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Idiopathic epilepsy (IE) is the most common neurological disease in dogs. 
Approximately 1/3 of dogs with IE are resistant to anti-seizure medications (ASMs). 
Because the diagnosis of IE is largely based on the exclusion of other diseases, it 
would be beneficial to indicate an IE biomarker to better understand, diagnose, and 
treat this disease. Diffusion tensor imaging (DTI), a magnetic resonance imaging 
(MRI) sequence, is used in human medicine to detect microstructural biomarkers 
of epilepsy. Based on the translational model between people and dogs, the use 
of DTI should be investigated in a veterinary context to determine if it is a viable 
resource for detecting microstructural white matter abnormalities in the brains 
of dogs with IE. As well, to determine if there are differences in white matter 
microstructure between dogs who are responsive to ASMs and dogs who are 
resistant to ASMs. Using DTI to better understand neurostructural abnormalities 
associated with IE and ASM resistance might help refine diagnostic approaches 
and treatment processes in veterinary medicine.
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1 Introduction

Epilepsy is one of the most common neurological diseases in dogs (1). It reduces quality 
of life and shortens a dog’s lifespan (1–5). In veterinary medicine, idiopathic epilepsy (IE) is 
diagnosed indirectly on criteria that excludes evidence of alternative diseases (6). Therefore, 
finding biomarkers that could further narrow down the diagnosis of IE would be clinically 
useful. One option, diffusion tensor imaging (DTI), is used in human medicine to help 
researchers and doctors better understand brain connectivity and diseases that affect white 
matter such as epilepsy in people (7–21). Epilepsy arises naturally in both people and dogs; 
strong arguments exist as to the similarity of the disease between the two species (22–26). 
Thus, DTI may offer an opportunity to detect microscopic neurostructural abnormalities in 
dogs that support the diagnosis of IE and improve treatment planning. Furthermore, 
DTI-detected abnormalities may partially explain why some dogs are responsive to anti-
seizure medications (ASMs) while others are resistant as differences have been reported in a 
couple of clinics trials on people (14, 19). The use of DTI for investigating white matter 
abnormalities in dogs with IE is in the early stages of exploration (27). In this narrative review, 
background information will be presented on epilepsy and DTI, and approaches for DTI use, 
as mostly seen in human medicine, will be explored in the context of veterinary medicine.
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1.1 Epilepsy

A seizure is a transient and abnormal increase in synchronization 
between neurons. Seizures are epileptic when two or more episodes 
occur at least 24-h apart (28). Seizure types can be  described as 
generalized, focal, or unknown based on their cortical origin. The 
term ‘generalized seizure’ refers to synchronized neuronal activity 
originating in networks that engage both hemispheres. A ‘focal seizure’ 
refers to seizure activity originating in one hemisphere. Focal seizures 
can evolve to bilateral tonic–clonic seizures when activity progresses 
to generalized activity within a seizure episode. Lastly, unknown 
seizure type occurs when the hemispheric location of onset of seizure 
activity is unknown (28, 29). Epilepsy is an enduring predisposition 
to the occurrence of epileptic seizures. In people, it is classified by 
seizure type, with implications as to comorbidities, therapeutic 
recommendations, and outcomes (30, 31).

The focus of the present review is on canine IE; in other words, 
epilepsy with a known or suspected genetic influence or an unknown 
cause (6, 28). Similarly, in human medicine, when genetics are known 
to play a role, IE is referred to as genetic epilepsy. Human medicine 
has a wider range of defined epilepsy types and syndromes within IE 
(30, 31). Veterinary medicine is working towards the development of 
syndrome specificity within IE (32, 33).

There are three tiers of confidence for diagnosing IE in dogs. Tier 
I is used when two or more epileptic seizures occur at least 24 h apart, 
signs of epilepsy appear between approximately 6 months and 6 years 
of age, neurological examination during interictal periods is normal, 
and baseline blood analysis and urinalysis are unremarkable. Tier II 
confidence is used when Tier I criteria is fulfilled and no underlying 
causes are detected using additional blood tests, urinalysis, bile acids 
tests, cerebrospinal fluid analysis, and magnetic resonance imaging 
(MRI) of the brain (6). Although standard MRI sequences for the 
epileptic canine brain are expected to be unremarkable, a few reports 
exist of hippocampal atrophy or other qualitative or quantitative 
abnormalities on routine MRI sequences (34, 35). However, it is 
important to differentiate between post-ictal and interictal 
abnormalities (36). Cases of post-ictal changes, mainly localized to the 
piriform lobe, temporal lobe, cingulate gyrus, and hippocampus, have 
shown a marked reduction to full resolution on follow-up MRIs (36–
38). Interictal parenchymal abnormalities are more common among 
older dogs with IE in regions such as the frontal lobe, piriform lobe, 
and occipital lobe (39). Tier III diagnostic criteria include all criteria 
from Tier II plus evidence of seizure activity using 
electroencephalography (EEG). While a standard protocol for 
electrode placement exists in human medicine, veterinary medicine 
is still working towards verifying electrode placement for adequate 
coverage of the superficial cortical layer in dogs (6, 40–44). Even so, 
EEG data of an ictal event or interictal epileptogenic patterns still 
offers the highest level of confidence in the diagnosis of IE (6). This 
has its challenges as there is a lower likelihood of capturing an ictal or 
interictal electrographic event in dogs with less frequent seizures (41). 
Having a microstructural marker that is not reliant on real-time events 
during neuroimaging would provide another method for obtaining 
diagnostic confirmation during interictal periods.

1.1.1 Drug resistant epilepsy
While most individuals with IE are successfully treated using 

ASMs, approximately 25 to 35% of people and dogs have drug resistant 

epilepsy (DRE) (45–50). The International League Against Epilepsy 
defines DRE as the failure to reach seizure freedom using two or more 
ASMs (51). In clinical trials for veterinary medicine, DRE is often 
referred to as the inability to reduce seizure frequency by at least 50% 
using two or more ASMs (45–48, 52, 53). The more ASMs being taken, 
the higher the probability of experiencing unpleasant adverse effects 
(54). While people might verbally report adverse effects, veterinarians 
must rely on caregiver observations, behavioral signs, and 
physiological signs to detect side effects in dogs (6, 53). Therefore, 
detecting adverse effects is more difficult in dogs than in people. One 
example of a polytherapy adverse effect that may go unnoticed in dogs 
versus people is cognitive dysfunction (8). While alternatives to 
polytherapy are being explored, the overall task of treating and 
controlling DRE remains a big challenge for both species (3, 53–55).

1.2 Diffusion tensor imaging (DTI)

Diffusion tensor imaging is an MRI sequence based on an 
algorithmic model. It incorporates data from diffusion weighted 
images (DWI) taken in multiple planes to form a three-dimensional 
image. Diffusivity of water molecules is used to highlight structural 
connectivity patterns of large white matter tracts (Figure  1) (11). 
Diffusion patterns in the brain are dependent on the density, 
permeability, and the direction of axons, large molecules, 
and microstructures.

FIGURE 1

A diffusion tensor image of a dog’s brain. Tractography is used to 
predict fiber tract direction which is represented by color. Created 
with General Electric AW VolumeShare 7.
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Diffusion can be referred to as isotropic or anisotropic (Figure 2). 
Isotropic diffusion is the movement of molecules in an outwards and 
spherical direction in the absence of structural barriers. The mean 
magnitude of isotropic diffusion is measured using an apparent 
diffusion coefficient (ADC). The mean diffusivity (MD) is calculated 
using ADC values in three orthogonal or more directions. Higher 
values for these indices are related to increased extracellular space, less 
structural organization, and fewer axons (11, 21). Anisotropic 
diffusion refers to the tracking of water molecules within and along 
densely packed axonal tracts, i.e., the parallel movement of water 
molecules. Diffusion tensor imaging uses the magnitudes of multiple 
ADC values in three or more planes to measure the proportion of 
fractional anisotropy (FA) within a region of interest (ROI). A higher 
FA value indicates structural organization and a dense region of 
parallel axons. Dense regions of parallel axons make up large white 
matter tracts (11, 21, 56).

Diffusion indices can be measured in segments of tracts, tracts, 
and whole brain white matter. Connectivity indices are used to 
structurally or functionally analyze networks. Quantitative 
information on network structure and function can be extracted from 
DTI using mathematical approaches such as graph theoretical analysis 
and independent component analysis (14, 19, 57, 58). Indices 
calculated from graph theoretical analysis highlight the strength, 
length, and type of connections being made between regions of the 
brain (19, 58). Independent component analysis allows for the 
breakdown and buildup of spatiotemporal activity of each voxel (14, 
57). Both are useful for understanding brain connectivity and 
differentiating between normal and abnormal structure or function 
(14, 19, 57, 58).

Regardless of whether segments, tracts, whole brain white matter, 
or networks are used as ROIs, each method has benefits and pitfalls 
(59–61). Segments of white matter tracts allow the selection of regions 
with lower levels of crossover but are limited by a smaller number of 
voxels. Conversely, thin slices on image acquisition with zero spacing 
between slices could be used to increase the number of voxels being 
selected. Crossover refers to fiber tracts going in different directions 
within the same voxel and is inevitable when analyzing tracts and 
whole brain white matter (60, 61). Qualitatively, the overlap from 

crossing fibers makes it hard to visually differentiate tracts using FA 
maps, color orientation maps, and tractography. As FA is a vector, and 
the magnitude of its value is dependent on direction, when tracts cross 
because they are going in different directions, FA values are cancelled 
out (59–61).

Tracts and whole brain white matter can also be analyzed using 
tract based spatial statistics (TBSS); a reliable method for calculating 
accurate FA values. This method requires distorting, or transforming, 
each participant’s brain images to fit a standard anatomical reference; 
because of the varying skull morphology in dogs, this task can 
be challenging and labor intensive but is possible for mesocephalic 
dogs using a brain atlas space (62). Network measures account for the 
broad impact of epilepsy but may miss subtle nuances. Furthermore, 
functional connectivity measures are limited to resting state networks, 
such as the default mode network, in dogs as they almost always 
require anesthesia for MRI scans. Resting state networks refer to 
baseline connections between different functional regions of the brain. 
These networks highlight brain activity that does not require 
awareness to elicit measurable changes (63–66). However, it is possible 
that resting state networks are being functionally altered by anesthesia 
(64–66).

2 Diffusion tensor imaging in people 
with epilepsy

People with various types of epilepsy show a trend of decreased 
anisotropic diffusivity and/or an increase in isotropic diffusivity. 
Examining patients with generalized genetic epilepsy (GGE), 
decreased FA and increased MD was found in the corpus callosum, 
corticospinal tract, superior and inferior longitudinal fasciculus, and 
supplementary motor areas (12). Similarly, low FA and high 
perpendicular diffusivity (an additional measurement of isotropic 
diffusivity) were seen in the posterior corpus callosum, external 
capsule, internal capsule, and anterior corpus callosum of patients 
with temporal lobe epilepsy (TLE) (7). Temporal lobe epilepsy is a 
common form of focal epilepsy in people where activity originates 
in the temporal lobe (67). Results from these studies imply that the 

FIGURE 2

Illustration of anisotropic and isotropic diffusion in selected regions of interest in the brain. (A) Anisotropic diffusion observed in the corpus callosum. 
Water molecules are restricted by dense axons and diffuse in a parallel and elongated fashion. (B) Isotropic diffusion observed in the lateral ventricle. 
Water molecules move in an outwards and spherical manner in the absence of structural barriers. Created with BioRender.com.
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white matter regions in those with GGE and TLE have more 
extracellular space and less dense axonal tracts. These studies, 
among others, highlight the widespread impact that GGE and TLE 
can have on the brain. As well, they feed into the growing consensus 
that epilepsy influences or involves structures outside of 
epileptogenic zones, the predicted origin of seizure activity (7, 12, 
17, 68–71).

While white matter structures outside of epileptogenic zones show 
reduced FA in people with epilepsy, the closer to the epileptogenic 
zone, the larger the FA reduction. This means there tends to be lower 
FA in the hemisphere containing the epileptogenic zone (7, 15, 18). 
Similarly, an ipsilateral reduction in FA is seen in the hippocampal-
thalamic pathway of individuals with TLE who experience generalized 
seizures when compared to controls (10). Another study found an 
increase in the ADC of the hippocampus located in the hemisphere 
that initiates seizure activity in those with IE (72). This suggests 
asymmetry between hemispheres is detectable and should 
be considered a potential variable in DTI studies of IE. It also suggests 
that the more brain regions are exposed to seizure activity the more 
effects are seen, meaning seizure frequency should be considered also 
as a variable that influences brain microstructure.

People with TLE and hippocampal sclerosis (TLE-HE), TLE, and 
GGE, show a reduction in FA in multiple white matter regions with 
the lowest FA values in those with TLE-HE (71). Hippocampal 
sclerosis refers to the loss of cells within the hippocampus (70). Age of 
onset and duration with epilepsy is negatively correlated with FA in 
people with TLE but to a greater degree in those with TLE-HE (7, 71). 
This implies that the age of onset may influence the extent to which 
epilepsy changes the structural integrity of regions of white matter that 
are still developing. The progressive decrease in FA seen in those with 
TLE, in combination with the greater extent of damage and higher 
correlation between duration and FA reduction in patients with 
TLE-HE, could imply quantitative changes are detectable prior to 
visual detection of structural abnormalities in those with IE.

Functional and structural connectivity abnormalities of neuro-
networks are detected in people with IE (14, 19, 20). Functionally, a 
decrease in connectivity in the default mode network is reported in 
people with ASM-resistant generalized IE when compared to healthy 
controls (14). Independent component analysis identified functional 
connectivity changes in people with juvenile myoclonic epilepsy 
(JME). There was enhanced connectivity between the prefrontal 
cortex and the motor cortex, as well as between the supplemental 
motor areas and lateral and caudal regions of the brain. Supplemental 
motor areas also showed a decrease in connectivity with rostral 
regions of the brain (20). Juvenile myoclonic epilepsy is a prominent 
IE syndrome in humans that shares parallels with JME in Rhodesian 
Ridgeback dogs (20, 32, 33).

In terms of structural connectivity, there are differences in whole 
brain networks between people who are good responders versus poor 
responders to ASMs. Newly diagnosed people with focal epilepsy, 
naïve to ASMs, had DTI scans prior to determining if they were good-
responders to ASMs (IE+) or poor-responders to ASMs (IE-). To meet 
the criteria for IE+, participants needed to become seizure free for 
6 months or more. The mean assortative coefficient, calculated using 
graph theoretical analysis, was positive for IE+ and negative for IE-. 
In other words, good responders had more connections between 
similar brain regions and poor responders had more connections 
between dissimilar brain regions (19). This provides evidence of 

microstructural differences in white matter between people who are 
responsive versus resistant to ASMs.

This body of literature exemplifies a wide range of abnormalities 
that can be detected using DTI in various presentations of epilepsy 
(7–21, 68–73). Given the similarities between epilepsy in people and 
dogs, research from human medicine provides a methodological 
starting point for what should be explored in veterinary medicine. 
Conversely, the translational value of canine studies means that they 
can serve as a valuable source of insights for human medicine (22–26).

3 Translation of DTI literature in 
people to dogs

People and dogs have similar neuroanatomy and, further, share 
many aspects of epilepsy such that each could be considered a model 
for the other (22–26). For example, because the proportion of those 
with DRE is similar in people and dogs, it is possible that the 
mechanisms responsible for drug resistance are similar between 
species (3, 9, 19, 53, 63). More research would be needed to factually 
support this statement. As DTI is a relatively new technique used to 
analyze connectivity within the brain, and most published research on 
DTI and epilepsy has been studied in people, trends from human 
medicine provide a framework for designing DTI studies for dogs 
with IE (7, 11, 14, 17, 19, 74).

Conversely, there may also be limits to the transferability of data 
between human medicine and veterinary medicine. For example, 
there is a significant difference between the connectivity of the 
anterior cingulate cortex and posterior cingulate cortex when 
comparing neurotypical people and dogs. More specifically, the dogs 
had lower anisotropic diffusion between their anterior and posterior 
cingulate cortex (57). Epilepsy in people has been correlated with 
lower anisotropic diffusion in multiple white matter structures; thus, 
using human medical literature to interpret canine data may result in 
inaccurate conclusions (14, 57, 63). Therefore, overall trends from 
human medicine should be considered but actual FA values of ROIs 
are not reliable measures to compare between the species.

3.1 Selecting regions of interest for dogs 
with idiopathic epilepsy (IE)

Epilepsy affects the microstructure and function of white matter 
tracts and influences the connectivity patterns within and between 
neuronal networks. Based on this, it is reasonable to use either 
segments of tracts, tracts, whole brain white matter, or networks as 
ROIs (7–21, 68–72).

Segments of white matter tracts investigated in people with IE 
include the corpus callosum, cingulum, external capsule, internal 
capsule, mammillothalamic tract and hippocampus (7, 12, 17, 69–73, 
75). Depending on breed, MRI quality, and software constraints, the 
external capsule and mammillothalamic tract may be too small for 
voxel selection in dogs. However, the corpus callosum, cingulum, 
internal capsule and hippocampus are prominent structures that could 
be used as ROIs for dogs (27, 56, 76).

Whole tracts studied in people with IE that could be used as ROIs 
in dogs include the corticospinal tracts, superior longitudinal fasciculi, 
interior longitudinal fasciculi, and hippocampal-thalamic pathway 
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(10, 12, 17, 74). In dogs, the corticospinal tract is hard to differentiate 
from the corticobulbar and corticopontine tracts meaning these may 
need to be analysed together (56).

The default mode network and overall brain networks could 
be used as ROIs when studying functional and structural connectivity 
(14, 17, 19). While other networks may be involved in epilepsy, such 
as the thalamocortical network or basal ganglia, these regions would 
require functional MRI techniques and unanesthetized dogs, making 
for a more complex experimental protocol and timeline (57, 63, 77).

4 Diffusion tensor imaging in dogs

As DTI is a relatively new technique, only a few studies have 
demonstrated the feasibility of its use in a veterinary context (27, 56, 
63, 78–81). Extensive mapping of separate white matter tracts in 
healthy dogs using DTI has been verified with cadaveric dissections 
and anatomy textbooks, creating atlases. Such atlases could be used to 
compare tracts between healthy dogs and dogs with IE (56). Other 
atlases focused on parcellation of subcortical and cortical grey matter 
regions. While individual tracts and structures of white matter were 
not parcellated, segmentation of whole white matter was defined (62, 
79, 82–86). Grey matter abnormalities are less of a focus in DTI but a 
significant increase in ADC in the piriform lobes of dogs with IE has 
been reported (87). Meaning, parcellation of these grey matter regions 
could be useful for DTI research. Furthermore, identifying both grey 
and white matter abnormalities comes into play in regions like the 
hippocampus, a portion of the piriform lobe with a mixed composition 
of grey and white matter. In terms of whole brain white matter, at least 
one of these atlases are being used to standardize participants’ brains 
for TBSS (62).

An increase in isotropic diffusivity and decrease in anisotropic 
diffusivity in the hippocampus of people with TLE without 
HE provides evidence that quantitative imaging may precede visually 
recognizable structural abnormalities (71, 72). Similarly, in a study on 
dogs with IE, there was an increase in hippocampal atrophy, from 12 
to 36%, when calculated visually versus using the hippocampal 
asymmetry ratio (35). Hippocampal atrophy is sometimes present on 
MRI scans in relation to IE which is a discrepancy with IVETF tier II 
criteria stating that there are no structural brain abnormalities in dogs 
with IE (6, 34). The hippocampal asymmetry ratio is dependent on 
volumetric measures. Therefore, other quantitative measures, such as 
diffusion indices, may also be  sensitive to microstructural 
abnormalities in the brains of dogs with IE.

Asymmetry between hemispheres may be a feature to explore in 
dogs with IE. Notably, a certain amount of FA asymmetry is to 
be expected in some regions based on what is reported in people. For 
example, the left corticospinal tract tends to have higher FA than the 
right corticospinal tract in healthy people (74). The corticospinal tract 
has been reported as an ROI for FA reduction in people with IE (12). 
Therefore, a thorough understanding of asymmetry in healthy 
individuals would need to be  investigated prior to making any 
conclusions related to IE in dogs.

The other route for studying microstructural and functional 
abnormalities in dogs with IE is to look at DTI formulated probabilistic 
representations of neuro-networks (14, 19, 57, 58). Graph theory 
analysis could be  applied to DTIs in dogs with IE, using 
methodological frameworks published in human medicine, to enable 

the investigation of structural abnormalities of connectivity (19). 
Functionally, the anterior region of the default mode network in dogs 
with IE shows an increase in connectivity (57). In this example, results 
differed from a similar study in people with general IE (14). While 
these results are contradictory, it was theorized that there may be a 
compensatory increase in connectivity prior to degradation that 
occurs over the course of the disease (57). The same concept was 
discussed in a study that found an increase in FA in the frontal lobe of 
newly diagnosed and treatment naïve children with generalized 
IE (16).

4.1 Diffusion tensor imaging in dogs with IE

Only one article has looked at DTI in dogs with IE. Notably, the 
authors selected a couple ROIs that have been found to have reduced 
FA in people with epilepsy, namely, the corpus callosum and cingulate 
white matter. They reported a significant decrease in FA in the 
cingulate white matter of dogs with IE. Tract based spatial statistics of 
this cingulate white matter did not show the same significant decrease 
in FA which may be because TBSS does not highlight subtle 
microstructural differences (27). These findings could be expanded by 
using a larger population and additional ROIs.

5 Additional variables to consider for 
DTI research in dogs with IE

Breed and age affect brain microstructure in canines and sex and 
age affect brain microstructure in humans (7, 17, 81, 88–92). 
Morphological variability exists between dog breeds, where specific 
behaviors correlate with structural differences in the brain (89). 
Moreover, human studies have shown differences in brain diffusion 
and connectivity between sexes. For example, one study reports that 
males have higher FA in multiple white matter regions when compared 
to females (91). Another large study found males have more 
intrahemispheric connections while females have more 
interhemispheric connections (90). In terms of age, neuronal 
degradation in people, which is reflected by a decrease in FA, generally 
starts in the anterior region of the brain and continues posteriorly 
(92). Therefore, age at scan may negatively correlate with FA in certain 
regions of the brain (7, 81, 92). In relation to dogs, Barry et al. (81) 
studied the influence of age on white matter FA in a sample of 29 
healthy mesaticephalic dogs. The dogs were divided into two age 
categories: the young group included dogs under the age of 7, and the 
old group included dogs aged 7 or older. They found a significant 
decrease in FA in multiple white matter regions, including the corpus 
callosum, in the old group when compared to the young group (81). 
Note, a decrease in FA in relation to age is not noticeable before the 
age of 30 in people (88); meaning, a pattern may not be evident in a 
sample of mainly young dogs. Overall, breed, sex, and age should 
be  considered when determining the relationship between white 
matter microstructure and IE in dogs.

Volume is another factor to consider when studying IE in dogs. 
While volume is not the focus of this review, volumetric data is 
simultaneously provided when selecting ROIs from DTIs for diffusion 
analyzes (93). Nuyts et al. (17) conducted a meta-analysis on structural 
abnormalities associated with generalized IE in people. They reported 
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a statistically significant reduction in volume in the supplemental 
motor area, insula, thalamus, putamen, caudate, hippocampus, 
anterior cingulate cortex, and left pallidum. Also, the medial frontal 
gyrus was larger in the right hemisphere of those with generalized IE 
compared to controls (17). Furthermore, Milne (94) reported that 
dogs with IE had a widespread reduction in cerebral cortical volume 
when compared to healthy controls (94). While volume of structures 
can vary between individuals, overall volumetric patterns and ratios 
are worth investigating as all the information needed would already 
be obtained (17, 89).

6 Discussion

The question of whether DTI is a viable resource for detecting 
microstructural white matter abnormalities in the brains of dogs with 
IE needs further investigation. Comparisons using DTI indices have 
yet to be conducted between dogs with IE+ and IE−. A prospective 
case–control cohort study design would be optimal for determining 
whether there are microstructural differences between healthy dogs, 
IE+, and IE−. Healthy dogs and dogs with newly diagnosed IE, naïve 
to ASM treatment, could receive an initial scan and a follow up scan 
12 months later. During these 12 months, dogs with IE would 
be treated with ASMs and categorized as ASM responsive or resistant 
following IVETF definitions. Diffusion indices and structural 
connectivity measures could be blindly analyzed. Comparisons could 
be made (1) between neurotypical dogs and dogs with IE to control 
for confounds; (2) between the initial scans of dogs that are resistant 
versus responsive to ASMs to determine the presence of biomarkers; 
(3) as well as between and within arms over time to account for 
additional confounds and compare progressional changes in diffusion 
and connectivity of the brain.

The first comparison controls confounds such as breed, sex, 
and age. The second comparison would be useful for determining 
whether microstructures detected by DTI could be  used as 
biomarkers to help predict ASM resistance; in turn, adding more 
specification to diagnoses and allowing for more informed 
treatment planning. Structural connectivity has been compared 
between people who are good versus poor responders to ASMs 
(12). Assortative connectivity was associated with good 
responders and disassortative connectivity was associated with 
poor responders. With the similarities between human and 
canine epilepsy, these results may translate to dogs. The range of 
structural networks that have been explored using DTI in humans 
is vast, whereas the most practical functional networks to 
investigate in dogs with IE are resting state networks (14, 19, 57, 
63–66). In addition to network measures, anisotropic diffusivity 
in segmentations of tracts, tracts, or whole brain white matter 
could be investigated. Segments of tracts previously implicated in 
human IE that are translatable to dogs include the corpus 
callosum, cingulate gyrus, internal capsule, and hippocampus. 
Furthermore, tracts include the corticospinal, corticobulbar, and 
corticopontine tracts, the superior and inferior fasciculi, and 
hippocampal-thalamic pathway (7, 10, 12, 17, 69–71, 73–75). If 
diffusion indices are investigated, Figley et al. (95) emphasizes 
the importance of using multiple measures to validate FA 

findings. This is because the ratio of neurons going in the 
principal direction is being calculated, not overall density of 
fibers within a voxel. For instance, FA could be higher in an area 
with fewer parallel fibers than in an area with densely packed 
fibers going in multiple directions. Also, damaged white matter 
may not result in a change in FA if fibers in all directions are 
equally damaged; this is because the ratio between the fibers 
going in different directions would remain the same (95). 
Furthermore, histological findings suggest that ADC, an isotropic 
diffusion index, is a better measurement of myelination than FA, 
as FA measures myelination among other microstructural 
constraints of water diffusion. Different diffusion indices offer 
some overlap and some variation in information (95–97). 
Therefore, more detailed information can be  obtained using 
multiple diffusion indices when studying IE.

Thirdly, asymmetry comparisons over time between 
hemispheres should be made as differences have been exemplified 
in people and dogs with IE (7, 15, 18, 35, 71, 73). More importantly, 
it would provide information about the progression of changes in 
ASM responsiveness versus resistance in patients. As well, act as a 
within control measure to gain pilot data for future investigations 
on additional factors that are potentially influencing microstructural 
change such as number of ASMs being taken, ASM type, seizure 
frequency, and seizure type.

7 Conclusion

Research is building on evidence of microstructural 
abnormalities in dogs with IE from DWI, volumetric studies, and 
one DTI study (27, 35, 87, 94). Functional abnormalities in the 
default mode network of dogs with IE have been identified (57). 
Further investigations will be needed into anisotropic diffusivity 
and structural connectivity measure in dogs with IE. While DTI 
is a useful tool to investigate brain abnormalities related to 
epilepsy in people, findings from human medicine are not always 
transferable to veterinary medicine (7, 11, 12, 14, 17, 19, 57, 73). 
On this front, human medicine is ahead of veterinary medicine 
and provides a valuable framework to guide veterinary research. 
In turn, veterinary medicine may provide valuable information for 
human medicine (22–26). There are many types of ROIs and 
measures that could be used, and each one comes with benefits 
and limitations. As well, confounds such as breed, age, sex, 
asymmetry, ASM specifications and seizure or epilepsy type 
specifications would need to be considered. In tandem with other 
diagnostic techniques, discoveries using DTI could lead to more 
specific diagnoses and targeted treatments for dogs with IE (12, 
17, 19, 32, 33, 57, 95, 97).
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