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Background: Brachycephalic dogs are overrepresented with ventricular 
enlargement. Cerebrospinal fluid (CSF) flow dynamics are not completely 
understood. MRI techniques have been used for the visualization of CSF 
dynamics including phase-contrast imaging.

Objectives: This study aimed to determine a causality between CSF flow and 
ventriculomegaly or hydrocephalus and to compare CSF flow dynamics among 
dogs with ventriculomegaly, internal hydrocephalus, and physiologic ventricles.

Animals: A total of 51 client-owned dogs were included in the study.

Methods: Magnetic resonance imaging (MRI)-based FLASH sequences and 
phase-contrast images of the brain were obtained, and the ROI was placed 
at the level of the mesencephalic aqueduct. ECG monitoring was performed 
parallel to MRI acquisition. Evaluation of flow diagrams and processing of 
phase-contrast images were performed using commercially available software 
(Argus VA80A, Siemens AG Healthcare Sector, Erlangen, Germany). Dogs were 
divided into three groups: Group  1 consisted of brachycephalic dogs with 
ventriculomegaly (group  1A) or internal hydrocephalus (group  1B), group  2 
consisted of brachycephalic dogs with normal ventricles, and group 3 consisted 
of meso- to dolichocephalic dogs with normal ventricles.

Results: Group 1 had a higher median Vrost (4.32  cm/s; CI: 2.94–6.33  cm/s) and 
Vcaud (−6.1  cm/s, CI: 3.99–9.33  cm/s) than group  2 (Vrost: 1.99  cm/s; CI 1.43–
2.78  cm/s; Vcaud: 2.91  cm/s, CI: 2.01–4.21  cm/s; p  =  0.008; p  =  0.03) and group 3 
(Vrost:1.85  cm/s, CI: 1.31–2.60  cm/s; Vcaud  −  2.46  cm/s, CI 1.68–3.58  cm/s; p  =  0.01; 
p  =  0.02). The median Volcaud of group 1 (−0.23  mL/min, CI: 0.13–0.42  mL/min) 
was higher than that of group 2 (−0.09  mL/min, CI: 0.05  mL/min and 0.15  mL/
min) (p  =  0.03). Groups 1A and 1B did not differ in Vcaud, Vrost, Volcaud, and Volrost. 
Group 1A and 1B showed a higher median Vrost (4.01  cm/s, CI: 2.30–7.05  cm/s; 
5.94  cm/s, CI: 2.16–7.88  cm/s) than group  2 (1.85  cm/s, CI: 1.24–2.80  cm/s.) 
(p  =  0.03; p  =  0.004).
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Conclusion and clinical importance: Increased CSF flow velocities in rostral 
and caudal directions are present in dogs with ventriculomegaly and internal 
hydrocephalus compared to normal controls.
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Introduction

Brachycephalic dogs and cats are frequently observed with 
internal hydrocephalus showing clinical signs and enlarged ventricles. 
They are also more likely to have ventriculomegaly, which is the 
enlargement of the ventricles (1, 2). Despite the absence of 
neurological signs, canine ventriculomegaly is associated with a loss 
of white matter and reduced periventricular perfusion, which implies 
an active distension of the lateral cerebral ventricles with a negative 
effect on the periventricular white matter (3, 4). Breeding for 
brachycephalic skull features has resulted in a fundamental change in 
the neurocranium of dogs and cats (5–9). A premature fusion of skull 
sutures and synchondroses of the skull base in brachycephalic breeds 
was found in different dog and cat breeds that leads to a shortening of 
the skull base, a deformation of the skull vault, and a reduction of the 
endocranial capacity (5, 8, 10, 11). Higher grades of brachycephaly 
were correlated with more severe ventricular dilation and internal 
hydrocephalus in dogs and cats (6, 12). Based on these findings, a 
pathophysiologic relation between a brachycephalic skull morphology 
and the development of ventricular distension must be assumed, but 
a definitive cause–effect relation was not shown, until now.

Phase-contrast MRI is a non-invasive technique for measuring CSF 
flow dynamics (13, 14) and can be  used for quantitative CSF flow 
measurement in the mesencephalic aqueduct in both humans and dogs 
(15–18). In this study, the technique was used to investigate potential 
differences in CSF flow in the mesencephalic aqueduct in brachycephalic 
and mesocephalic dogs with normal ventricular dimensions compared 
to brachycephalic dogs with ventriculomegaly or hydrocephalus.

Materials and methods

Study population

The study population consisted of dogs with internal hydrocephalus 
that were referred for diagnosis and surgical intervention. Flow 
measurement sequences were performed as part of the diagnostic 
workup. Clinically normal dogs with brachycephalic and mesocephalic 
skull conformation were recruited for the study. Only dogs with 
internal hydrocephalus (group 1B) showed neurological clinical signs 
localized to the forebrain; all dogs of the other groups were normal on 

neurological examination. These dogs were also examined in the scope 
of another research study (19–21), which did not interfere with our 
research aims. Dogs with structural intracranial lesions other than 
enlargement of the ventricular system and animals with aqueductal 
stenosis were excluded from the study. Animals that showed a heart 
frequency below 60 and above 120 beats per minute during the MRI 
examination were therefore also excluded from the study, as previously 
described (18, 22). The study population was divided into three groups:

Group 1:   Brachycephalic dogs with internal hydrocephalus 
or ventriculomegaly.

Group 1A:  (ventriculomegaly): Dogs normal on neurological 
examination and with enlarged ventricles.

Group 1B:  (internal hydrocephalus): Dogs with clinical signs 
localized to the forebrain and with enlarged ventricles.

Group 2:  Brachycephalic dogs with normal ventricular 
dimensions (23).

Group 3:  Meso- to dolichocephalic dogs with normal ventricular 
dimensions (23).

Ethical clearance

This study was conducted strictly according to the 
recommendations in the Guidelines for Care and Use of Laboratory 
Animals of the German Animal Protection Law. Clinically normal 
dogs with and without ventriculomegaly were scanned with the 
approval of the Committee on the Ethics of Animal Experiments of 
the Justus Liebig University Giessen and the Regierungspraesidium 
Hessen (Permit number: 22-2684-04-02-075/14). The study was 
conducted with the owners’ written informed consent.

Magnetic resonance imaging

CSF flow measurement using non-invasive phase-contrast MRI 
was performed at the Clinic for Small Animals of the Justus Liebig 
University in Giessen from July 2017 to December 2020. MRI 
acquisition was performed by a board-certified senior radiologist (SS). 
A standard anesthetic protocol was used for MRI examination and 
surgical procedure in each animal. Diazepam (0.5 mg/kg) was 
administered intravenously into a venous catheter (20 gauge), which 
was placed in the right or left cephalic vein. Anesthesia was induced 
with propofol (2–4 mg/kg, IV). Dogs were endotracheally intubated, 
and anesthesia was maintained with 2% isoflurane in oxygen. Dogs 
were placed in sternal recumbency during the MRI procedure.

Imaging was performed using a 3.0 Tesla Magnetom Verio (Siemens, 
Germany) and a four-channel flexible surface coil or a 15-channel knee 
coil depending on the size of the dog. The images included at least 
transversal T1 (TR 588, TE 15, slice thickness 1 mm) and transverse, 

Abbreviations: AM, mesencephalic aqueduct; ECG, electrocardiogram; FoV, field 

of view; CSF, cerebrospinal fluid; Volrost, maximum net volume with rostral flow 

direction; Volcaud, maximum net volume with caudal flow direction; cm/s, 

centimeter per second; ml/min, milliliter per minute; MRI, magnetic resonance 

imaging; ROI, region of interest; TE, time of echo; TR, time of repetition; venc, 

“venc-velocity”; Vrost, maximum velocity in rostral direction; Vcaud, maximum 

velocity in caudal direction.
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sagittal, and dorsal T2-weighted images (turbo spin echo, TR 2900 ms, 
TE 120 ms, slice thickness 3 mm) to exclude central nervous system 
(CNS) disease or morphological abnormalities of the brain.

FLASH sequences were performed in a transverse plane 
perpendicular to the mesencephalic aqueduct, and phase-contrast 
images were generated. The region of interest (ROI) was placed at the 
level of the mid-mesencephalic aqueduct (Figure 1). FLASH sequence 
imaging parameters were obtained as follows: FoV: 180 mm; TR: 
30.36 ms, TE: 10.92 ms, flip angle: 10°, slice thickness: 6 mm, phase-
contrast: 100%, voxel: 0.7 × 0.7 × 6 mm, basis contrast: 256, venc: −3 – 3, 
matrix 256 × 256. Efforts were spent to keep surrounding brain tissue 
out of the ROI. In order to exclude systematic errors by imperfect 
suppression of eddy currents due to brain motion, another measurement 
in the mesencephalic tegmentum was obtained (24) representing the 
apparent velocity in a stationary tissue of no flow and subtracted from 
the apparent velocities in the ROI (25). Parallel to MRI acquisition, the 
cardiac cycle was derived and recorded using MR-compatible electrodes 
(Kendall ECG electrodes, Cardinal Health™; Norderstedt, Germany). 
The FLASH sequence was started with a solid electrocardiographic 
signal with a constant heart rate of >60 and < 120 beats per minute (18, 
22). Measurements were determined from several heart cycles. After the 
measurement, the transverse images of the FLASH sequence and the 2D 
phase contrast were obtained.

Image analysis

The evaluation of the flow diagrams and the processing of the 
phase-contrast images and data collection were carried out using the 
“Argus VA80A” (Copyright 2004 Siemens). Image analysis was 
performed using a single investigator (FD), who was instructed and 
supervised by a board-certified radiologist. Directional programming 
was defined as negative for flow from rostral to caudal (caudal 
direction) and positive for flow from caudal to rostral (rostral 
direction) through the aqueduct. The software generated a time 
velocity curve and measured maximum velocity in the caudal 
direction (Vcaud), maximum velocity in the rostral direction (Vrost) in 
cm/s, and the maximal CSF net flow volume in the caudal direction 
(Volcaud) and rostral direction Volrost in ml/min.

Statistical analysis

Statistical analysis was performed using a commercial 
statistical software package (Base SAS® 9.4 Procedures Guide: 
Statistical Procedures, 2nd edition ed. Statistical Analysis System 
Institute Inc., Cary, NC, United  States). The covariables age, 
bodyweight, and heart rate were obtained for each dog. Variables 
consisted of Vcaud, Volcaud, Vrost, and Volrost and were also assessed for 
each dog. Vcaud, Volcaud, Vrost, Volrost, and the covariables age and 
bodyweight were not normally distributed. In order to obtain a 
normal distribution, a log10 transformation was performed on 
these data. An analysis of covariance was performed to determine 
the influence of each group and the covariates on the variables. 
Once the analysis of covariance had been validated, it was 
performed for all four variables. The first analysis of covariance was 
performed between groups 1, 2, and 3. Another analysis of 
covariance was then performed to compare group 1A, group 1B, 
and group 2.

The p-values of the pairwise comparisons were processed using 
Bonferroni correction to adjust the significance level for all variables. 
For all statistical tests, a significance level of 0.05 was applied. A 
difference between the groups was assumed with a p-value of <0.1 and 
a highly significant difference at p < 0.01.

Results

Animals

A total of 84 flow measurements were performed, and 33 dogs 
were excluded from further analysis due to a heart rate of <60 or > 120 
beats per minute. A total of 51 dogs were included in the study. Phase-
contrast MRI enabled the assessment of CSF flow in all these dogs.

Group  1: Internal hydrocephalus or ventriculomegaly with 
brachycephalic skull conformation (14); 1A: ventriculomegaly (n = 8); 
1B: internal hydrocephalus (n = 7). The mean age was 24 months 
(5–120 months), the mean body weight was 7.7 kg (2–30 kg), and the 
mean heart rate was 98.5 beats per minute (63–114 beats per minute) 
in this group.

FIGURE 1

A T2-weighted sagittal image (A) and a phase-contrast image in the transversal plane (B) of a 2-year-old French Bulldog from group 2. The T2-
weighted MRI (A) demonstrates the level of the mesencephalic aqueduct (lines and circle) at which further phase-contrast images were obtained in the 
transverse plane (B). The region of interest is pointed out within the phase-contrast image (arrow).
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Group 2: Physiologic ventricular spaces with brachycephalic skull 
conformation (n = 16). The mean age was 48 months (12–180 months), 
the mean body weight was 9.6 kg (3–37 kg), and the mean heart rate 
was 97.1 beats per minute (70–120 beats per minute) in this group.

Group  3: Physiologic ventricular spaces with meso- or 
dolichocephalic skull conformation (n = 20). The mean age was 
72 months (12–144 months), the mean body weight was 20.2 kg 
(7–50 kg), and the mean heart rate was 95.9 beats per minute (62–119 
beats per minute) in this group.

A typical sinusoidal pattern of CSF flow was observed during the 
cardiac cycle (Figure 2). The respective flow measurements of each 
group are given in Table 1.

Group 1 showed a significantly higher median Vrost than group 2 
(group 1: 4.32 cm/s; CI: 2.94–6.33 cm/s; group 2: 1.99 cm/s; CI 1.43–
2.78 cm/s; p = 0.03). There was also a significant difference between 
groups 1 and 3, with group 1 showing a significantly higher median 
Vrost than group 3 (1.85 cm/s, CI: 1.31–2.60 cm/s; p = 0.02). There was 
no significant difference between the median Vrost of groups 2 and 3 
(p > 0.05).

Group 1 showed a significantly higher median Vcaud than group 2 
(group 1: −6.1 cm/s, CI: 3.99–9.33 cm/s; group 2: −1.99 cm/s, CI 1.43–
2.78 cm/s; p = 0.008). Group  1 also showed a significantly higher 
median Vcaud than group 3 (−2.46 cm/s, CI 1.68–3.58 cm/s) (p = 0.01). 
There was no significant difference between the median Vcaud of groups 
2 and 3 (p > 0.05).

The median Volrost of group 1 (0.07 mL/min), group 2 (0.05 mL/
min), and group  3 (0.05 mL/min) did not show any significant 
differences among the groups (p = 1). The median Volcaud of group 1 
(−0.23 mL/min, CI: 0.13–0.42 mL/min) was significantly higher than 
the median Volcaud of group 2 (−0.09 mL/min, CI: 0.05 mL/min and 
0.15 mL/min; p = 0.03). A comparison of group 1 and group 3 with a 
median Volcaud of −0.09 mL/min revealed a tendency of difference 
among these two groups, but it was not significant (p = 0.08). There 
was no significant difference between group 2 and group 3 (p > 0.05).

Groups 1A and 1B showed a higher median Vrost (group  1A: 
4.01 cm/s, CI: 2.30–7.05 cm/s; group 1B: 5.94 cm/s, CI: 2.16–7.88 cm/s) 
than group 2 (1.85 cm/s, CI: 1.24–2.80 cm/s; p = 0.03; p = 0.004).

Group 1A had a median Vrost of 4.01 cm/s (CI: 2.30–7.05 cm/s) that 
was not significantly different from group 1B with a median Vrost of 
5.94 cm/s (CI: 2.16–7.88 cm/s; p = 0.83). Group 1A showed a significantly 
higher median Vrost than group  2 (1.85 cm/s; CI: 1.24–2.80 cm/s; 
p = 0.03). There was also a significant difference between the median Vrost 
of groups 1B and 2 (p = 0.004). Group  1A had a median Vcaud of 
−5.27 cm/s, which was not significantly different from group 1B with a 
median Vcaud of −6.3 cm/s (p = 1). There was no significant difference 
between group  1A and the median Vcaud of group  2 (−2.73 cm/s; 
p = 0.29). A comparison between the median Vcaud of group 1B and 
group 2 also did not show any significant difference (p = 0.2).

The median Volrost of group 1A (0.09 mL/min), group 1B (0.08 mL/
min), and group  2 (0.05 mL/min) did not show any significant 
differences among the groups (p = 1). The median Volcaud of group 1A 
was −0.18 mL/s and showed no significant difference compared to 
group 1B with a Volcaud of −0.24 mL/min (p = 1).

Discussion

A brachycephalic skull morphology has a profound influence on 
many organ systems in dogs including the brain (26, 27) and its 
ventricular system. Ventriculomegaly is often observed in 
brachycephalic dogs (3, 28), which raises the question of whether 
there is a causal relationship between brachycephalic skull features 
and the development of ventricular enlargement. Using phase-contrast 
MRI, we evaluated CSF flow velocities in the mesencephalic aqueduct 
of different groups of dogs and found an increased flow velocity in 
brachycephalic dogs with ventriculomegaly and internal 
hydrocephalus compared to both brachycephalic and mesocephalic 
dogs with physiologic ventricular dimensions.

FIGURE 2

A biphasic sinusoidal flow curve over one cardiac cycle is shown in a Chihuahua of group 2 (A) and a Chihuahua of group 1B (B). The red dots 
represent the individual data sets per phase-contrast image. The x-axis corresponds to the time in milliseconds over one cardiac cycle and the y-axis 
to the velocity in centimeters per second. Positive values above the zero line correspond to diastolic values and represent the rostral flow direction. In 
contrast, negative values below the zero line correspond to the systolic values, with a caudal direction of flow. The dashed line represents the spline for 
curve modeling. Higher flow velocities can be observed in group 1B (B) compared to group 2 (A).
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TABLE 1 Dog breeds including their age, body weight, and measured flow parameters in group 1A (brachycephalic dogs with internal hydrocephalus), 
group 1B (brachycephalic dogs with ventriculomegaly), group 2 (brachycephalic dogs with normal ventricular dimensions), and group 3 (mesocephalic 
dogs with normal ventricular dimensions).

Group Breed Age 
(months)

Body 
weight (kg)

Vrost 
(cm/s)

Vcaud 
(cm/s)

Volcaud (ml/min) Volrost (ml/min)

1A Chihuahua 24 3 4.7 −9.1 −0.234 0.476

1A Chihuahua 120 2 3.8 −4.4 −0.067 0.131

1A English Bulldog 84 30 2.8 −4 −0.286 0.051

1A Shih Tzu 10 5 1.7 −2.2 −0.097 0.074

1A Chihuahua 24 2 7.6 −11.2 −0.515 0.382

1A English Bulldog 24 28 3.8 −2.8 −0.048 0.043

1A Rusky toy 48 2 2.5 −2.2 −0.057 0.003

1A French Bulldog 60 9 9.8 −2.6 −1.994 0.499

1B Chihuahua 24 4 3.1 −9.7 −0.539 0.043

1B French bulldog 12 14 25.4 −18.8 −0.307 0.239

1B Chihuahua 12 2 13.3 −27.5 −0.571 0.309

1B Maltester 36 3 1.4 −1.8 −0.065 0.084

1B Chihuahua 36 3 2.1 −4.1 −0.204 0.07

1B French Bulldog 5 7 2 −2.3 −0.134 0.03

1B Chihuahua 60 2 2.6 −2.8 −0.112 0.103

2 Cavalier King Charles spaniel 36 6 4.7 −8.7 −0.257 0.164

2 Boxer 48 30 2 −2 −0.012 0.056

2 Cavalier King Charles spaniel 84 9 2.6 −3.8 −0.151 0.091

2 Old English bulldog 108 37 2.1 −4 −0.228 0.063

2 French bulldog 72 16 3.2 −5.3 −0.191 0.151

2 Chihuahua 12 3 1.5 −2.1 −0.051 0.089

2 Yorkshire terrier 60 3 1.8 −2.1 −0.146 0.066

2 Pekingese 36 8 1.2 −2.3 −0.036 0.02

2 Chihuahua 48 6 2.5 −3.4 −0.056 0.067

2 Shih Tzu 12 3 0.9 −1.8 −0.098 0.038

2 Chihuahua 60 3 0.6 −0.8 −0.005 0.018

2 Chihuahua 24 3 8.6 −1.2 −0.26 0.304

2 Pug dog 36 9 1.4 −1.4 −0.052 0.022

2 French bulldog 48 10 1.3 −2.7 −0.136 0.003

2 Maltese 24 5 2 −2.2 −0.124 0.157

2 Yorkshire terrier 180 3 1.3 −2.1 −0.164 0.038

3 Rhodesian Ridgeback 60 50 2.2 −4.8 −0.3 0.071

3 German Shepherd dog 72 39 2.1 −2.2 −0.135 0.013

3 Fox terrier 96 12 2.5 −2.2 −0.061 0.052

3 Labrador retriever 72 41 3.4 −3.5 −0.054 0.231

3 Beagle 48 11 1.9 −3.4 −0.078 0.153

3 Labrador retriever 36 33 2.4 −4.3 −0.22 0.112

3 Dachshund 72 7 2.8 −3.3 −0.165 0.058

3 Mixed breed dog 36 34 2.3 −3.4 −0.166 0.068

3 Miniature schnauzer 96 7 1 −1.8 −0.079 0.012

3 Dachshund 36 9 5.5 −6.7 −0.066 0.259

3 Jack Russel terrier 96 9 1.6 −1.8 −0.194 0.009

(Continued)
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As mentioned in the introduction, the skull conformation of 
brachycephalic animals is associated with premature closure of one or 
more skull sutures, which is referred to as craniosynostosis (8, 10, 11). 
Children with brachycephalic skull morphologies based on 
craniosynostoses often have abnormal morphology of the cranial base, 
causing jugular foramen stenosis and subsequent impairment of venous 
drainage. This, in turn, results in reduced reabsorption of CSF into the 
venous system, increased intraventricular pressure, and ventricular 
distension of variable degrees (29–32). Surgical widening of the jugular 
foramen was proven to lead to a reduction in internal hydrocephalus, 
which proves the pathophysiologic association (33). Decreased volume 
of the jugular foramen potentially causing venous congestion was also 
described in brachycephalic dog breeds (34) and was suggested to 
be associated with an enlargement of the cerebral ventricles (34–36).

Another pathogenic factor in children with craniosynostosis is a 
reduced cranial capacity (37, 38), which has important implications for 
the arterial “windkessel” function in the basal cisterns and for general 
brain compliance. Arterial distension in the basal cisterns and brain 
expansion during systole transform a pulsatile blood flow in the arterial 
ring (circle of Willis) and basilar artery to a smooth linear blood flow 
to the cerebral arterioles and capillaries (39). The systolic filling of the 
brain with blood causes brain parenchyma expansion, which, in turn, 
reduces the cerebral ventricle volume. This is suggested to be  the 
driving force of CSF through the ventricular system (40, 41). Impaired 
space for the cerebral blood vessels and the parenchyma to expand can 
result in augmented pulsatile blood flow through the parenchyma and 
thereby a hyperdynamic CSF flow through the ventricles that cannot 
be  fully drained through the mesencephalic aqueduct (42–46). A 
higher flow velocity in the aqueduct may offer a limited compensatory 
mechanism, but increased pumping of CSF out of the lateral and third 
ventricles likely results in partial reflection of the CSF pulse wave from 
the aqueduct back toward the third and lateral cerebral ventricles. Such 
an alteration of CSF flow dynamics was shown to be associated with the 
development of various forms of hydrocephalus in humans (15, 47–49). 
Again, a reduced cranial capacity was also found in dogs and cats with 
brachycephaly and craniosynostoses, and the same mechanisms 
described for humans with this skull growth disease were proposed to 
cause ventricular distension and hydrocephalus in animals (5, 6, 10, 
50). The findings in the present study may further support this theory.

CSF flow through the aqueduct is bidirectional. Tachy- and 
bradycardia can result in changes in CSF flow dynamics, with 
tachycardia leading to reduced flow and bradycardia leading to 
increased flow within the mesencephalic aqueduct (22, 51). Severe 

tachycardia can result in the termination of measurements; therefore 
upper and lower reference values are chosen to account for a better 
comparison and reduce the risk of false measurements (18, 22). 
During the cardiac systole, there is a flow from the third ventricle 
toward the fourth ventricle, while the reverse occurs during diastole. 
In the dogs with internal hydrocephalus and ventriculomegaly, the 
caudally directed net flow volume (Volcaud) and caudal flow velocity 
(Vcaud) were higher than those in groups 2 and 3. This is consistent with 
the findings in humans with communicating internal hydrocephalus; 
however, published data in humans are quite inconsistent. While some 
authors did find increased caudal flow volume (52, 53), others 
documented increased rostral flow volume (54) or found both 
increased caudal flow volume and rostral flow volume in their cohorts 
(55). The measured data in group 1 would indicate that not enough 
CSF volume can exit the ventricular system through the lateral 
apertures, and a higher volume than usual flows back to the third 
ventricle through diastole. This CSF contributes to the overload of the 
third and lateral cerebral ventricles and to their progressive distension.

It is interesting to note that differences in flow velocity and volume 
between brachycephalic dogs with normal ventricular dimensions 
(group 2) and meso−/dolichocephalic dogs with normal ventricular 
dimensions (group 3) were not identified. Following the hypothesis that 
aberrant CSF flow is a pathogenetic factor in the development of 
ventricular distension and brachycephaly is promoting the 
hyperdynamic flow, it could be  expected to measure a subsequent 
increase of flow parameters between groups, with normal 
brachycephalic dogs having higher CSF flow velocity and volume than 
normal mesocephalic dogs and brachycephalic dogs with 
ventriculomegaly having a higher velocity than brachycephalic dogs 
with normal ventricular dimensions. Finally, it could be expected to 
find a higher flow in brachycephalic dogs with internal hydrocephalus 
compared to brachycephalic dogs with ventriculomegaly. The lack of 
difference between normal brachycephalic dogs and mesocephalic dogs 
might be due to higher grades of brachycephaly in group 1 than in 
group 2. Evaluation of a significant difference in cranial indices between 
the groups would have been ideal, but the groups included many 
different dog breeds with different grades of brachycephaly in general. 
A comparison of homogenous groups of the same dog breed would 
have been ideal, but it was not possible during this study. Furthermore, 
the measurement in MRI only provides a snapshot, taken under general 
anesthesia and in a lying position, which potentially has an influence on 
measured parameters and does not reflect the conditions in the awake 
and standing animal. However, an alternative explanation for the lack 

TABLE 1 (Continued)

Group Breed Age 
(months)

Body 
weight (kg)

Vrost 
(cm/s)

Vcaud 
(cm/s)

Volcaud (ml/min) Volrost (ml/min)

3 Labrador retriever 132 23 2 −2.6 −0.109 0.035

3 Bull terrier 12 12 1.2 −1 −0.015 0.037

3 Tibet terrier 120 15 1.7 −3.3 −0.315 0.002

3 Rhodesian Ridgeback 72 36 5.2 −5 −0.232 0.097

3 Dachshund 60 10 1.2 −1.8 −0.161 0.013

3 Mixed breed dog 24 14 3.6 −4.3 −0.17 0.124

3 Small Münsterländer 84 24 2.1 −2.7 −0.036 0.013

3 Mixed breed dog 72 8 0.9 −1 −0.023 0.009

3 Mixed breed dog 144 10 0.9 −1.8 −0.1 0.02
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of difference between normal brachycephalic dogs and mesocephalic 
dogs may be that the hypothesis concerning reduced cranial compliance 
and venous congestion in brachycephalic dogs in general only explains 
a part of the pathogenetic factors that cause ventricular distension.

The lack of a difference between groups 1A and 1B was also 
striking. It was suggested that ventriculomegaly might be  a 
compensated or arrested form of hydrocephalus (3, 37). Based on the 
finding that both conditions have an abnormally high CSF flow, it 
would be possible that ventriculomegaly might be progressive, and 
affected dogs could be  at risk of developing further ventricular 
distension in the future and should therefore be monitored. Further 
studies are necessary to investigate if a cutoff value can be found that 
helps to identify dogs that are at risk for further ventricular expansion 
and to justify repeated MRIs in these dogs.

Phase-contrast MRI is a comparably new technique in veterinary 
medicine. Two previous pilot studies used the technique in laboratory 
beagles and provided normative measurements as a reference (18, 56). 
It is interesting to note that peak velocities in normal mesocephalic 
dogs measured in the present study were higher (median 1.85 cm/s) 
than those in mesocephalic dogs measured in the other two studies 
(0.92; ± 0.5 cm/s (18) and 0.76 ± 0.43 cm/s (56)). However, there is an 
overlap of the measurements of all studies. CSF flow values can also 
vary in humans (57). First, the peak flow velocity can differ according 
to the level of the mesencephalic aqueduct at which the measurement 
was made. The aqueduct is funnel-shaped with the narrowest lumen 
at the rostral entry zone, while the caudal exit zone has the widest 
lumen. Based on our assessment, the measurements in the two studies 
mentioned and our own were taken at the same area of the 
mesencephalic aqueduct, making significant differences based on this 
unlikely. As in humans, variations in CSF flow measurements may 
be attributed to the difference in body size (58), which can influence 
head and brain size. Our control group included dogs with a mean 
body weight of 20 kg. This was much higher than in standard 
laboratory beagles. Age could also play a role, as a study comparing 
CSF flow velocity in human infants found a higher CSF flow velocity 
than in adults (59). Additionally, a linear increase in peak velocity with 
age has been observed in adult humans (60).

Conclusion

Brachycephalic dogs with both internal hydrocephalus and 
ventriculomegaly have increased caudally directed flow velocity and 
volume compared to brachycephalic and mesocephalic dogs with 
normal ventricular dimensions. As brachycephalic dogs with 
ventriculomegaly have the same increased flow as dogs with internal 
hydrocephalus, repetitive MRI might be indicated to control further 
ventricular distension.
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