the moment (4). Classifying the MUO

spectrum should also include breed and age of onset rather than

histopathological confirmation alone.

9 Immunological features of MUO

The immunological properties of MUO remain poorly

understood. Frequently, studies tend to group various histological

subtypes under either MUO or the broader category of

inflammatory brain disease (133–135), complicating the assessment

of distinctions between MUO subtypes.

When considering lymphocyte population, GME exhibits a

mixed pattern involving both B and T-cells, whereas NE is

predominantly T-cell-driven (107). CD3+ cells in the CNS of NE-

affected dogs produce interferon (IFN)-gamma, contributing to

neuronal necrosis in NE (107). Here, a recent study suggested

a mild potential superiority of cyclosporine add-on over other

add-on therapies when it comes to prognosis in dogs with NE

(60). This could be attributed to cyclosporine reducing IFN

gamma (136).

In the CNS parenchyma of dogs with GME, a T-helper

(Th) 2-dominated immune response is observed (107). Cluster

of differentiation (CD)3+ cells in the CNS of GME-affected

dogs produce interleukin (IL)-21, IL-17, and IL-4 (107).

Monocytes or microglia in GME release IL-17 within the

CNS parenchyma (28, 107). IL-21, a type I cytokine produced

by T-cells and natural killer T-cells, inhibits the maturation

and function of bone marrow-derived dendritic cells (137).

However, IL-21 might act as a “double-edged sword” with

both stimulatory and suppressive potential, depending on the

context (137).

Immunohistochemically activated astrocytes are visible in all

subtypes of MUO (138). In close proximity, anti-Glial fibrillary

acidic protein (GFAP) antibodies can be found, which are also

present in CSF and serum (129, 139, 140). Although anti-GFAP

antibodies can also be found in low levels in dogs with brain

neoplasia and other encephalopathies, there is a high possibility

that they are involved partly in the pathogenesis of MUO (141).

This might give a hint to the occurrence of activated auto-reactive

B cells and could potentially trigger autoimmune diseases. Notably,

anti-GFAP antibodies can also be detected in asymptomatic

pugs (129).

Asymptomatic pugs at risk of developing NME due to

a specific MHC II haplotype already show variation in their

immune system before clinical signs are evident: They exhibit low

numbers of CD4+ cells in peripheral blood (128). CD4+
T-lymphocytes play a pivotal role in antigen recognition

(142). Furthermore, they communicate with B-lymphocytes,

guiding the production of antibodies (143). Moreover, high

plasma levels of the anti-inflammatory chemokine IL-10 are

present in asymptomatic pugs with the NME risk MHC II

haplotype (128).

9.1 Interleukin-31 in MUO

In dogs with MUO, we have identified significantly increased

serum levels of IL-31 (Figure 1), a pro-inflammatory cytokine

produced by Th2 cells (144). This finding was not observed across

all cases: Dogs with elevated IL-31 that had histopathological

phenotyping, particularly suffered from GME. Conversely, dogs

with infectious meningoencephalitis did not demonstrate elevated

IL-31 levels (144).

IL-31 plays a significant role in autoimmune diseases,

particularly in human MS, where increased serum levels are

prevalent (145). Treated patients with MS displayed a noteworthy

reduction in IL-31 serum levels (145). Therefore, IL-31 warrants

consideration as a potential prognostic marker for therapy when
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FIGURE 1

Immunological features of Meningoencephalitis of unknown origin (MUO) in dogs. GME, granulomatous meningoencephalomyelitis; NE, necrotizing

encephalitis; CNS, central nervous system; CSF, cerebrospinal fluid; IL, interleukin; GFAP, glial fibrillary acid protein; Ig, immunoglobulin; MHC, Major

Histocompatibility Complex; CD, cluster of di�erentiation; TGF, tumor growth factor; INF, interferon.

assessing the progression of MS. Due to the retrospective nature of

our IL-31 study and the limited case number, evaluating whether

dogs with MUO under treatment exhibit normalized IL-31 levels

was not feasible (144).

Exploring the correlation between IL-31 levels and clinical

signs, as well as the development of clinical signs depending on

IL-31 levels, would be highly informative for future investigations.

Additionally, pharmacological blockage of IL-31 might be a new

therapeutic strategy to investigate. Lokivetmab is a monoclonal

antibody against canine IL-31 and is currently approved for

the treatment of itching in atopic dermatitis in dogs (146). It

decreases clinical signs of pruritus within 3 h, and the effect

of a subcutaneous injection lasts 28–48 days depending on

the dosage (146). Long-term studies on healthy dogs showed

no side effects beyond those of an unspecific reaction to

any subcutaneous injection (147). Therefore, investigation into

the clinical effectiveness of Lokivetmab against MUO could

be worthwhile.

9.2 Blood-brain-barrier in MUO

The blood- and CSF-brain-barrier (BBB) serves as a highly

regulated interface separating the CNS from the peripheral

circulation and controlling the exchange of molecules to maintain

CNS homeostasis (148). Comprising endothelial cells, pericytes,

and astrocytes, the BBB relies on the pivotal role of astrocytes in

its formation and maintenance by providing secreted factors that

lead to the formation of strong tight junctions (148).

In neurological diseases, the BBB undergoes changes caused

by phenotypical alterations in astrocytes amongst others,

leading to increased permeability (149–151). This breach allows

the extravasation of leukocytes, red blood cells, and plasma

proteins into the CNS, as observed in murine experimental

autoimmune encephalomyelitis, human MS, and canine MUO

(107, 127, 152–155).

In cases of MUO, the BBB is compromised in the majority

of dogs (156). Despite damage to astrocytes, the upregulation of

MMP-2 contributes to the disruption of the blood-brain barrier

(157). Glucocorticosteroid treatment proves effective in restoring

the integrity of the blood-brain barrier by inducing the production

of MMP inhibitors in SRMA (157) and this might also be the case

in MUO.

Dogs with MUO show high levels of albumin in CSF and a

high albumin cerebrospinal fluid/serum-quotient (QAlb) (158). As

albumin is mostly produced extrathecally by the liver, it may serve

as a marker for BBB damage (159).

The Reibergram, utilizing the serum:CSF ratio of albumin and

correlating it with the serum:CSF ratio of biomarkers, provides a

valuable tool for assessing the integrity of the BBB and determining
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whether a molecule was produced intrathecally or extrathecally

(160). The hyperbolic curve QLim(IgA) = 0.13
√
((QAlb)2 +

11.9∗10−6) −1.01∗10−3 describes the upper reference value

of the IgA serum:CSF ratio in correlation to the severity of BBB

dysfunction (158). An autofill Excel spreadsheet for easy calculation

and graphical evaluation of IgA and albumin ratios is available as

supplemental data on the paper’s journal homepage (158): https://

onlinelibrary.wiley.com/action/downloadSupplement?doi=10.

1111%2Fjvim.16601&file=jvim16601-sup-0001-Supinfo.zip.

The extravasation of albumin, in particular, can trigger

the expression of proinflammatory cytokines, affecting the

ability of astrocytes to maintain electrolyte homeostasis (161–

164). This scenario may render neurons more susceptible

to glutamate excitotoxicity, potentially causing seizures and

exacerbate neuroinflammation (161, 165). Furthermore, albumin

induces the production of CX3CL1, a chemokine that attracts

CD4+ cells (163, 166).

Immunohistochemically activated astrocytes are visible in all

subtypes of MUO (107, 167). In serum of Pug dogs with NME,

GFAP is detectable in increased amounts (168) and anti-GFAP

antibodies can be found in CSF and serum (129, 140, 141).

Anti-GFAP antibodies can also be detected in asymptomatic Pug

dogs (129), which might imply that the BBB is compromised

before clinical signs become evident, allowing contact between

self-reactive B cells and the brain, leading to the production

of antibodies against astrocyte components. It is conceivable

that autoimmunity has already started in these dogs, but anti-

inflammatory mechanisms may be preventing the outbreak of

NME, thereby maintaining their asymptomatic status.

If activation and destruction of astrocytes and BBB function

are the hen or egg in MUO etiopathogenesis remains unclear at

the moment. But it is almost evident that the combination of BBB

damage, extravasated albumin, and impaired astrocyte function

might be a major self-perpetuating vicious circle (Figure 1), which

might be one of the major key points to be addressed in the future.

Interrupting this circle is also one of the mechanisms of action

of prednisolone: Glucocorticosteroid treatment proves effective in

restoring the integrity of the blood-brain barrier by inducing the

production of MMP inhibitors (157). Additionally, Telmisartan

was reported in dogs with idiopathic epilepsy to possibly restore

potential BBB damage (169) and could therefore be considered as

future treatment option in MUO.

10 Further investigations:
requirements and opportunities

Present treatment modalities, heavily reliant on

long-term glucocorticosteroid application, may result

in iatrogenic hyperadrenocorticism, adversely impacting

the QoL of the pets and their owners (13, 47, 48).

Attempts to decrease corticosteroid side effects through

rapid dose tapering frequently lead to disease recurrence,

necessitating additional immunomodulatory drugs

(40, 57, 170). However, treatment efficacy remains suboptimal,

marked by frequent relapses or insufficient clinical

improvement (9).

A deeper understanding of the etiology of MUO is

imperative for advancing therapeutic strategies. Critical to

this advancement are multicenter studies aimed at unraveling

the etiology of inflammatory CNS diseases, coupled with double-

blinded multicenter treatment studies. Multicenter studies, by

increasing the number of animals involved, allow for more

precise examination of individual subgroups and factors such

as differences in clinical signs, signalment, and epidemiology

can be evaluated. Additionally, large numbers of animals enable

the specific examination of homogenous groups with distinct

features, such as different breed and age. A consensus on minimal

diagnostic criteria is crucial, making multicenter retrospective

studies challenging. Clear diagnostic criteria, including breed

and age, preferably including biomarkers, are essential for

multicentric studies.

11 Suggested polythetic approach for
MUO spectrum

For the future, a patient-specific therapy would be desirable.

Tailoring treatment to the individual patient’s needs could

enhance the effectiveness of interventions while minimizing

potential side effects. Therefore, it would be beneficial to

establish a multifaceted classification system including more

than histopathological findings alone. The author suggests

conceptualizing the multidimensional spectrum of MUO with a

polythetic approach (Figure 2).

“Polythetic” means that members of a group share a subset of

characteristics but not necessarily all of them (171, 172). In other

words, there is a certain degree of variability in the traits exhibited

by the individual within a particular category. This could mean

for MUO, that it might be characterized by multiple clinical signs,

examination findings, and biomarkers, but not every listed sign or

finding is required to diagnose the condition in a particular animal.

It might include age of onset of clinical signs, breed, quality and

quantity of clinical signs, MRI and CSF findings, severity of BBB

damage, serum IL-31 levels and different histopathological features.

For example, different therapeutic options could be tailored to

individual patients based on their specific manifestations across

various dimensions within the polythetic approach. For example,

dogs with a mostly necrotizing variant of MUOmight benefit from

treatments targeting IFN-γ inhibition, while those with elevated

IL-31 levels could respond better to anti-IL-31 antibody therapies.

Similarly, dogs with impaired BBB function may benefit from

treatments aimed at restoring BBB integrity, which need to be

developed in the future.

Furthermore, the polythetic approach may enable us to classify

MUO subtypes more precisely than current histopathological

methods, helping to develop for example more specific diagnostic

biomarkers. This approach could help reveal relationships and

patterns that are not apparent with our current understanding,

leading to a better understanding of the etiopathogenesis and more

targeted and effective treatments.

Using a multidimensional polythetic approach, patient-specific

etiopathogenesis enables neurologists to integrate innovative,

pathophysiologically based treatments with objective tests—such

as stratification biomarkers—to anticipate the potential benefits of
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FIGURE 2

Patient specific MUO spectrum using a multidimensional polythetic approach. In this figure, we present a multidimensional, polythetic approach to

characterizing patients within the MUO spectrum. Rather than proposing a rigid “classification” in the traditional sense—where patients are placed

into well-defined, comparable classes—this approach recognizes the complexity and variability of MUO presentations. It emphasizes personalized

assessment by considering multiple clinical and laboratory parameters, with each patient’s profile represented as a unique combination of these

variables. The gray line in the figure represents the findings for one individual patient, plotted across various axes to show the relative strength of

each parameter. This figure is a proposed visual example based on current knowledge, intended to illustrate how di�erent factors can be integrated

into a personalized approach. Further research is required to refine the specific values and to better understand the clinical relevance of each marker

within this model. While this polythetic approach does not yet define strict classes, it moves toward a framework that could, with additional evidence,

lead to a more nuanced understanding of immune-mediated diseases like MUO. MUO, meningoencephalitis of unknown origin; CSF, cerebrospinal

fluid; MRI, magnetic resonance imaging; IL, interleukin; BBB, blood-brain-barrier.

distinct treatments for individual cases. This approach allows for

tailoring treatment schedules to the patient’s specific needs at a

given time, reducing the need for long-term prednisolone therapy,

minimizing side effects, and improving both treatment efficacy and

quality of life.

12 Conclusion

This review lays the basics for forthcoming therapeutic trials,

aiming to advance the development of minimally side-effect

therapies for patients suffering fromMUO.

A polythetic approach that represents the multidimensional

spectrum of MUO could adequately address patient-specific needs

and potentially decrease adverse effects while improving quality of

life. To attain a comprehensive understanding of etiopathogenesis,

conducting larger multicenter studies are necessary to recruit an

adequate number of patients. For effective multicenter studies, it

is crucial to streamline examination procedures across clinics and

subsequent analysis.

This review underscores the potential for fostering renewed

consensus on diagnostic and classification practices within the

diverse spectrum of autoimmune CNS diseases in cats and

dogs, serving as a catalyst for prospective treatment studies

and encouraging collaborative agreement among researchers

and clinicians.
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