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Alpinia oxyphylla, a perennial herb belonging to the Zingiberaceae family, has a 
long history of traditional medicinal use. The present study evaluated the efficacy 
of different concentrations of Alpinia oxyphylla essential oil (AEO) on the growth 
performance, serum antioxidation capacities, immune function, apparent digestibility 
of nutrients, and gut microbiota in fattening pigs. A total of 120 pigs were divided 
into five treatments, with six replicates each and four pigs per replicate. The pigs 
were fed a basal diet or basal diet with chlortetracycline (CTC) alone or AEO at 250, 
500, and 1,000 mg/kg (referred to as groups AEO1, AEO2, and AEO3, respectively) 
for 35 days, preceded by a 7-day pre-feed period. The results show that there 
were no statistically significant differences in growth performance for any dose of 
AEO supplementation. AEO increased L-DLC content, total protein content and 
the activity of GSH in serum (p < 0.05). The AEO also exhibited a linear increase 
in serum IgG content (p < 0.05). Dietary supplementation with AEO improved 
apparent digestibility of crude ash and calcium (p < 0.05). In gut microbiota, AEO 
modified the diversity and abundance of bacterial communities in fattening pigs. 
The abundance of Dorea, Blautia, Butyricicoccus, Bulleidia, and Lactobacillus was 
higher in the AEO groups compared to the control group, while Clostridium and 
Turicibacter were lower. The Bifidobacteriales and Pseudomonas were abundant 
in group AEO1 and AEO3, respectively. In conclusion, dietary supplementation of 
1,000 mg/kg AEO has the potential to improve growth performance, immunological, 
biochemical, and antioxidant statuses. Additionally, AEO can increase the efficiency 
of nutrient digestion and absorption through the regulation of gut microbiota.
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Introduction

Over the past few decades, antibiotics have been widely used in livestock as antibiotic 
growth promoters (AGPs). Small quantities of antibiotics in animal feed were sufficient to 
promote growth and prevent diseases. However, the AGPs enter soil and aquatic ecosystems, 
leading to antibiotic pollution and the emergence of antibiotic resistance eventually (1, 2). 
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After the European Union and the United States implemented a ban 
on AGPs, China also followed suit in 2020. Currently, the ban on 
AGPs continues to motivate the livestock industry to explore 
appropriate antibiotic alternatives that can support animal 
development and welfare (3), and growth-promoting alternatives to 
antibiotics in livestock production have become a subject of 
intense research.

Essential oils (EOs) are mixtures of volatile and hydrophobic 
compounds extracted from plants (4). They have the ability to 
enhance animal immunity, ameliorate intestinal function and 
promote growth, making them a viable alternative to dietary 
antibiotics in animals. Regularly, multiple concurrent environmental 
stressors, such as weaning, bacterial, viral infection and heat, 
continually impose extensive pressures to pigs, and these stress 
results in oxidative stress, which adversely affects the growth 
performance and health of pigs (5, 6). EOs contain flavonoids, 
phenols, aldehydes, and their derivatives, all of which have strong 
antioxidant and anti-inflammatory activities (7). These properties 
help cells defend against inflammation and oxidative damage caused 
by reactive oxygen species (ROS), thereby maintaining homeostasis 
(8, 9). Moreover, EOs have been reported to maintain the stability of 
the intestinal environment and improve relative abundance of 
probiotics, such as Lactobacillus and Bifidobacterium (10, 11). These 
probiotics positively impact gut health and ultimately contribute to 
improved growth performance.

Alpinia oxyphylla, a perennial herb belonging to the Zingiberaceae 
family, is native to the tropical and subtropical regions of China (12). 
It has a long history of food and traditional medicinal use in China 
spanning centuries (13), and is widely cultivated in southern China 
(14). Essential oil extracted from Alpinia oxyphylla is abundant in 
flavonoids, diarylheptanoids, terpenoids, volatile oils, steroids, and 
other glycosides (15, 16). These contents in AEO were further 
confirmed to have anti-hyperuricemic, and other therapeutic 
mechanisms for disease. In addition, increasing evidence indicates 
AEO has diverse bioactivities, including antioxidant (17), antitumor 
(14), anti-inflammatory (18), modulating the gut microbiota (19), 
protecting intestinal barrier integrity (20), and exhibiting 
bacteriostasis (21). These characteristics make AEO both cost-
effective and easily available, highlighting its potential value as a feed 
additive. However, few studies have evaluated the effects of AEO on 
fattening pigs, which limits the use of Alpinia oxyphylla in the animal 
industry as an alternative to antibiotic growth promoters. In addition, 
there is a scarcity of data on the effects of AEO on the gut microbiota 
of pigs. Consequently, the aim of the study is to evaluate the efficacy 
of different concentrations of AEO in the growth performance, serum 
antioxidation capacities, immune function, apparent nutrient 
digestibility, and gut microbiota in fattening pigs, in order to provide 
data supporting the rational use of AEO.

Materials and methods

Ethical approval

All experimental procedures were reviewed and approved by the 
animal care committee of Changsha Medical University (No. 2023-
01), Changsha, China.

Animals, diets, and treatments

The study employed a single-factor randomized trial design. A 
sample of 120 male fattening pigs (Landrace × Yorkshire crossbreed 
pigs (M1) crossed with Duroc (DJ) breed boars), all belonging to the 
same breed and having similar health and body weight, were randomly 
assigned to five treatment groups (with six replicates per treatment 
and four pigs per replicate). Furthermore, pigs were subjected to a 
pre-fed regimen for 7 days, then the formal test spanned 35 days. The 
distribution of groups is shown in Table 1.

The corn-soybean meal basal diet was designed based on the 
National Research Council (NRC, 2012), and the ingredients and 
nutritional levels are shown in Table 2. Pigs were provided with a 
pelleted feed throughout the entire period. The AEO was purchased 
from Hunan Nuoz Biological Technology Co., Ltd.

Sampling and collection

In the present study, the methods and parameters collected were 
according to our previous study (6). Pigs were weighed on an empty 
stomach at the beginning and the end of the experiment, and average 
daily gain (ADG) was calculated. Feed intake in each repeated was 
recorded to calculate average daily feed intake (ADFI) and feed-to-
weight ratio (F/G). Moreover, 500 g of feed samples for each treatment 
were collected, and 1 kg of fresh and uncontaminated fecal samples 
for each replicate were randomly obtained using disposable sterile 
gloves. Samples were stored for testing.

Serum biochemical parameters

The serum biochemical parameters were measured with an 
automatic biochemical analyzer (Hitachi automatic biochemical 
analyzer 7,000, Japan) including aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), alkaline phosphatase (ALP), urea, 
glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density 
lipoprotein (LDL), high-density lipoprotein (HDL), total protein (TP), 
albumin (ALB) and globulin (GLB) (22). Six antioxidant indicators 
were measured with a microplate reader FluoStar Optima (BMG 
Labtech, Offenburg, Germany), including superoxide dismutase 
(SOD), glutathione peroxidase (GPX), catalase (CAT), glutathione 
(GSH), total antioxidant capacity (T-AOC) and malondialdehyde 
(MDA) contents, in accordance with our previous method (23). The 
contents of IgA, IgG, and IgM and complements C3 and C4 in serum 
were determined by the enzyme-linked immunosorbent assay (ELISA, 
Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

TABLE 1 Experimental design and grouping.

Group Diet

Con Basal diet

CTC Basal diet +75 mg/kg chlortetracycline (15%) premix

AEO1 Basal diet +250 mg/kg AEO

AEO2 Basal diet +500 mg/kg AEO

AEO3 Basal diet +1,000 mg/kg AEO
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Nutrient digestibility determination

Acid insoluble ash (AIA) was used as a digestibility indicator to 
determine the apparent total tract digestibility including dietary dry 
matter (DM), energy, crude protein (CP), crude fat (CF), crude fiber 
(CF), crude ash, calcium, and phosphorus.

Microbial DNA extraction and PCR 
amplification

As previously described, the extraction of DNA from fecal 
specimens and the amplification of 16S ribosomal RNA were 
conducted in accordance with Wang et al. (24). DNA was isolated 

from the fecal samples utilizing the E.Z.N.A.® Soil DNA Kit 
(Omega Biotek, Norcross, GA, United  States) following the 
manufacturer’s protocol. The V3–V4 region of 16S rRNA in 
bacterial populations was amplified employing universal primers 
338F/806R, and the samples were subsequently sequenced on the 
Illumina Miseq PE300 platform (Illumina, San Diego, CA, 
United  States). Raw sequence data were filtered and denoised 
initially, and regions of low quality within the sequences were 
subsequently excised and excluded. The QIIME2 software (version 
2019.4) facilitated the creation of a table of amplicon sequence 
variants (ASVs) and aided in the construction of rarefaction curves 
along with analyses of both alpha and beta diversity. For the 
taxonomic classification, the Greengenes database (Version 13.8, 
available at http://greengenes.secondgenome.com) was employed 
and appropriate alignments were carried out. Principal coordinate 
analysis (PCoA) was executed utilizing the Bray–Curtis 
Dissimilarity metric to analyze the data. A linear discriminant 
analysis effect size (LEfSe) was conducted to show the maximum 
difference in the microbial structures between groups (LEfSe 
version 1.1, https://github.com/SegataLab/Lefse). Sequence reads 
from the original sequence were uploaded to NCBI’s Sequence Read 
Archive under accession number PRJNA1090261.

Statistical analysis

Statistical analysis was performed using SPSS 19.0 statistical 
software. The significant differences among groups were analyzed 
by one-way ANOVA, and the Duncan’s multiple range test was 
used when the difference between groups was significant (p < 0.05). 
In addition, 0.05 < p < 0.1 were considered a trend. The results are 
reported as means ± standard deviations. Linear and quadratic 
terms of AOE on various indicators of pigs were also evaluated.

Results

Effect of dietary AEO level on growth 
performance in pigs

The effects of different dietary contents of AEO on the growth 
performance of finishing pigs are shown in Table 3. There were no 
significant differences in the average initial weights between groups. 
Dietary inclusion of different doses of AEO in finishing pigs had 

TABLE 2 Composition and nutrition levels of the basal diet (air-dry basis, %).

Item Content

Ingredients

Corn 27.50

Rice bran 10.00

Rice bran meal 16.00

Broken rice 30.00

Soybean meal 12.50

Premixa 4.00

Total 100.00

Nutrient levelb

DE (Mcal/kg) 3.20

CP 15.02

Ca 0.55

TP 0.76

AP 0.20

Lys 1.15

Thr 0.60

Met 0.25

Met Cys 0.50

aPremix contained per kg VA, 325 IU; VD, 37.5 IU; VE, 2.75 IU; VK3, 0.013 mg; VB2, 
0.63 mg; VB6, 0.25 mg; VB12, 2.5 mg; biotin, 0.013 mg; folic acid, 0.08 mg; D-pantothenic 
acid, 2.00 mg; hydrochloric acid, 2.5 mg; choline chloride, 0.08 mg; antioxidants, 12.50 mg; 
FeSO4.H2O, 12.50 mg; CuSO4.H2O, 0.88 mg; ZnO, 15.00 mg; MnSO4.H2O, 0.50 mg; 
Na2SeO3 0.04 mg; Kl, 0.04 mg.
bDigestible energy was a calculated value.

TABLE 3 Effect of dietary AEO levels on growth performance in pigs.

Items CTC level, 
mg/kg

AEO levels, mg/kg p-value p-value

75 0 250 500 1,000 Linear Quadratic

Average initial weight /(kg) 82.03 ± 2.46 82.69 ± 2.84 80.22 ± 3.58 82.17 ± 4.75 81.83 ± 2.98 0.773 0.772 0.397

Average final weight /(kg) 107.63 ± 2.91 107.36 ± 3.32 107.47 ± 2.57 107.97 ± 4.27 108.39 ± 3.11 0.983 0.591 0.823

ADG /(kg) 0.74 ± 0.06 0.72 ± 0.06 0.79 ± 0.06 0.75 ± 0.08 0.77 ± 0.09 0.464 0.269 0.368

ADFI /(kg) 2.62 ± 0.09 2.50 ± 0.16 2.69 ± 0.11 2.65 ± 0.15 2.62 ± 0.19 0.246 0.160 0.114

F/G 3.55 ± 0.25 3.50 ± 0.09 3.41 ± 0.14 3.56 ± 0.22 3.41 ± 0.16 0.454 0.635 0.867

In the same row, values with different small letter superscripts mean a significant difference (p < 0.05), the same as in the following.
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TABLE 5 Effect of dietary AEO levels on serum antioxidant indices in pigs.

Items CTC level, 
mg/kg

AEO levels, mg/kg p-value p-value

75 0 250 500 1,000 Linear Quadratic

SOD/(U/ml) 35.19 ± 16.78 41.69 ± 10.11 40.01 ± 7.94 38.68 ± 8.73 40.78 ± 6.42 0.918 0.833 0.662

GPX/(U/ml) 1751.23 ± 343.41 1553.69 ± 239.55 1708.31 ± 220.69 1781.56 ± 222.59 1750.18 ± 272.26 0.755 0.204 0.613

CAT/(U/ml) 4.19 ± 1.07 4.65 ± 1.35 5.23 ± 0.83 5.65 ± 0.63 5.13 ± 0.55 0.265 0.296 0.361

GSH/(μmol/L) 43.37 ± 11.71 37.70 ± 9.95 49.02 ± 4.61 52.60 ± 4.98 44.90 ± 3.90 0.123 0.045 0.026

T-AOC/(mmol/L) 1.17 ± 0.13 1.31 ± 0.05 1.35 ± 0.07 1.32 ± 0.08 1.28 ± 0.05 0.060 0.662 0.180

MDA/(nmol/ml) 2.55 ± 0.86 2.58 ± 0.58 2.30 ± 0.62 2.35 ± 0.65 2.33 ± 0.68 0.958 0.576 0.712

In the same row, values with different small letter superscripts mean a significant difference (p < 0.05), the same as in the following.

minimal impact on the average final weight, ADG, and ADFI 
(p > 0.05), compared to the control group. However, the F/G of the 
1,000 mg/kg AEO treatment groups decreased by 4% compared to the 
CTC treatment numerically, although the positive effects did not reach 
statistical significance.

Effect of dietary AEO level on serum 
biochemical parameters in pigs

The effects of different AEO levels in diet on serum physiological 
and biochemical parameters of finishing pigs are presented in Table 4. 
Dietary supplementation with AEO significantly increased the serum 
L-DLC content compared to the CTC group (p < 0.05). 
Supplementation of AEO exhibited a tendency to increase the serum 
GLB content of pigs (p = 0.088), and there was a linear improvement 
in the serum total protein with increasing AEO levels (p < 0.05). 
Dietary supplement with AEO had minimal impact on serum GLU, 
TG, TCHO, UREA, TP, ALB, H-DLC, ALP, AST and ALT contents 
compared to the control treatment and CTC addition treatment 
(p > 0.05).

Effect of dietary AEO levels on serum 
antioxidant parameters in pigs

As shown in Table 5, the supplementation of AEO at doses of 250 
and 500 mg/kg AEO had a tendency to increase the serum total 
antioxidant capacity levels in pigs (p = 0.060). Furthermore, the activity 
of glutathione (GSH) in the serum increased linearly and quadratically 
(p < 0.05) with increasing dietary concentrations of AEO from 0 to 
1,000 mg/kg. The SOD and the content of GSH-Px, CAT and MDA in 
serum of pigs were not significantly affected (p > 0.05).

Effect of dietary AEO levels on serum 
immune index and in pigs

The effects of AEO on serum complement C3 and C4 parameters 
and immunoglobulins in finishing pigs are presented in Table  6. 
Dietary supplementation with AEO and CTC had a tendency to 
increase the serum IgG levels (p = 0.083), and the IgG concentration 
in serum increased linearly as the dietary AEO concentrations 
increased from 0 to 1,000 mg/kg (p < 0.05). Additionally, the IgA, 

TABLE 4 Effect of dietary AEO levels on serum biochemical indices in pigs.

Items CTC level, 
mg/kg

AEO levels, mg/kg p-value p-value

75 0 250 500 1,000 Linear Quadratic

GLU/(mmol/L) 2.68 ± 0.67 2.46 ± 0.88 2.71 ± 0.48 2.19 ± 0.31 2.38 ± 0.30 0.701 0.540 0.901

TG/(mmol/L) 0.50 ± 0.20 0.50 ± 0.15 0.63 ± 0.11 0.59 ± 0.25 0.56 ± 0.14 0.780 0.690 0.379

TCHO/(mmol/L) 2.54 ± 0.17 2.16 ± 0.71 2.31 ± 0.69 1.92 ± 0.17 2.03 ± 0.67 0.554 0.585 0.935

UREA/(mmol/L) 4.93 ± 1.31 3.50 ± 0.97 5.11 ± 1.44 5.05 ± 0.55 4.91 ± 0.48 0.197 0.073 0.088

TP/(g/L) 65.11 ± 7.53 58.63 ± 10.37 63.51 ± 5.79 64.85 ± 7.32 72.85 ± 5.17 0.166 0.021 0.682

ALB/(g/L) 24.19 ± 1.88 22.19 ± 5.99 21.17 ± 1.09 20.98 ± 2.96 24.11 ± 2.74 0.520 0.509 0.278

GLB/(g/L) 40.93 ± 5.93 36.43 ± 6.44 42.34 ± 5.22 43.87 ± 4.63 48.74 ± 6.01 0.088 0.010 0.857

H-DLC/(mmol/L) 0.88 ± 0.07 0.84 ± 0.10 0.89 ± 0.16 0.84 ± 0.17 0.86 ± 0.11 0.970 0.940 0.725

L-DLC/(mmol/L) 1.11 ± 0.16a 0.93 ± 0.22ab 0.80 ± 0.15b 0.74 ± 0.13b 0.82 ± 0.14b 0.047 0.229 0.365

ALP/(U/L) 74.53 ± 5.75 79.14 ± 14.86 80.65 ± 9.67 72.98 ± 7.51 82.10 ± 8.08 0.627 0.959 0.481

AST/(U/L) 20.75 ± 3.75 18.93 ± 3.64 20.57 ± 7.47 21.02 ± 3.45 20.25 ± 2.33 0.967 0.677 0.612

ALT/(U/L) 55.65 ± 10.51 42.75 ± 11.37 44.28 ± 12.32 37.81 ± 6.57 43.96 ± 6.97 0.186 0.898 0.641

In the same row, values with different small letter superscripts mean a significant difference (p < 0.05), the same as in the following.
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IgM, C3 and C4 concentration showed no significant differences 
among all treatments (p > 0.05).

Effect of dietary AEO levels on nutrient 
apparent digestibility in pigs

Both AEO and CTC tended to increase dry matter digestibility 
compared to the control group (p = 0.086, Table 7). The dose of AEO 
showed a quadratic relationship with the apparent digestibility of 
crude ash and calcium (p < 0.05). Additionally, CTC tend to improve 
the apparent digestibility of crude fiber (p = 0.065), and significantly 
increased the apparent digestible energy of the feed (p < 0.05). Neither 
AEO nor CTC had an effect on the digestibility of CP, EE, GE and 
phosphorus (p > 0.05).

Alteration of dietary AEO levels on gut 
microbiota in pigs

The rarefaction curves nearly reached the saturation plateau 
(Supplementary Figure S1), indicating that the sequencing captured 
most of the bacterial diversity. The gut microbiota community did 
not exhibit significant differences for the α-diversity index 
(Figure 1a), but β-diversity index revealed that AEO administration 
differed significantly from both the CON and CTC groups 
(Figure 1b).

In the pig gut microbiota, microorganisms at the phylum level 
mainly consist of Firmicutes, Bacteroidetes, Spirochaetes, and 
Actinobacteria (Figure  2). The heatmap illustrates differences in 
microbial composition among the five groups at the genus level 
(Figure 3a). The AEO groups exhibited higher relative abundances of 
Dorea, Blautia, Butyricicoccus, Bulleidia, and Lactobacillus compared 
to the control and CTC groups. On the other hand, the relative 
abundances of Clostridium, Streptococcus, and Turicibacter were lower. 
Within the Bifidobacteriales group, which includes Bifidobacteriaceae 
and Bifidobacterium, significantly higher abundances were observed 
in the AEO1 group (Figure 3b). Pseudomonas were significantly more 
abundant in the AEO3 group, while Burkholderiales and 
Betaproteobacteria were significantly more abundant in the AEO2 
group (Figure 3b).

Discussion

Generally, various stressors impact pig health, including 
pathogens, oxidative stress, inflammation, and reduced growth 
performance (9). Dietary essential oils have been shown to support 
pig health through several biological mechanisms, such as anti-
inflammatory, antioxidant, antimicrobial, feed palatability 
enhancement, gut microbiome alteration, and immunomodulatory 
activities (6, 25–28). The current study aims to evaluate the 
effectiveness of different concentrations of AEO in improving growth 
performance, serum antioxidant capacities, immune function, 

TABLE 6 Effect of dietary AEO levels on serum immune indices in pigs.

Items CTC level, 
mg/kg

AEO levels, mg/kg p-value p-value

75 0 250 500 1,000 Linear Quadratic

IgA (μg/mL) 641.90 ± 36.78 634.34 ± 17.11 639.10 ± 25.03 642.82 ± 26.42 638.49 ± 55.82 0.997 0.811 0.844

IgG (mg/mL) 19.60 ± 1.73 17.24 ± 1.63 19.14 ± 0.92 19.22 ± 0.92 19.90 ± 1.07 0.083 0.007 0.555

IgM (mg/mL) 19.70 ± 0.72 19.93 ± 1.39 19.54 ± 1.55 19.01 ± 1.35 19.02 ± 1.82 0.846 0.356 0.963

C3 (μg/mL) 107.26 ± 12.24 103.37 ± 7.09 103.29 ± 1.89 100.52 ± 6.97 102.56 ± 2.90 0.764 0.658 0.850

C4 (μg/mL) 7.62 ± 0.85 7.62 ± 0.70 7.35 ± 0.46 7.41 ± 0.78 7.53 ± 1.59 0.991 0.869 0.709

In the same row, values with different small letter superscripts mean a significant difference (p < 0.05), the same as in the following.

TABLE 7 Effect of dietary AEO levels on nutrient apparent digestibility in pigs.

Items CTC level, 
mg/kg

AEO levels, mg/kg p-value p-value

75 0 250 500 1,000 Linear Quadratic

DM 84.09 ± 0.57 82.18 ± 1.14 83.53 ± 0.96 83.37 ± 1.82 83.33 ± 0.78 0.086 0.108 0.324

CP 82.03 ± 1.08 80.49 ± 1.22 81.88 ± 1.65 80.31 ± 4.59 81.08 ± 1.95 0.663 0.816 0.679

EE 87.29 ± 1.02 87.84 ± 1.34 86.94 ± 1.49 86.85 ± 1.93 87.86 ± 0.26 0.662 0.688 0.201

Ash 34.95 ± 2.05ab 30.51 ± 1.88c 34.62 ± 4.52abc 37.08 ± 1.27a 31.65 ± 4.04bc 0.021 0.157 0.020

CF 44.95 ± 5.51 38.20 ± 6.48 37.69 ± 2.21 36.15 ± 2.98 37.69 ± 2.72 0.065 0.690 0.745

Ca 39.99 ± 2.76a 34.33 ± 3.47b 43.45 ± 5.31a 41.38 ± 4.03a 38.99 ± 1.60ab 0.014 0.038 0.011

P 48.41 ± 3.81 46.89 ± 2.84 45.32 ± 5.26 45.33 ± 3.11 44.38 ± 9.17 0.730 0.472 0.967

GE 86.38 ± 0.68 85.46 ± 1.23 85.86 ± 0.71 85.62 ± 1.97 85.44 ± 0.66 0.630 0.962 0.606

AME (Mcal/kg) 3.27 ± 0.03a 3.17 ± 0.06b 3.16 ± 0.03b 3.17 ± 0.09b 3.15 ± 0.02b 0.006 0.734 0.851

In the same row, values with different small letter superscripts mean a significant difference (p < 0.05), the same as in the following.
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FIGURE 1

(a) Alpha diversity indices of the fecal bacterial communities in pigs. Con represents the group fed a basal diet, and CTC represents the group fed a 
basal diet with antibiotics, AEO1, AEO2, and AEO3 combined with 250 mg/kg, 500 mg/kg, and 1,000 mg/kg, respectively. (b) Principal coordinates 
analysis (PCoA) of fecal contents bacterial community of pigs. Con represents the group fed a basal diet, and CTC represents the group fed a basal diet 
with antibiotics, AEO1, AEO2, and AEO3 combined with 250 mg/kg, 500 mg/kg, and 1,000 mg/kg, respectively.
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apparent digestibility of nutrients, and gut microbiota in fattening 
pigs. The results show that different concentrations of AEO had no 
statistical effects on growth performance and feed efficiency in pigs. 
However, other studies have corroborated the positive effects of 

essential oils on pig health and growth performance, as varied 
compounds present in essential oils contributed to the fragrance of 
the oil, increasing feed palatability and improving feed intake 
eventually (29, 30). In this study, the supplementation of 1,000 mg/

FIGURE 2

Distribution of fecal bacteria at the phylum level in pigs. Con represents the group fed a basal diet, and CTC represents the group fed a basal diet with 
antibiotics, AEO1, AEO2, and AEO3 combined with 250 mg/kg, 500 mg/kg, and 1,000 mg/kg, respectively.

FIGURE 3

Effects of different concentrations AEO on fecal bacteria at the genus level in pigs. (a) Distribution of fecal top 30 bacteria at the genus level in pigs. 
(b) Differential microbe composition between the study groups determined by LEfSe. Con represents the group fed a basal diet, and CTC represents 
the group fed a basal diet with antibiotics, AEO1, AEO2, and AEO3 combined with 250 mg/kg, 500 mg/kg, and 1,000 mg/kg, respectively.

https://doi.org/10.3389/fvets.2024.1468520
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chen et al. 10.3389/fvets.2024.1468520

Frontiers in Veterinary Science 08 frontiersin.org

kg AEO in the diet might result in better growth performance in 
finishing pigs.

Serum biochemical parameters usually serve as indicators of 
nutritional metabolism and organ functions in animals (31). The 
levels of TP, ALB, and GLB in serum are commonly used to assess 
liver function and the nutritional status of animals (32). Serum TP 
concentration is closely associated with nitrogen digestibility and 
protein synthesis capacity (33, 34). Therefore, improved nitrogen 
digestibility and protein synthesis capacity in animals can lead to a 
reduction in fecal noxious gas concentration and subsequent decrease 
in fecal gas emission. Furthermore, GLB, comprising the alpha, beta, 
and gamma globulin fractions based on protein electrophoretic 
fractionation, can also reflect immune response and serve as an 
evaluation point in routine toxicity studies (35, 36). In the present 
study, when supplemented with AEO in dietary, pigs had higher 
serum TP, relatively higher GLB and lower L-DLC. This suggests that 
AEO contributes to better serum biochemical parameters in pigs, and 
the enhanced capacity for protein and energy metabolism may result 
in a higher lean meat percentage and better health in lean pigs. These 
results are consistent with previous studies reported by Su. et al. (6, 
37). Besides, when supplemented with AEO, a trend of improved 
serum IgG concentration has been observed in this research, 
suggesting enhanced immune function in pigs.

Cellular redox homeostasis is intricately maintained through the 
generation and elimination of reactive oxygen species (ROS). These 
ROS not only have the potential to induce cellular damage through 
the oxidation of proteins, lipids, and DNA, but also serve as signaling 
molecules that regulate transcription factors and epigenetic pathways, 
ultimately influencing cell survival and apoptosis (38). Cells in a 
healthy body usually maintain a redox balance between the generation 
of reactive oxygen species (ROS) and ROS elimination (39). Many 
environmental stressors, such as weaning, bacterial and viral 
infections, and heat, continually impose extensive antioxidant 
pressures on pigs. These stressors result in ROS accumulation and 
oxidative stress, putting animals under metabolic stress (40). Under 
metabolic stress, the redox balance becomes vulnerable and easily 
damaged (41). Therefore, these findings highlight the importance of 
antioxidant capacity. In this study, when supplemented with AEO, the 
pigs exhibited higher enzyme activity in T-AOC and GSH. Total 
antioxidant capacity is a primary measurement to evaluate the state 
and potential of oxidative stress, and GSH has been reported to 
efficiently maintains cellular redox balance (42, 43). These antioxidant 
capacities, which are involved in the NF-E2-related factor (Nrf2) 
pathway, could also have hepatic protective effects under pathological 
conditions (44). Furthermore, meat quality is closely related to the 
body’s antioxidant status (45), which is also a major factor affecting 
the consumers’ assessment. Hence, dietary supplementation with 
AEO has the potential to enhance the body’s antioxidant capacity, 
effectively protecting pigs from oxidative stress and alleviate 
metabolic stress.

Digestive enzymes in the intestinal tract play a crucial role in the 
digestion and absorption of nutrients. Previous studies have 
demonstrated that essential oils can improve the activity of digestive 
enzymes and improved nutrient digestibility eventually, which aligns 
with the findings of this study (46). For instance, Peng et al. (47) 
reported that dietary supplement with essential oil increased the ratio 
of villus height to crypt depth in duodenum and sucrase activity in the 
jejunum mucosa. Furthermore, essential oils were found to 

up-regulate claudin-1 and IGF-2 mRNA levels and down-regulate 
TRAF-6, TNFSF15, and TOLLIP mRNA levels in the jejunum of 
broilers, exhibiting anti-apoptotic and anti-inflammatory effects (48). 
Essential oils consist of phenolics and aromatic compounds, which 
enhance feed palatability and intake due to their better flavor and odor 
(49). these compounds stimulate digestive enzyme secretion and 
oronasal sensing, specifically for appetite regulation (50–52). 
Moreover, essential oils have been shown to improve intestinal 
morphology in pigs, potentially leading to enhanced nutritional 
absorption and digestion (53). In our study, both CTC and 250 mg/kg 
of essential oils improved nutrient digestibility, including dry matter, 
crude ash, calcium, and digestible energy.

The diversity and stability of the gut microbiota are intimately 
linked to a balanced and stable microecological barrier. A healthy 
digestive system contributes to improved growth performance (45). 
The PCoA plots of beta diversity demonstrated that both dietary CTC 
and AEO altered the composition of the gut microbiota, with AEO 
showing a greater significant impact. At the phylum level, treatment 
with CTC and AEO led to a decrease in the relative abundance of 
Proteobacteria, which includes various pathogens and opportunistic 
pathogens such as Escherichia, Salmonella and Vibrio (54). Research 
has also shown a positive correlation between Proteobacteria and gut 
inflammation in different mouse models of colitis (55, 56). The 
reduced abundance of Proteobacteria may decrease susceptibility to 
inflammatory conditions in the intestinal barrier of animals. 
Additionally, the gut microbiota of pigs are dominated by Firmicutes 
and Bacteroidetes, similar to humans (57). CTC also reduced the 
Firmicutes to Bacteroidetes ratio, a relevant marker of gut dysbiosis and 
obesity (58, 59).

A balanced gut microbiota forms a natural barrier on the surface 
of the intestinal mucosa and participates in normal digestion and 
absorption in animals. It also regulates immune function and prevents 
the invasion of pathogenic bacteria and opportunistic pathogen (60, 
61). The Blautia is a genus of anaerobic bacteria exhibiting probiotic 
characteristics, widely found in the feces and intestines of mammals 
(62). It primarily provides beneficial anti-inflammatory effects (63). 
Pigs that were fed with AEO also had a high abundance of Lactobacillus 
in gut microbiota, which has a long history as an exogenous probiotic 
(64). Similarly, Butyricicoccus, a kind of butyrate producer with 
probiotic potential and abundant in AEO group, has been reported to 
have a positive impact on gut health. These gut microbes play a crucial 
role in digesting dietary crude fiber and producing short-chain fatty 
acids (SCFAs), which offer various health benefits to the host (65, 66). 
SCFAs can bind and activate G protein-coupled receptors (GPRs) such 
as GPR41 and GPR43, which are expressed in the gastrointestinal tract 
(67). These receptors have several health benefits, including regulating 
glucose metabolism, improving insulin sensitivity, and reducing 
inflammation (68). Specifically, butyrate, a type of SCFA, can initiate 
a epigenetic program in macrophages, resulting in a reduction in 
glycolysis and mTOR signaling while promoting the maturation of 
autophagosome-lysosome (69). In summary, the metabolite products 
of probiotics have a positive impact on maintaining gut homeostasis. 
Furthermore, the LEfSe analysis also revealed that some probiotics 
were abundant in AEO groups. The Bifidobacterium, for instance, 
positively influences gut health by aiding digestion, producing 
essential compounds such as B vitamins and healthy fatty acids, and 
occupying a niche to prevent infections by pathogens (70, 71). The 
Pseudomonas is known to play a role in breaking down complex 
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carbohydrates and producing short-chain fatty acids in pigs, 
contributing to gut health maintenance (72). However, research 
suggests that some microbes in AEO groups may have both beneficial 
and potentially harmful effects on health, which are not yet well 
understood, including Dorea, Bulleidia, Burkholderiales and 
Betaproteobacteria. Dorea may prevent food allergies and sensitivities 
in infants (73), and prevent obesity and insulin resistance (74). A 
recent study has also shown that high bacterial abundances of Dorea 
in the gut microbiome are linked to expansion, immune checkpoint 
expression, and efficacy of CD19-directed CAR T-cells in patients 
with relapsed/refractory Diffuse-Large B-Cell Lymphoma (75). 
Among the decreased relative abundance in the gut microbiota of pigs 
influenced by AEO, Streptococcus is a commonly found bacterial 
pathogen in pigs (76). For Clostridium, research in pigs is limited, and 
its impact varies depending on the specific species. For example, a 
research reported that Clostridium perfringens PLC could the trigger 
ERK1/2 pathway to cause cytotoxicity (77). Conversely, the 
enrichment of Clostridium subgroups may contribute to the 
improvement of T1D and associated immune imbalance (78). In 
addition, it has been found that Turicibacter is considered a 
pro-inflammatory bacteria, and its abundance increases during an 
enteritis episode (79). Overall, these results demonstrate that AEO 
modulated the gut microbiota of fattening pigs by increasing the 
abundance of probiotics and decreasing the abundance of 
opportunistic pathogens.

Conclusion

Dietary supplementation of 1,000 mg/kg AEO in the pigs’ diet has 
the potential to improve growth performance and various 
physiological and biochemical indicators. AEO can also enhance 
antioxidant levels and increase the efficiency of nutrient digestion and 
absorption through the regulation of gut microbiota. These findings 
suggest that AEO may be a viable alternative to CTC.
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