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Sustainability concerns have increased consumer demand for non-animal-derived 
proteins and the search for novel, alternative protein sources. The nutritional 
sustainability of the food system without compromising the nutrient quality, 
composition, digestibility and consumption is pivotal. As with farmed livestock, 
it is imperative to ensure the well-being and food security of companion animals 
and to develop sustainable and affordable pet foods. The current pilot study was 
conducted to determine the effect of greenhouse gas-derived novel, fermented 
protein ingredient in beagle dogs. The greenhouse gas-derived fermented protein 
is an alternative protein ingredient with optimal nutritional factors and provides 
traceability, significantly optimizes the use of land and water, and provides 
sustainability to the feed value chain of canine diets. Three experimental groups 
including control, 5 and 10% inclusion of high protein ingredients were included 
in the study and the results suggest that the fermented protein is palatable and 
acceptable at 5 and 10% inclusions in the diets of dogs. The present study shows no 
significant difference in general alertness, clinical symptoms, water consumption 
and social behavior of dogs between 5 and 10% fermented protein inclusion 
in canine diets. The diversity of the bacterial community did not change after 
supplementation with the tested protein source in dogs. Only a few bacterial 
genera differed significantly in relative abundance between the experimental 
groups. Feed consumption, faecal scoring and the microbiome data results of this 
pilot study on the use of novel, methane gas derived, bacterial SCP as a protein 
ingredient in the canine diets, would pave way for more and more inclusion of 
such novel alternative protein sources in the pet food industry.
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Introduction

The global pet food market is projected to grow from 115.50 billion USD in 2022 to 163.70 
billion USD by 2029 (1). The increasing trend for pet ownership, rising urbanization and pet 
humanization are factors for the pet owners to opt also for nutritious and quality food for their 
pets and act as major drivers in the petfood market. Proteins in pet diets sourced from animal 
origin are posing threats on the sustainability factor. Hence adoption of sustainable practices 
of developing feeds less reliant on non-renewable sources would significantly strike the right 
balance between nutritional, ecological, social and economic aspects.

Protein is the most expensive, indispensable macronutrient in pet foods. National 
Research Council (NRC) (73) provides a recommended allowance of 10 and 20% crude 
protein for adult dogs (2) whereas the recommendations made by AAFCO for adult dogs is 
18% crude protein (3). The ideal amino acid profile for dog nutrition is provided by Baker and 
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Maulden (4). The advantages of high protein, low carbohydrate foods 
elicit lower glycemic index which can benefit dogs with insulin 
resistance and diabetes (5, 6). The protein content of the diet is 
positively associated with food selection in dogs (7). Studies have 
shown that pet foods with a higher protein content (103 g/1000 kcal) 
in addition to higher fiber content, decrease voluntary intake, increase 
the amount and rate of weight loss, and increase fat mass loss during 
weight loss in dogs (8, 9). Dog foods containing high protein and low 
energy maintain muscle mass during weight loss (10, 11). Additionally, 
high-protein diets can be beneficial for endurance exercise in dogs. 
Sled dogs fed a diet consisting of 35% of energy from protein had 
higher plasma volume than dogs fed a diet with 18% of energy from 
protein (12). The 18% protein diet also resulted in decreased maximal 
oxygen uptake (VO2 max) and greater rate of soft-tissue injuries.

Considering the critical role of protein in pet foods, and in 
response to consumer demand, sourcing constraints and sustainability 
concerns, research for novel protein sources have emerged as an 
important trend in the pet food industry. Dried whole-cell yeast 
(S. cerevisiae) is an alternative to conventional animal-derived protein 
sources that aligns with this trend and has been shown to have 
beneficial health effects in several animal species, including the 
modulation of the colonic microbiota in dogs (13–16). Insect based 
proteins are also tested in dogs wherein the diets were shown to alter 
the gut microbiota slightly (17). Bacterial based protein ingredients 
which are produced under controlled conditions, and which are 
scalable are considered viable alternative source to circumvent the 
problems of protein shortage. Existing pet foods are rich in ingredients 
of animal origin and are associated with drawbacks such as higher 
greenhouse gas emissions, land and water use. A recent study 
estimated that pet food, specifically dry diets from the U.S., could 
account for up to 2.9% of global CO2 equivalent emissions and up to 
1.2% of agricultural land use. As greenhouse gas, methane contributes 
to the global warming potential (GWP20) 84 times that of carbon di 
oxide (18, 19), methane removal technologies have gained significant 
attention (20, 21) and is also considered as a cost-efficient carbon and 
energy source from the biomanufacturing standpoint (22). Fermented 
proteins offer several advantages over animal and plant proteins such 
as low carbon footprint, low reliance on land, water, and seasonal 
variations coupled with a balanced amino acid and nutritional profile. 
The current study provides support for the acceptability and 
digestibility of dog diets containing such greenhouse gas derived 
microbial fermented protein as a sustainable alternative protein source 
with an ideal amino acid profile and is palatable.

Materials and methods

Animals, facilities, and experimental design

Clinically healthy, adult beagle dogs, of both sexes, between 12 
and 20 kg of bodyweight were enrolled in the study. Beagles were 
utilized in the study due to their uniform sizes, excellent temperament 
and physiology suited to studies in controlled environments. The 
standard housing conditions required for canine studies such as 
provision of minimum 2–4 m2 space for the dogs allowing for free 
movement, non-slip flooring, soft bedding materials (straw). The 
animals had constant human interaction in addition to additional 
props (chew toys) for environmental enrichment. Adequate 

environmental conditions (temperature, humidity, ventilation, 
lighting) were maintained as per standard.

Dry pet food preparation as kibbles

The dry feed (kibbles) for dogs used in this study were custom 
manufactured by a pet food manufacturer (Taiyo Group, Chennai, 
India) and consisted of three different formulations using fermented 
single cell proteins (SCP) of bacterial origin with three different 
inclusion levels (0, 5, and 10%) stored at room temperature in sealed 
packages. Each sample is derived from the same lot of production, 
using uniform production parameters. Based on the inclusion levels 
of fermented proteins, each formulation also comprises varying 
percentages of different cereals and grain byproducts and 
micronutrients as mentioned in Table 1 as control, test 1 (fermented 
protein 5% inclusion), test 2 (fermented protein 10% inclusion) 
respectively. The fermented protein was produced by the continuous 
aerobic fermentation process using a patented proprietary 
fermentation process of String Bio Pvt. Ltd., India within its String 
Integrated Methane Platform, SIMP™ technology, as described in 
Subbian et al. (23). The same extrusion technique was used for the 
production of all of the formulations, and processing was carried out 
under the same conditions. The protein content of the different 
formulations was maintained at around 24%.

Feeding trial

The feeding trial was conducted at Invetus, the largest Australasian 
veterinary contract research organization under the Institutional 
Animal Care and Use Committee protocol, authorised with the trial 
number RIU C 22179 W.

Seven healthy adult beagles with an average body weight of 
around 12 to 20 kg were individually housed in pens. The dogs 
received two feedings per day at time with water ad libitum.

Study design

A total of seven dogs were enrolled into this study of which 5 dogs 
were fed with two different trial diets (3 dogs were fed with 5% 
fermented protein and another 2 dogs were fed with 10% fermented 
protein formulation) and 2 dogs were fed a control diet that contains 
0% fermented protein and served as negative control throughout the 
conduct of this study for a period of 21 days.

From day 1–4 the 5 trial dogs and 2 control dogs were fed with a 
transition diet that consists of 75% standard diet (Cobbers Working 
dog kibble routinely fed at WRC) and 25% new diet. On days 5–8, 
dogs were fed with a transition diet that consisted of 50% standard 
diet and 50% new diet and on days 9–12, dogs were fed with a 
transition diet that consisted of 25% standard diet and 75% new diet. 
Following these 12 days of transition feeding, the 5 trial dogs were fed 
with 100% of the trial diet between days 13–20. The individual faecal 
samples were collected on day 1 and on day 21 for comparative 
microbiome analyses. The 2 control dogs received 100% control diet. 
Feed consumption and faecal scoring were recorded daily for all dogs. 
The diet schedule and the details of the animals are mentioned in 
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Tables 2, 3. Tash and Buk were fed with control diets whereas Annie, 
Queenie, Kale, Huxley, Jasmine were fed with the test diets by 
replacing the basal diet with the fermented protein as mentioned in 
the Table 2.

The nutrient composition of the fermented protein source and the 
experiment protein diets are presented in Tables 4, 5. The proximate 
composition of the fermented protein and the diets were analyzed by 
standard AOAC test methods.

Faecal scoring and testing

Faecal scoring was done on a daily basis from day 1 to 21 and the 
scoring was done as per the Waltham faeces scoring system (24). The 
Waltham scale utilizes a scale of 1–5 with half numerical increments, 

covering a range of very hard (score 1) and dry to entirely liquid faeces 
(score 5) (24, 25). The mean Waltham score was calculated over the 
trial period to determine the overall stool consistency. The cut-off 
score for diarrhea was set at a mean score of 3.5. This also entails that 
control animals whose mean Waltham score exceeded this value were 
labelled as diarrhea-positive and vice versa. The faecal consistency 
scoring system is the most common stool scoring manual which can 
reflect intestinal health of the animals (26). Faecal condition scores 
can provide insights into how a diet is being digested (otherwise 
utilized) by an animal. The colour is also helpful in understanding the 
digestibility of animals. Low scores (unformed, loose, diarrhea, etc) 
may indicate digestive upset, malabsorption, and/or possible 
hydration issues. On the other end of the spectrum, hard stools may 
indicate a lack of appropriate fiber, a water balance issue, etc. The 
routine use of faecal scoring systems with animals can provide an 
invaluable tool to veterinarians and animal managers when there are 
any changes with condition, consumption, and/or overall health.

TABLE 1 Ingredient composition (%) of dry dog feeds used in the study.

Ingredients Control Test 1 
(fermented 
protein 5% 
inclusion)

Test 2 
(fermented 
protein 10% 
inclusion)

Rice 26.97 26.87 27.08

Oats 15.88 15.37 12.88

Wheat 14.45 14.39 14.50

Corn Gluten 14.45 14.23 14.24

Wheat Gluten 10.12 5.92 3.15

Novel fermented 

protein
0.0 5.0 10.00

Beet pulp 1.93 1.92 1.93

Brewer’s yeast 0.96 0.96 0.97

Calcium carbonate 1.45 1.44 1.45

Salt 0.96 0.96 0.97

Choline chloride 70% 0.16 0.12 0.15

Potassium chloride 0.63 0.62 0.59

DL-Methionine 0.14 0.14 0.15

L-Lysine 0.00 0.38 0.23

Naturox (Kemin) 0.1 0.10 0.1

Monocalcium 

phosphate
1.11 0.96 0.97

Vitamin & Mineral 

Premix
0.29 0.29 0.29

MCD 0.40 0.40 0.40

Potassium sorbate 0.20 0.20 0.20

Termox Dry (Kemin) 0.15 0.15 0.15

Toxin Binder 0.20 0.20 0.20

Sodium Benzoate 0.10 0.10 0.10

Termox Liquid 

(Kemin)
0.03 0.03 0.03

Fish oil 2.41 2.40 2.42

Sunflower Oil 5.95 5.88 5.90

Flaxseed Oil 0.96 0.96 0.97

Total 100 100 100

TABLE 2 Diet schedule of the fermented protein (test) study in dogs.

Days Diet schedule

Days 1–4 5 trial dogs (3 on 5% and 2 on 10% protein test diets) + 2 controls 

(0% protein diet); Housed dogs by group into three communal 

pens. Transition feeding with 75% (262.5 g) standard diet and 25% 

(87.5 g) new diet with fermented protein; Recorded food 

consumption and faecal scoring; Collected individual faecal 

samples into yellow-top jars and submerged in faecal storage 

solution. Jars were labelled with study number, dog ID and 

collection day and stored frozen at −20°C.

Days 5–8 5 trial dogs (3 on 5% and 2 on 10% protein test diets) + 2 controls 

(0% protein diet); Transition feeding with 50% (175 g) standard 

diet and 50% (175 g) new diet; Recorded food consumption and 

faecal scoring.

Days 9–12 5 trial dogs (3 on 5% and 2 on10% protein test diets) + 2 controls 

(0% protein diet); Transition feeding with 25% (87.5 g) standard 

diet and 75% (262.5 g) new diet; Recorded food consumption and 

faecal scoring.

Days 13–20 5 trial dogs (3 on 5% and 2 on10% protein test diets) + 2 controls 

(0% protein diet); New food 100% (350 g); Recorded food 

consumption and faecal scoring.

Day 21 Recorded food consumption and faecal scoring; Collected 

individual faecal samples into yellow-top jar and submerged in 

faecal storage solution. Jars labelled with Study number, Animal ID 

and collection date.

TABLE 3 Details of the test animals.

S. No. Animal ID Details

1 Tash 1347 Control

2 Buk 3850 Control

3 Annie 3610 Test 1 (5%fermented protein)

4 Queenie 4339 Test 1 (5% fermented protein)

5 Kale 5636 Test 1 (5% fermented protein)

6 Huxley 5632 Test 2 (10% fermented protein)

7 Jasmine 7812 Test 2 (10% fermented protein)
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Faecal DNA isolation and metagenome 
analysis/faecal DNA extraction and 
sequencing

DNA from the faecal samples was extracted using a Bioline 
Isolate Faecal DNA kit (Meridian, cat.no#BIO-52082). Primers 
were selected to amplify the V3–V4 region of 16S rRNA genes as 
these regions display the maximum discriminatory power 
demonstrating sufficient sequence diversity using the forward 
primer ACTCCTACGGGAGGCAGCAG and reverse primer 
GGACTACHVGGGTWTCTAAT. Sequencing was performed on 
an Illumina MiSeq platform using 2 × 300 bp paired-end 
sequencing. The microbiota of the dogs fed with 5 and 10% 
protein diets—namely Annie 3610, Queenie 4339, Kale 5636, 
Huxley 5632, and Jasmine 7812—was investigated on days 1 and 
21. This analysis was conducted to assess changes in the 
microbiota of dogs fed diets containing the fermented bacterial 
Protein between day 1 (beginning of the study) versus day 21 (end 
of the study).

Data analysis

Sequence data were trimmed with Trimmomatic (v 0.39) and 
then fastq files were analyzed using DADA2 in QIIME2 v2020.6 to 
denoise and produce Amplicon Sequence Variants (ASVs). ASVs 
were clustered at 99% identity using the VSEARCH plugin. 
Taxonomy was assigned using the SILVA database (v138). 
Obtaining feature table was further filtered (features that were 

present in only a single sample and features with a total abundance 
of less than 10). A total of 172,249 reads remained for the analysis, 
with an average of 17,224 reads per sample. The number of features 
remains after the data filtering step is 557. The downstream 
statistical microbial data analyses and visualizations were done 
using Microbiome Analyst (27). The community profiling was 
conducted using the R Phyloseq and Vegan packages. Principal 
coordinates analysis (PCoA) employing the Bray-Curtis Index and 
PERMANOVA was utilized to visualize the clustering of samples 
based on their phylum and genus-level compositional profiles. The 
identification of significant features was performed using single-
factor statistical comparisons with a p-value cutoff of 0.05 and the 
t-test/ANOVA statistical method. The sequence data used for 
analysis is available in NCBI under BioProject accession 
Number PRJNA1116051.

Results

Feed consumption and faecal score

All the trial dogs were fed with 350 g/day as per calorific 
requirements. The feed consumption of the dogs fed with the 
fermented protein at 5 and 10% inclusions appear to be comparable 
to the control, demonstrating that the product is palatable and 
accepted by the dogs. There was a slight discrepancy in the feed 
consumption observed in one dog (Jasmine 7,812), which was fed 
with 10% fermented protein on days 12 and 14, however it became 
comparable to the control at the end of the study on day 21 (Figure 1). 
As part of this pilot study, we did not consider weight gain as the 
prime metric. However, we do not see a drastic change between the 
weights before and after the study (Table 6) with an exception in one 
of the animals, Jasmine 7,812 fed with 10% of the fermented protein 
did show lesser feed intake in the transition period between day 12 
and day 14 which is also observed in the faecal consistency record 
(Figure 2).

Faecal scores

Faeces obtained from 0% protein control dog typically had a 
yellowish colouring to some parts of most faeces. 5% test protein 
faeces typically had an orangish colouring to some parts of some 
faeces. 10% test protein faeces had no major noticable differences to 
the colouring of faeces during the study. The aroma of faeces was 
different between the start of the study and the completion of the 
study for all groups. Clinical observations suggest that the diet 
containing fermented protein is acceptable by dogs throughout the 
study and hence reflects no palatability issues in the diets.

Microbiome analyses

The microbiota of faecal samples from dogs fed with test protein 
diet and control diets was examined on days 1 and 21, respectively. 
The relative abundance, alpha and beta diversity were analyzed from 
the microbiome data.

TABLE 4 Nutrient composition of fermented protein.

S. No. Description Value Test method

1. Dry matter, % 94.4 By calculation; AOAC 

930.15 (for moisture)

2. Crude protein, % 72.2 AOAC 984.13

3. Fat, % 5.3 AOAC 2003.06

4. Crude Fiber, % <1.0 AOAC 962.09

5. Ash, % 7.7 IS 14827–2000

6. Gross energy, MJ/kg 21.7 By calculation

TABLE 5 Nutrient composition of dry kibbles.

S. 
No.

Description Control Test 1 
(fermented 
protein 5%)

Test 2 
(fermented 

protein 
10%)

1. Moisture, % 7.5 7.5 7.5

2. Crude protein, % 24.0 24.0 24.0

3. Fat, % 10.0 10.0 10.0

4. Crude Fiber, % 1.7 1.6 1.7

5. Ash, % 5.2 5.7 5.8

6. Gross energy, 

MJ/kg

14.6 14.6 14.5
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Abundance profiling

The relative abundance at the phylum level is presented in 
Figure 3. Members of the Actinobacteriota phylum were reduced in 
the test protein group, while the Bacteroidota phylum showed an 
increased relative abundance (presented in yellow and purple, 
respectively, in Figure 3). Further statistical comparisons between the 
two groups demonstrated that these differences are significant 
(Figure 4). Firmicutes was the most abundant phylum detected in 
both the groups. The terms non-protein and protein corresponds to 
day 1 and day 21 diets fed to the animals.

The relative abundance of the top 10 genera, visualized in a stacked 
bar chart, shows that members of the Bifidobacterium genus (presented 
in light purple in Figure 5) has a reduced relative abundance in the 
protein diet group compared to the non-protein diet group, while 
members of the Bacteroides and Fusobacterium genera (presented in 
dark purple and dark green, respectively, in Figure 5) show an increase. 
However, statistical comparison between the two groups reveals that 
these differences are not significant (with a p-value cutoff of 0.05).

Single-factor statistical comparison 
between the test group studies

Single-factor statistical comparisons were used to determine if 
there were significant differences in the abundance of specific features 
between these groups. The results showed a significant reduction in 
the phylum Actinobacteriota (p < 0.05), but an increase in the phylum 
Bacteroidota in the protein diet group (Figure  4). No significant 
features were identified at the genus level with a p-value cutoff of 0.05.

Alpha and beta diversity profiling

No significant difference was found in the Shannon and Simpson 
alpha diversity values, along with the Chao1 richness index, between 
the two groups, at the genus and phylum levels (p > 0.05).

Principal Coordinate Analysis (PCoA) was employed to 
explore and visualize similarities and dissimilarities in the overall 
microbiota compositions of the two groups. A statistically 
significant difference in beta diversity between two groups 
suggests distinctions in the composition of the communities 
within them (p  =  0.015 at both phylum and genus level) 
(Figure  6). One of the leading indicators of a healthy gut 
microbiome is the increased richness and diversity of 
microorganisms (28). Dogs with gastro intestinal disorders have 
been reported to have lower diversity when compared to healthy 
dogs (29–32). Studies with corn fermented protein demonstrated 
good preservation of alpha and beta diversity (33). Hence, 
difference in beta diversity observed in the current study supports 
good intestinal health in the dogs fed with the fermented 
protein diets.

As canine health is influenced by diet and the gastrointestinal 
microbiome in terms of nutrient digestion and absorption (34), 
leveraging alternative, novel ingredients in the dietary supplementation 
of the pet foods without impacting their gut health is a significant 
factor. The gut microbiome harboring diverse bacteria is a cardinal 
immune and metabolic organ and evaluation of the faecal microbiome 
is the most accessible sample type for testing. Several lines of evidence 

FIGURE 1

Feed consumption data of the dogs fed with the microbial fermented protein along with the control dogs. The line profiles demonstrate the feed 
consumption (in grams) of dogs over a period of 21 days. The feed consumption data points of the control dogs (Tash1347 and Buk3850) are marked 
in dark and light green colour respectively, 5% test protein fed dogs (Annie3610, Queenie4339 and Kale5636) are marked in dark blue, cyan and navy 
blue colours respectively, 10% test protein fed dogs (Jasmine7812 and Huxley5632) are marked in bright red and brown colour, respectively. The feed 
consumption of Jasmine7812 shows a dip on both 12th and 14th day.

TABLE 6 Weight of the animals before and after the study.

Dog ID and group Initial 
weight (Kg)

Final weight 
(Kg)

Day 1 Day 21

Tash 1347 (Control −0% test protein) 20.0 20.0

Buk 3850 (Control – 0% test protein) 14.7 15.0

Annie 3610 (5% test protein) 13.1 14.5

Queenie 4339 (5% test protein) 15.2 14.5

Kale 5636 (5% test protein) 15.0 15.0

Huxley 5632 (10% test protein) 13.7 14.0

Jasmine 7812 (10% test protein) 15.8 15.9
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has demonstrated imbalances in the intestinal microflora is related to 
diseases like inflammatory bowel disease, irritable bowel syndrome, 
obesity and diabetes in humans and animal models (35–39) and are 
corroborated with the diagnosis and determining dysbiosis indices 
(40–43). Our current study demonstrates acceptance of the novel diet 
in the pet foods albeit the small sample size.

Discussion

Our observations on feed acceptance, overall health and faecal 
microbiome profiling in dogs fed diets containing proteins derived 
from greenhouse gases show that these proteins are well tolerated, 
without any digestive problems and side effects. The feed consumption 

FIGURE 2

Representative faecal score of the dogs fed with the control (Tash1347, marked in green line) and fermented protein with 5% inclusion (Annie3610 
marked in blue line) and 10% inclusion (Jasmine 7,812 marked in red line).

FIGURE 3

Relative abundance of the two groups. Members of the phyla Firmicutes, Actinobacteriota, Bacterioidota, Fusobacteriota, and Proteobacteria were 
observed. Protein group indicates animals fed with fermented protein (Day 21) and the non-protein group indicates animals fed with control diets (Day 1).
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and the faecal scores also support the acceptance of the fermented 
protein of bacterial origin in diets in dogs. Additionally, the 
microbiome profiling indicates no significant alpha diversity changes, 
indicating that the protein diet does not affect the overall richness and 
evenness of microbial community.

In terms of acceptance, throughout the study, both 5 and 10% 
protein mix were completely consumed by all the dogs indicating the 
smell and taste aspects of these sustainable protein fractions in the 
kibble mix were well accepted. This is in line with the earlier studies 
relating to acceptance of dry pet foods in dogs (44, 45). According to 
AAFCO recommendation, the minimum dietary protein requirement 
for a growing dog is 18% dry matter (DM) and 8% for an adult dog. 
Intake of fermented protein in the extruded products/kibbles can 
be considered as a good sign in the canine diets. Product appearance 
is one of the key characteristics in dry dog foods, as was found by Di 
Donfrancesco et al. (44) wherein the authors found that dry dog food 
kibble that is too light or too dark in appearance may receive lower 
overall liking scores from potential product purchasers. The colour of 
test diet kibbles used in the study were of light brown colour. In terms 
of weight changes, we observed that only a slight change in weight was 
observed in the dogs fed with both 5 and 10% protein diet. The weight 
changes were not expected for a short study duration kibble acceptance 
study (46).

The clinical observations indicated that both the diets containing 
5 or 10% of the fermented protein did not cause any impact with 
respect to general alertness, water consumption and social behavior 
providing evidence that this alternative protein source is safe. Further, 
digestive health as measured through faecal colouring and consistency 
scoring also was supportive of a well-tolerated protein fraction in the 
diet, without any alterations to the stool formation. The elevated fiber 
levels in diets containing Torula Yeast and legume proteins reduced 
dry matter and organic matter digestibility and have shown lower 

apparent fat digestibility (47). Studies demonstrate that on comparing 
soybean meal to poultry byproduct meal in extruded dog diets, 
soybean meal tended to reduce the digestibility coefficients of dry 
matter, organic matter, acid hydrolysed fat, and gross energy (48) 
reported that the inclusion of a soluble yeast cell wall reduced the 
coefficient of fat digestibility in an extruded dog diet without affecting 
any other nutrient digestibility (49). In the current study, there were 
no issues observed in terms of digestibility with the fermented protein 
fed diets in dogs.

The potential impact of the protein diet on the faecal microbiota 
was investigated in dogs fed the protein diet, with day 1 representing 
the non-protein diet and day 21 representing the protein diet. Due to 
the limited number of dogs enrolled in the study, those fed both 5 and 
10% protein diets were grouped together. There was no significant 
difference in alpha diversity between the two groups when 
investigating the Shannon, Simpson and Chao1 indexes. However, 
beta diversity analysis indicated a significant difference (p = 0.015) in 
community structure between the protein and non-protein diet 
groups, with clear separation of the clustered samples from each 
group. As described previously (50–52) the diversity of the bacterial 
community did not change after supplementation with the tested 
protein source in healthy dogs. Only a few bacterial genera differed 
significantly in relative abundance between the experimental groups. 
The results are similar to the study done with insect-based diets (house 
crickets and mulberry silkworm pupae) tested in dogs (17).

A significant reduction of the phylum Actinobacteriota in the 
dogs with protein diet group was observed. The most well-known 
Actinobacteriota are Bifidobacterium, which are homo—or 
heterolactic fermentative. Higher abundance of Actinobacteria has 
been observed in adult obese dogs, probably due to their role in the 
production of energetic SCFAs (53). In contrast to what was observed 
in the Actinobacteriota phylum, the Bacteroidota phylum showed an 

FIGURE 4

Single-factor statistical comparisons demonstrated a significant decrease in the phylum Actinobacteriota and an increase in the phylum Bacteroidota 
in the protein diet group (p < 0.05). Protein group indicates animals fed with fermented protein (Day 21) and the non-protein group indicates animals 
fed with control diets (Day 1).
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increased relative abundance in the test protein diet group. The most 
abundant genera of this phylum are Bacteroides and Prevotella (54), 
which play significant roles in human and animal gastrointestinal 
tracts and are known to reduce intestinal oxygen levels and promote 
the growth of strict anaerobic bacteria (55). Although not significant, 
members of the Bacteroides genus had an increased abundance in the 
protein diet group.

Similarly, abundance profiling showed an increase in the 
Fusobacterium genus in the protein diet group, although this was not 
statistically significant. It is worth noting that unlike in the humans, the 
Fusobacterium genus is one of the three predominant phyla composing 
the gut microbiota in adult dogs, representing around 20% of the total 
relative abundance (56). This phylum is commonly observed in healthy 
dogs (57) and is found in higher abundance in dogs and cats than in 
humans (58). Due to their ability to degrade proteins into amino acids 
and peptides (59), it is assumed that Fusobacteria are key bacteria in the 
gut metabolism of carnivorous animals (60).

Faecalibacterium and Ruminococcus belong to the Firmicutes 
phylum, which is one of the top three most abundant phyla of the gut 
microbiota, with a high diversity of species. Faecalibacterium uses 
metabolites to produce butyrate, serving as energy for enterocytes 
providing anti-inflammatory protection (61) or limiting the 

colonization of pathogens, such as Salmonella (62). Firmicutes was 
also the most abundant phylum in both the protein and non-protein 
diet groups in this study. The genus of Catenibacterium, that is part 
of the Erysipelotrichaceae family (phylum Firmicutes), was found to 
be higher in dogs fed with homemade diet, while it was decreased in 
faecal samples of dogs fed a dry kibble diet. Dogs fed a raw meat diet 
had the lowest abundances (63). A similar pattern was observed in 
this study, where Catenibacterium had low abundance in the faecal 
samples of both groups and was not among the top 10 genera detected 
which corroborates with the earlier research studies demonstrating 
their lower prevalence in the kibble diets. Blautia spp. is shown to 
have potential probiotic properties and are found to be involved in 
gut health (64, 65). Our studies also demonstrate the presence of 
these bacterial species which indicates the role of fermented protein 
in providing good gut health. Earlier reports wherein the canine diets 
fed with corn-fermented protein demonstrated that the overall 
richness and diversity of the faecal microbiota were maintained when 
compared to the traditional ingredients such as brewer’s dried yeast 
and distiller’s dried grains with solubles (33). The microbiome 
diversity in the current pilot study indicates a similar trend with good 
acceptance of the gas derived fermented protein diet and hence good 
gut health.

FIGURE 5

Relative abundance of top 10 genera detected in the two groups. Peptoclostridium, Bifidobacterium, Blautia, Megamonas, Fusobacterium, Collinsella, 
Bacteroides, Ruminococcus group of bacteria were observed. Protein group indicates animals fed with fermented protein (Day 21) and the non-protein 
group indicates animals fed with control diets (Day 1).
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Beneficial gut bacteria play a crucial part in the regulation of 
the canine immune system, which is important for the growth of 
the gastrointestinal physiological structure (66). Thus, it is 
important that canine diets provide important and balanced 
nutrients for both the host and the gut microbime (34). Pet owners 
play a significant role in determining the canine diets. Plant-based 
diets are popular choices for vegetarian dog owners and for those 
with special health concerns such as GI diseases and food allergies 
(67). On the other hand, some owners prefer meat-based which 
consists of organs, meat, and bones (50, 68, 69). Meat-based diet 
seems to be  the preferred diet by dog owners because of the 
stereotype that plant-based foods are indigestible fillers with lower 
concentrations of nutritional compounds (70). However, several 
health concerns have been raised against strictly meat-based diets 
that are nutritionally imbalanced, contaminated with heavy metal 
and excessive chronic intake has been related to toxicities across 
many species, including dogs (71). Hence, commercial pet foods are 
provided as alternative diets but might not be of high quality raw 
material (2). Considering the above factors, augmenting the canine 
diets with green house derived fermented protein seems to be a 
sustainable, cost-effective, alternative without compromising the 
gut health and palatability of the animals. Hence, the current study 
would pave way for a functional, alternative protein alternative in 
the canine diets paving new dimensions into the dietary adaptations 
in pet foods in the future.

Conclusion and future directions

Dietary protein sources in pet diets are largely sourced from 
animal byproducts and hence sustainability and societal changes 
become critical factors. The current study demonstrates that the 
microbial fermented protein source included in the canine diets is 
palatable and did not show any adverse effects on growth or welfare 
of the animals. Microbial fermented protein sources could be viable, 
sustainable solutions bringing lesser carbon footprint solution in the 
pet food sector without compromising on the quality of the nutritional 

profile. The microbiome changes with no major clinical symptoms is 
another positive sign in terms of overall digestive health of the animals.

Possible limitations of this study could be small sample size, and 
short study duration. It would have been beneficial to collect and 
analyze multiple faecal samples throughout the study for comparison. 
Also, an increase in the number of dogs enrolled in the study would 
provide more evidence of the potential impact of the protein diet on 
the faecal microbiota. Multicentered, large cohort studies coupled with 
biochemical, molecular and clinical parameters in future would help 
in validating and delineating the mechanisms of the fermented protein 
in the canine diets. For any study evaluating the impact of dietary 
intervention, there is concern regarding the study’s duration and if it is 
long enough for adaptation. However, Lin et al. (72) reported that the 
microbiome of dogs stabilized 6 days after dietary intervention, 
suggesting that the 21-day adaptation in the current study should have 
been sufficient. Of note, the methods in the current study are similar 
to those previously utilized to evaluate the impact of dietary 
intervention on the faecal microbiota of dogs. Extended, long term 
studies would help in understanding the mechanism of the fermented 
protein in canine diets and warrants further research to delineate the 
long-term potential health implications of this novel protein source in 
pet foods. Considering the sustainability factors such as land and water 
use, the fermented protein is perennial source which is unaffected by 
any of the climatic factors. Leveraging fermented protein used in this 
study helps in achieving carbon negative and climate positive outcomes 
which in deed would help in overall reduction of the carbon footprint 
which is the critical need of the hour. With ongoing advancements in 
biology, fermentation technology, and process engineering, the 
commercial viability and scalability of fermented proteins are steadily 
improving, paving the way for their integration into commercial 
pet diets.

Data availability statement

The sequence data used for analysis is available in NCBI under 
BioProject accession Number PRJNA1116051.

FIGURE 6

Principal coordinates analysis (PCoA) of gut microbiota composition in the two groups (left panel: at phylum level, right panel: at genus level). Distance 
method: Bray-Curtis index, Statistical method PERMANOVA’. p-value = 0.015. Protein group indicates animals fed with fermented protein (Day 21) and 
the non-protein group indicates animals fed with control diets (Day 1).
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