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Introduction

Rabies is a zoonotic viral disease that causes encephalitis in humans and other

mammals, such as dogs, bats, raccoons, and foxes (1). This disease generally includes two

clinical forms, namely furious rabies and paralytic rabies (2). The former is characterized by

hyperactivity and hallucinations; the latter is characterized by paralysis and coma. Rabies

induces progressive and fatal inflammation of the brain and spinal cord. Once its clinical

sign begins, the mortality rate is virtually 100% in humans. Rabies is still a serious public

problem in over 150 countries and territories, mainly in Asia and Africa (3).

The etiological agent of rabies is rabies virus (RV), a typical neurotropic virus. Its

transmission is commonly through saliva, bites, scratches, or direct contact with mucosa

(4). According to the latest taxonomic classification, RV has been renamed lyssavirus rabies,

classified into the genus Lyssavirus in the family Rhabdoviridae. The virion is a bullet-

shaped particle with envelope, containing a single-stranded, negative-sense RNA genome,

∼11.9 nt in length, encoding five proteins in order: nucleoprotein (N), phosphoprotein

(P), matrix protein (M), glycoprotein (G), and RNA-dependent RNA polymerase (RdRp or

L protein).

The RV genome can be readily modified to accommodate a foreign antigen

sequence for rescuing a recombinant virus using revere genetics (5). The recombinant,

if demonstrated to be able to induce specific immune responses in vivo, would play a

potential role in developing the RV-vectored vaccine. To date, there have been three types

of RV-vectored vaccines: live-attenuated, inactivated and replication-deficient patterns.

They showed their individual strengths and weaknesses, both of which were critically

discussed here.

Reverse genetics for recovery of antigen-expressing
RV

The reverse genetics platform of RV was initially reported in 1994 (6), subsequently

revolutionizing the researches on RV and even on other RNA viruses. This reverse genetics

platform includes four plasmids, and one cell line. The four-plasmid system contains one

viral cDNA clone, and three helper plasmids that separately express N, P and L proteins.

An RV-vectored cDNA clone generally possesses an extra transcriptional unit of foreign

antigen. Recovery of RV involves co-transfection of these four plasmids into a cell line [for a
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review on the protocol, see (5)]. The rescued chimeric RV will

be characterized for verifying its ability in the expression of

foreign antigen in vitro, and then subjected to the animal test

for unveiling its potential in eliciting specific immune responses.

Table 1 exhibits a range of RV-vectored candidate vaccines against

distinct pathogens.

Live-attenuated RV-vectored vaccine

The requirements for developing live-attenuated RV-vectored

vaccines (LRVs) include many basic features: no or low virulence

in hosts, ability of reaching high-level titers via cell culture,

continuously eliciting cellular and humoral immune responses,

thermal stability, and last but not least, genetic stability of foreign

sequence. LRVs are factually the replication-competent RVs, able

to replicate continuously in animals. They usually require fewer

doses, and moreover provide more long-lasting protection than

inactivated vaccines. A single-dose vaccination schedule is enough

to induce high titers of specific antibodies in vivo (27). Moreover,

LRVs offer more comprehensive and long-lasting protection in

animals from pathogens.

Besides the humoral immunity, the LRVs also induce cellular

immunity, because viable RVs propagate in host’s cells and express

endogenous antigens for further processing and presentation.

The cell-mediated immune response is crucial for eliminating

pathogens inside the host’s cells. Zheng et al. (9) evaluated T-

cell-mediated immune responses in mice elicited by an LRV

that expressed the glycoprotein of bovine ephemeral fever virus

(BEFV). Both RV- and BEFV-specific cytokines, interferon-γ

and interleukin-4, could be identified to secrete in lymphocytes.

This LRV induced more robust T helper 1 (Th1) and Th2

cell-mediated immunities than the parent RV via the single-

dose immunization strategy (9). However, not all LRVs can

induce the cellular immunity. McKenna et al. (36) previously

demonstrated the immunogenicity of LRV expressing simian-

human immunodeficiency virus (SHIV)89.6P Env in rhesus

macaques. Humoral immunity against RVG protein and SHIV89.6P

Env was detectable after the initial immunization, whereas the cell-

mediated immune response was not identified against the SHIV

antigens (36).

Although LRVs have been widely demonstrated to be powerful

in eliciting protective immune responses in animals, there are still

two weaknesses that should not be neglected for the development

of LRVs. The first one is the potential risk in reversion to

virulence. Most RNA viruses are genetically unstable during

genomic replication, due to the low-fidelity characteristics of their

RdRps (38). RVs have been rapidly evolving (39), and been even

recombining with one another (40). A single mutation of amino

acid in its G protein will quicken its spread, and even intensify

its pathogenicity (41, 42). Therefore, the potential reversion to

virulence hampers the further application of LRVs. The other

weakness, albeit rarely reported as yet, should not also be neglected

to design an LRV. This weakness is that a foreign sequence is

possibly unstable in a chimeric RV genome, since the foreign

sequence is theoretically uninvolved in virus-associated events. If

a certain foreign sequence is deleted from a chimeric RV genome,

the resultant RV would be still a replication-competent strain, but

lose its own primary properties of vector vaccine.

Inactivated RV-vectored vaccine

The inactivated RV-vectored vaccine (IRV) is produced as

a killed version of antigen-expressing RV. The prerequisite for

developing a certain IRV is that a target antigen must be

incorporated into the envelope of chimeric RV virion (43). Some

viral glycoproteins, if expressed through the RV vector in cells, can

be further processed, modified and finally transported to the cell

surface. These viral glycoproteins, as membrane-spanning proteins,

will be embedded into the cell envelope. Along with the viral

budding, the foreign antigen can be incorporated into the envelope

of RV virion. Many viral glycoproteins, like those of Lassa virus (20)

and Ebola virus (12), were reported to have such a feature, therefore

playing a potential role in the development of the IRVs.

However, not all viral glycoproteins can be directly used as a

complete foreign antigen for preparing the IRV. Some ones need to

bemodified for the incorporation into RV virions. For instance, Rift

Valley fever virus (RVFV) morphogenesis is by means of budding

from the Golgi complex. In other words, the RVFV glycoprotein is

unable to be transported to the cell membrane, therefore requiring

the replacement of its trans-membrane domain and cytoplasmic

tail with those of RV G protein for the incorporation of a fusion

protein into the RV virion (37). Such a fusion modification was also

reported to be used in non-viral proteins for preparing the IRV (7).

Compared with that of LRV, the most significant advantage of

IRV is its good safety profile in animals, due to the recombinant

RV functioning as an inactivated virion. Neither RV mutation

nor virulence reversion can occur in IRV-inoculated animals.

Although the recombinant RV is chemically inactivated, its

immunogenicity can be even completely retained. The inactivated

recombinant RV induces not only its own immune responses,

but also more importantly, specific neutralizing antibodies against

the target pathogen. One research group recently constructed

an IRV, named CORAVAXTM, against severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) (32). A single dose of

CORAVAXTM vaccine was demonstrated not only to elicit the high-

level SARS-CoV-2-specific antibodies, but also to prevent weight

loss, viral loads, lung inflammation, and cytokine storm in hamsters

(29). Subsequently using the mouse models, this group further

screened adjuvants for the maximum level of antibody titers,

negated the concerns about pre-existing RV-vectored immunity,

and determined its potential as a long-lasting IRV against SARS-

CoV-2 (31). Extra experiments should be conducted to demonstrate

whether the candidate vaccine CORAVAXTM is also effective in

nonhuman primates.

Although the IRVs show a great potential in clinical use, there

are still a few disadvantages to them. The most representative one

is that they are generally less effective than their live counterparts.

An LRV induces the immune response so robust that a single dose is

enough to the immunization of animals, whereas an IRV commonly

requires booster injections (23, 27). The immunity effect is involved

in a dose-dependent manner for IRV-inoculated animals. The

prime-boost immunization strategy is inconvenient, because at

least two rounds of injection are needed. Another non-negligible
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TABLE 1 Rabies virus-vectored candidate vaccines against distinct pathogens.

Targeted
pathogen

Rabies virus-expressed
antigen

Type of
vaccine

Animal test Animal References

Bacillus anthracis Protective antigen D-4 Inactivated Yes Mice (7)

Borrelia burgdorferi BBI39 Inactivated Yes Mice (8)

BEFV Glycoprotein Live Yes Mice (9)

CDV H protein Live Yes Dogs (10)

Canine parvovirus Virion protein 2 Inactivated and live Yes Mice (11)

Ebola virus Glycoprotein Inactivated Yes Mice and dogs (12)

E. granulosus EG95 Live Yes Mice (13)

EV, SV, MV, or (and) LV Glycoprotein or GPC Inactivated Yes Macaca fascicularis (14)

FHV-1 Glycoprotein B Inactivated Yes Mice and cats (15)

Hendra virus G protein Live Yes Mice (16)

HIV-1 Gag Replication-

deficient

Yes Mice (17)

HIV-1 gp160 Live Yes Mice (18, 19)

Lassa virus Glycoprotein Inactivated Yes Mice and guinea pigs (20)

LCMV Glycoprotein Replication-

deficient

Yes Mice (21)

Marburg virus Glycoprotein Inactivated and live Yes Mice (22, 23)

MERS-CoV S1 subunit Inactivated Yes Mice, camels and alpacas (24)

MERS-CoV Infused S1 subunit Replication-

deficient

Yes Mice (25)

Nipah virus A.G. or F.G. Live Yes Mice and pigs (26)

Nipah virus G protein Inactivated and live Yes Mice (27)

PPRV H or F protein N.A. N.A. N.A. (28)

SARS-CoV-2 S1 subunit Inactivated and live Yes Hamsters and mice (29–32)

SARS-CoV-2 TRBDT of S1 subunit Inactivated Yes Mice (33)

SARS-CoV-2 RBD of SARS-CoV-2 Inactivated Yes Cats and dogs (34)

SFTSV Gn Live Yes Mice (35)

SHIV and SIV SHIV89.6P Env and SIVmac239 Gag Live Yes Rhesus macaques (36)

RVFV Gn ectodomain Inactivated Yes Mice (37)

A.G. or F.G., attachment glycoprotein or fusion glycoprotein; BEFV, bovine ephemeral fever virus; CDV, canine distemper virus; E. granulosus, Echinococcus granulosus; EV, SV, MV or (and) LV,

Ebola virus, Sudan virus, Marburg virus or (and) Lassa virus; FHV-1, feline herpesvirus-1; GPC, glycoprotein complex; gp160, glycoprotein 160; HIV-1, human immunodeficiency virus type

1; LCMV, lymphocytic choriomeningitis virus; MERS-CoV, Middle East respiratory syndrome coronavirus; N.A., not available; PPRV, peste des petits ruminants virus; RBD, receptor-binding

domain; RVFV, Rift Valley fever virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus type 2; SFTSV, severe fever with thrombocytopenia syndrome virus; SHIV, simian-human

immunodeficiency virus; SIV, simian immunodeficiency virus; TRBDT, tandem receptor-binding domain trimer.

issue is the potential risk of incomplete inactivation during IRV

production. Such a risk can be excluded to the maximum extent

through use of more reliable inactivants following a standard

procedure of virulence inactivation.

Replication-deficient RV-vectored
vaccine

Replication-deficient viruses are functionally defective in

genome replication or (and) virion assembly (44). Construction

of replication-deficient RV was reported as early as 1995 (45).

A replication-deficient RV is a pseudo-live virion, which is able

to infect a cell, but completes only one single-cycle replication,

and more importantly cannot produce the replication-competent

progenies. The replication-deficient RV-vectored vaccine (RRV)

provides a new form of RV-vectored vaccine that combines many

advantages of LRV and IRV, such as good safety and robust

immunogenicity (Table 1).

It has been showed that the M gene-deleting RV confers 4-fold

higher titers of neutralizing antibodies than does a commercially

available vaccine in monkeys within 10 days after vaccination

(46). The RV P protein is a multifunctional protein, required not

only for RV replication, but also for innate immunity evasion
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(47). Takayama-Ito et al. (21) constructed a P gene-deficient

RV that expressed the glycoprotein precursor of lymphocytic

choriomeningitis virus (LCMV). Such a replication-deficient RV

was subsequently proven to be a promising RRV candidate,

characterized by dual immunities against LCMV and RV (21).

The G gene can be removed from a chimeric RV genome for the

development of RRV. Gomme et al. (17) constructed a replication-

deficient RV through deleting the G gene from an RV vector

that expressed the HIV-1 Gag. This RRV was demonstrated to

induce weaker RV-specific antibody responses, but equivalent HIV-

1 Gag-specific CD8+ T cell responses. These responses could be

considerably enhanced through boosting with the G gene-deleting

RV complemented with one heterologous glycoprotein (17). Thus,

the labor-consuming prime-boost strategy may be necessary for

the RRV-based immunization. The G gene-deficient RV is also

named single-cycle virus, which is still capable of budding from

the cell membrane, but shows a 30-fold lower efficiency (48).

The budded virions are able neither of attachment nor of entry

into secondary host cells (49). Therefore, another drawback to

RRVs is the difficulty in obtaining a high-titer viral stock through

cell culture.

Conclusions

RV is an attractive candidate for designing and producing virus-

vectored vaccines. This virus allows for foreign antigen expression,

and even incorporation into the mature virions. A large number

of reports, concerning LRVs, IRVs, and RRVs (Table 1), have

highlighted their immune efficacies, antigen-delivering abilities,

and safety profiles in animals. Nevertheless, a few issues should not

be neglected regarding their production and application. Firstly,

although the LRVs are functionally robust in eliciting both humoral

and cellular immunities, all safety risks must be eliminated before

they can be used. Secondly, manufacturers should pay attention to

some accidents, caused by the incomplete inactivation of viruses.

Last but not least, because the RV G protein is highly immunogenic

in animals, the immune response to it may interfere with responses

an RV-vectored vaccine confers to foreign proteins (43).
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