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Introduction: Infection with liver flukes (Opisthorchis viverrini) is partly attributed

to their ability to thrive in sub-basin habitats, causing the intermediate host to

remain within the watershed system throughout the year. It is crucial to conduct

spatial monitoring of fluke infection at a small basin analysis scale as it helps in

studying the spatial factors influencing these infections. The number of infected

individuals was obtained from local authorities, converted into a percentage, and

visually represented as raster data through a heat map. This approach generates

continuous data with dependent variables.

Methods: The independent set comprises nine variables, including both vector

and raster data, that establish a connection between the location of an infected

person and their village. Design spatial units optimized for geo-weighted

modeling by utilizing a clustering and overlay approach, thereby facilitating the

optimal prediction of alternative models for infection.

Results and discussion: The Model-3 demonstrated the strongest correlation

between the variables X5 (stream) and X7 (ndmi), which are associated with

the percentage of infected individuals. The statistical analysis showed t-statistics

values of−2.045 and 0.784, with corresponding p-values of 0.016 and 0.085. The

RMSE was determined to be 2.571%, and the AUC was 0.659, providing support

for these findings. Several alternative models were tested, and a generalized

mathematical model was developed to incorporate the independent variables.

This new model improved the accuracy of the GWR model by 5.75% and

increased the R2 value from 0.754 to 0.800. Additionally, spatial autocorrelation

confirmed the di�erence in predictions between the modeled and actual

infection values. This study demonstrates that when using GWR to create spatial

models at the sub-basin level, it is possible to identify variables that are associated

with liver fluke infection.
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1 Introduction

OV infection is endemic in Southeast Asia, particularly

along the Mekong Basin, which includes Thailand, Lao PDR,

and Cambodia (1–4), where it is estimated that nine million

individuals are infected. Transmission to humans and other

animals occurs through the consumption of uncooked cyprinoid

or white-scale freshwater fish containing the infective stage

metacercariae. Following infection, OV persists in the bile duct

in the absence of treatment. Numerous studies have established a

strong correlation between chronic infection and bile duct cancer,

specifically cholangiocarcinoma (CCA) (5–8). The International

Agency for Research on Cancer has classified OV as a group

1 agent, carcinogenic to humans. Thailand reports the highest

CCA incidence globally, with estimates ranging from 93.8 to

317.6 cases per 100,000 person-years (5, 9–11). Nevertheless,

OV infection is recognized as a neglected and underestimated

disease on a global scale. Severe liver fluke infections have

been discovered in Ponna Kaeo district, Sakon Nakhon province,

Thailand. The liver fluke, Opisthorchis viverrini, is responsible

for causing cholangiocarcinoma (CCA) (12–14). Thailand has the

highest prevalence of bile duct cancer cases due to liver fluke

infection (5). This infection occurs when raw fish, contaminated

with infectious larvae, is consumed, along with the widespread

consumption of semi-raw or raw seafood. Fluke infections have

also been reported from fermented fish products (15). Each year,

Sakon Nakhon Hospital identifies nearly a thousand new cases of

CCA. Despite knowing the primary risk factors for O. viverrini

infection, the incidence of CCA has not decreased in the past

decade (16, 17). The prevalence of CCA in Thailand’s four main

regions—Sakon Nakhon, Phrae, Roi-Et, and Nong Bua Lamphu—

remains unknown (12, 18, 19). Individuals with a high severity of O.

viverrini infection (>6,000 eggs/g. feces) have a 14.1-fold increased

probability of developing CCA compared to those without the

infection (20). Approximately 10% of people with O. viverrini

infection progress to CCA, leading to significant health crises in

the region (21, 22). The 5-year survival rates for patients with

intrahepatic, distal extrahepatic, and hilar CCA who undergo

surgery are 22–44, 27–37, and 11–41% respectively, according to

Hasegawa et al. (23).

The largest natural water contact zone in the northeast is

located near the boundary of the Nong Han subdistrict due to the

unique topography of the area. The physical characteristics of the

swamp make it a significant natural water source that remains full

at all times. This is because it is fed by multiple streams along the

shoreline, making it an essential source of food for the locals. Fish,

which is a major protein source for people in the watershed, is

consumed raw or cooked with herbs, giving it a delightful sweet,

sour, and spicy flavor (14, 24). As a result, residents living near

the river basin typically include fish in every meal. Preliminary

screening results from 2019 to 2021 indicate that only a small

percentage of people have contracted liver fluke (12). Moreover,

research on fish liver fluke infection prevalence (contagious larvae)

has shown that the Sakon Nakhon province has an infection rate

of 33.33% (21). A study conducted in 2016–2017 on the density of

contact larvae in fish found that there were 10–20 metacercaria per

kilogram of fish (20). As a result, Sakon Nakhon province continues

to experience outbreaks of liver fluke, as the feces containing the

parasite’s eggs may contaminate water sources and lead to recurring

illnesses and an ongoing cycle of infection.

The use of geographically information system (GIS) knowledge

as an analytical tool is particularly valuable in studying liver fluke

infections through remote sensing information systems. Remote

sensing (RS) derived from satellite imagery allows for in-depth

analysis of the likelihood and distribution of liver flukes. This

analysis can involve various indicators, such as the standardized

vegetation index, soil moisture index, soil cover index, and other

indices that may be associated with the presence of liver fluke

intermediates (22, 25).

Many studies have used spatial statistics to investigate the

correlation between geographicallyal factors and liver fluke

infection (26). However, there have been conflicting results and

inconsistencies in the raster data due to the analysis of large areas

in some studies (22, 27). In contrast, other studies (28–30), have

focused on creating geographically-weighted regression (GWR)

models in smaller area units for hydrological factor analysis, which

have yielded high R2 values in all models. Combining proper spatial

modeling with mathematical models can improve the accuracy of

linear models, as demonstrated in a study by Sangpradid (31).

There is also a study of Littidej et al. (32) in concerning the creating

one of the independent variable in areas where the density of the

dependent variable is similar comparable.

However, the principles of geo-statistics (33), and, specifically,

the GWRmodelingmethod require the creation of sub-spatial units

(28), such as sub-basins. These sub-basins are defined from the

flow boundary of the sub-basin to the modeling control boundary,

and they are necessary in accurately analyzing the numerous

indices that must be constructed as independent variables. As

stated by Lu et al. (34), this makes GWR models effective in

forecasting and understanding spatial correlations. To create spatial

models for studying relationships in small areas, like sub-basin

levels (35), it is essential to use the appropriate models and tailor

the sub-area units to the distribution of data and dependent

and independent variables. Relying solely on OLS models in

independent multivariate analysis often leads to low accuracy due

to the many independent elements that contribute to the model’s

variability. However, in this study, GWR modeling was used

to examine the association between a collection of independent

variables and the proportion of infections prior to OV. Previous

spatial modeling research did not incorporate GWR models or

sub-spatial unit boundaries in small watershed systems to detect

liver fluke infections. This study aims to identify the independent

variables involved in spatial infections and accurately model them

using a limited collection of connected independent variables

through GWRmodeling.

Therefore, effective management of the sub-basin level can

ensure protection, as long as it can be demonstrated that the

spatial distribution of each parasite’s features is significant within

each sub-basin unit (36). For example, by disrupting the mollusc

host cycle, we can promote the wellbeing of populations and

prevent future diseases, resulting in reduced community impact

and medical expenses.

Based on previous research, this study discovered the following

guidelines for utilizing the model: A spatial model was created
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to examine the spatial characteristics of liver fluke infection, with

two main objectives: 1. analyzing the spatial factors linked to

human liver fluke infection based on sub-basin boundaries, and

2. developing an alternative model to enhance the effectiveness of

preventive public health management in order to lower the risk of

liver fluke infection in humans.

2 Materials and methods

2.1 The study area

This study developed a prototype model in the upper

northeastern region of Thailand, specifically in Sakon Nakhon

Province. The model concentrated on the district where the river

outlet connects to the Mekong River. Phon Na Kaeo district in

Sakon Nakhon province shares its borders with Kusumal district

to the north. To the east, it is bordered by Pla Pak district and

Wangyang district, while to the south it borders Khok Si Suphan

district, Mueang Sakon Nakhon district, and Wangyang district.

On the west side, it shares its border with Mueang Sakon Nakhon

district. The district’s geographically coordinates, as shown in

Figure 1, are 17 ◦13′18′′N, 104◦17′24′′E. There are five sub-districts

in Sakon Nakhon province’s Phon Na Kaeo district: Ban Phon, Na

Kaeo, Nadong Wattana, Ban Khae, and Chiang Shi. This district

is situated to the east of the Songkram watershed and is in close

proximity to Nakhon Phanom province and the Nong Harn marsh,

which is a large natural water source. Due to its proximity to the

Mekong River, which is around 40 km away, there is an exchange

of Mekong fish and fish habitat in the Phon Na Kaeo district. This

can result in the movement of numerous Mekong/tributary fish in

the area, as well as potentially increasing the number of liver fluke

infections in fish.

2.2 Analyses and datasets

In Thailand, there are significant public health concerns that

have persisted for a long time. These include liver fluke and

cholangiocarcinoma, a deadly disease that claims the lives of at

least 20,000 people each year in the northeast region (37, 38). With

a current estimate of 6–8 million cases of liver fluke infection,

it is absolutely crucial to test individuals for this infection. By

eliminating the parasites, we can reduce the risk of developing

cholangiocarcinoma (39). The Sakon Nakhon Provincial Public

Health Office (SKKO) (40) provided the information on liver fluke

infections used in this study. A common screening technique that

has been utilized for many years is stool testing. For instance,

the modified Kato-Katz approach, which has proven to be an

efficient way in the past when there were widespread parasite

outbreaks, can be used to examine parasite eggs in feces in-

depth. In addition, stool analysis has been a well-established

procedure formany years. Using themodified Kato-Katz technique,

stool samples were examined for O. viverrini eggs shortly after

collection (41). The majority of infected individuals were found

in the Phon Na Kaeo district of Sakon Nakhon province. The

infection prevalence tends to increase among individuals aged

18–80 years. Two other testing techniques, namely the enzyme-

linked immunosorbent assay (ELISA) and the formalin-ethyl

acetate concentration technique (FECT), are more effective than

stool samples (42). Additionally, they provide numerical data that

can be correlated with parasite density and used for post-drug

evaluations to determine the rate of new or reinfected infections

(36, 41, 42). However, these approaches would have required a

substantial budget, which is why they were not utilized in this

study. Nevertheless, the modified Kato-Katz method is a suitable

technique for assessing a large number of individuals, and the

secondary data obtained from SKKO regarding the number of

FIGURE 1

The study area and distribution of prevalence of ov-infection in term of percentage.
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FIGURE 2

The percentage of individuals infected with liver fluke in the 8th

Regional Health Province (R8) near the Mekong River between 2019

and 2020 [adatped from Pumhirunroj et al. (44)].

liver fluke-infected patients assessed using this approach is reliable.

According to data on modified Kato-Katz fluke infections, the

highest number of cases was reported in the Phon Na Kaeo district

of Sakon Nakhon province. The prevalence of infection tended

to increase in the age group of 30–40 years. In terms of patient

infection density, it was found to be similar to the prevalence,

indicating that the province had the highest concentration of liver

fluke infections.

From 2019 to 2020, a total of 12,063 instances of stool testing

were conducted at the national level and reported to the 8th Health

District Office (Region 8) (40). Out of these cases, 2,832 were

reported in Sakon Nakhon province, with the highest number of

liver fluke infections found in the surrounding provinces within the

interconnected river basin system of Nakhon Phanom and Bueng

Kan (43). Figure 2 illustrates the percentage of reported cases that

were discovered. Sakon Nakhon province is home to the largest

freshwater resource in the northeast, providing a breeding ground

for animals during the rainy season (12). Given that Phon Na Kaeo

in Sakon Nakhon province has the highest average infection rate,

it is crucial for provincial health officials to closely monitor the

situation. Hence, data on the number of liver fluke infections in the

Phon Na Kaeo district were utilized in this investigation.

2.3 Defining of independent variables

The selection of independent variables is guided by prior

research conducted by Pumhirunroj et al. (44), which demonstrated

that using mathematical models to replicate independent variables

from existing geographically information layers can improvemodel

accuracy. Demarcating the appropriate spatial units is an important

critical initial step in developing the independent variable model

utilizing the clustering method. To obtain Sentinel-2 satellite

imaging data from Google Earth Engine (GEE), follow these

steps: (1) Define Thailand’s borders using an area of interest

(AOI). Set the download time period to “2019-01-01” or “2021-

04-31.” (2) Filter out images with a cloud cover percentage >10%.

(3) Combine the wavelengths of the Sentinel-2 image for better

visualization. (4) Compute the remote sensing index utilizing

surface temperature, the Normalized Difference Moisture Index

(NDMI), the Normalized Difference Vegetation Index (NDVI),

and the Soil-Adjusted Vegetation Index (SAVI). The data required

to construct the mathematical model of independent variables

includes area, perimeter, and Digital Elevation Model (DEM),

utilizing slope, aspect, and curvature to represent hydrological

characteristic variables, which can be extracted from the GEE

system as shown in Figure 3. The area and perimeter are calculate

derived from the clustering boundaries.

The rationale for selecting these nine factors, based on our area

inspection, stems from our observations that the prevalence of liver

flukes across all seasons was significantly associated with regions

exhibiting good surface moisture retention during the dry season.

We noted a positive correlation between these moisture retention

areas and the number of infected individuals. Furthermore, surface

moisture factors were interconnected with various land use types.

The indexing of each independent variable operates at a spatial

resolution of 10m. Each factor is computed to ascertain the

average distribution per sub-basin area. Additionally, Factors 6–

9 were derived from remote sensing indices utilizing the raster

calculator function, representing the average of Sentinel-2 imagery

from January to April during the years 2019 to 2021, reflecting

the dry season. This allows for an analysis of the areas where

the host medium persists while awaiting the onset of the rainy

season. The mathematical models have been developed from

foundational factors based on extensive research concerning the

variables influencing liver fluke infection in watershed areas. This

is depicted in the mathematical model for calculating each factor in

Equations 1–9 as follows.

The independent variable set consists of nine factors. The soil

type suitable for the habitat of the intermediate host is moist clay

soil, primarily found in rice field plantation areas. This indicates

the suitability score for each soil type as represented by the land

use types index (X1). Soil drainage factors significantly influence

the suitability of the intermediate host. Specifically, soils with

poor drainage can retain substantial moisture during the dry

season, as indicated by the range of scores associated with the

soil drainage properties index (X2). Distance from the road is

another factor considered in the modeling process, as proximity

between the water source and road increases the likelihood of

moisture being retained in the land surface compared to greater

distances. In other words, the road network influences water flow,

as illustrated by the distance index from the road network (X3).

The proximity of a water source is a factor that is directly linked

to the increased likelihood of implantation on the surface of an

intermediary host. Specifically, the closer the surface water source

is, the greater the chance of implantation compared to a more

distant source. This relationship is represented by the surface water

source distance index (X4). The cumulative flow of water analyzed

from the cumulative flow lines of the minor water lines constitutes

a network designed to distribute the habitat of the intermediary

host to community areas that are more distant from the main water

source, with closer areas being prioritized. These flow lines are

more appropriate for medium-range encounters rather than long

distances, as indicated by the flow accumulation line distance index

(X5). The optimal surface temperature of the host medium should

not exceed 25◦C at a depth of no more than 15 cm, as detected by

Pumhirunroj et al. (45). By utilizing the SR index from Sentinel 2

satellite imagery, a surface temperature map can be generated. This
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FIGURE 3

Basic data for categorizing independent variables.

is illustrated in the model average surface temperature index (X6).

In addition to the aforementioned spatial factors, there are also

remote sensing index factors such as, including the average surface

moisture index (X7), the average normalized vegetation difference

index (X8), and the average soil-adjusted vegetation index (X9).

This study utilized 12 images from 2019 to 2021, aligning them

with data on liver fluke infections in the region. The image data

were then used to perform calculations. To ensure stability, all three

indices were averaged to minimize fluctuations in the values. The

model of independent variables is presented in detail below.

X1 =
CiCj

Ak
(1)

where X1 is a list of land use categories that are appropriate for

intermediate host housing. Ci is any kind of land use weight value

where i = (1 = built-up, 2 = woodland, 3 = miscellaneous, 4 =

paddy field, and 5= rice paddies in irrigated areas and water body).

Cj is a class j land use area measured in square meters, and AK is

sub-basin area size (sq.m.) at any given k unit.

X2 =
SOiWj

Ak
(2)

where X2 is a measure of the drainage qualities of the soil that

make it ideal for the intermediate host to live in. SOi is the area of

any soil type’s drainage properties. Wj is the drainage weight value

for any kind of soil. The values were weighted according to soil

drainage type, indicating that well-drained soils have a lower risk

of host infestation compared to poorly drained soils.

X3 =

∑n
i=1

∑m
j=1 LiBj

Ak
(3)

where X3 is the distance index from the road network that is

used to evaluate whether the intermediary host is suitable to handle

water that the road network has caught. The distance Li, measured

in meters, is the length of the road line to any given distance K,

which might range from 500 to more than 1,000, 1,500, 2,000, and

more. The closest distance from the road, within a radius of 500m,

is the distance that receives the highest risk-weighted score, thereby

establishing a standard score for proximity to the road network

within the study area. At every distance k, where K starts at 500,

1,000, 1,500, 2,000m, and beyond, Bj is the buffer distance.

X4 =

∑n
i=1

∑m
j=1 WiBj

Ak
(4)

When moisture still builds up during the dry season, the

medium host’s suitability for embedding to the soil surface is

evaluated using the distance index X4 from surface water sources.

Wi is the distance k, starting at 500m, going up to 1,000, 1,500,

2,000m, and beyond, from any surface water source i.

X5 =

∑n
i=1

∑m
j=1 DWiBj

Ak
(5)

where X5 is the distance index from the water’s accumulated

flow line, which is used to assess the medium host’s compatibility

in terms of waterlogging and moisture buildup during the dry

season. DWi is the distance at any distance k from any of the

water’s collected flow lines, where k ranges from 500 to 2,000m

and beyond.

X6 =

∑n
i=1 STiAik

Ak
(6)

where X6 is the sub-basin average surface temperature index,

which is used to assess if the medium host is suitable for subsurface

embedding in a sub-basin. STi any surface temperature in degrees

Celsius on the grid. Aik is the overall temperature within the

sub-basin boundary at k◦C.

Indexes calculated from Sentinel-2 satellite images for

the development of independent variables 7–9 include the

NDVI, NDMI, and SAVI indices, along with the following

simulation models.

NDVI = (NIR− Red)/(NIR+ R) (7)

For Sentinel-2 the formula is: (B8 – B4)/(B8 + B4), where: B8

= 842 nm, B4= 665 nm, NDVI range value is−1 to 1.

NDMI = (NIR− SWIR)/(NIR+ SWIR) (8)
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The wavelength range for calculating the NDMI index using

Sentinel-2 images is as follows: NIR (band 8) is at 842 nm, and

SWIR (band 11) is at 1,610 nm.

SAVI = (1+ L) ∗ (NIR− Red)/(NIR+ Red+ L) (9)

For Sentinel-2 the formula is: (B08 – B04)/(B08 + B04 + L)
∗ (1.0 + L); L = 0.428, where: L is a soil brightness correction

factor ranging from 0 to 1, L = 1 low vegetation cover, L = 0 high

vegetation cover, L= 0.5 intermediate vegetation cover.

This includes the preparation of Sentinel-2 satellite imaging

data from January to April 2019, 2020, and 2021, which coincide

with the rainy and dry seasons when mollusks are buried in damp

soils. A total of 12 satellite imagery data (four images per year for

3 years) were used to calculate the indices (X6) temperature index,

(X7) NDMI, (X8) NDVI, and (X9) SAVI as independent variables

in the GWR model. Second, screening for independent variables.

And third, exploring alternative models. The detailed steps are

outlined below.

(1) The normalized difference vegetation index (NDVI), which is

a value that indicates the proportion of vegetation covering

the surface by taking the near-infrared wave range (NIR) and

the red wave range reflected from the surface to calculate the

reflection difference, making the NDVI value between −1 and

1 if the plant does not have green leaves, is calculated using field

surveys and GWRmodeling.

Field surveys and GWR modeling were conducted to analyze

the relationship between liver flukes and spatial factors. The NDVI

value ranges from −1 to 1, with 0 indicating the absence of

vegetation. Another index used in this research is the soil-adjusted

vegetation index (SAVI), which is calculated by comparing the

energy reflection in the NIR with the energy reflection in the red-

light wave range, and dividing it by the total energy reflection in

the NIR and the soil’s energy reflection coefficient. The SAVI is

obtained by multiplying the NIR by two and subtracting the square

root. Both indices range from negative to maximum to 1, and the

suitable index values for the habitat of the liver fluke medium host

are∼-0.2 to 0.2 of the SAVI index. These values are calculated using

a formula that involves doubling the NIR, squaring it, multiplying it

by eight, subtracting the total red wave, and dividing it by two. The

SAVI index ranges from negative to maximum to 1. It is calculated

by squaring the difference between doubling the near-infrared wave

(NIR) plus one and eight times the near-infrared wave (NIR), and

then subtracting the total red wave divided by two. The index values

that are considered suitable for the habitation of the liver fluke

medium host are∼-0.2 to 0.2.

X7 =

∑n
i=1 NDMIiAik

Ak
(10)

where X7 is the sub-basin’s average surface moisture index,

which is used to assess if host media from subsurface embedding

is suitable. NDMIi is the value of any grid surface wetness. The

entire surfacemoisture area at i that is included inside the sub-basin

boundary at k is denoted by Aik.

X8 =

∑n
i=1 NDVIiAik

Ak
(11)

where X8 is any sub-basin’s average vegetation index, which is

used to assess whether the medium host is suitable for subsurface

embedding in that sub-basin. NDVIi can be any value for the

grid-normalized differential vegetation index.Within the sub-basin

boundary at k, Aik represents the total area of the vegetation index

at i.

X9 =

∑n
i=1 SAVIiAik

Ak
(12)

where X9 represents the vegetation index, which is used to

modify the average soil in each sub-basin in order to assess whether

the medium host from subsurface embedding in the sub-basin is

appropriate. SAVIi is the soil-adjusted vegetation index value for

any grid. Within the sub-basin border at k, Aik is the entire area of

the soil-adjusted vegetation index at i.

2.4 GWR-based spatial modeling

Calculations of independent variables from X6 to X9 were

conducted to assess surface moisture factors and surface cover

indicators using satellite photos. Remote sensing data of prototype

areas at the sub-basin level were analyzed through GWR modeling

to investigate spatial connections to liver fluke infection (OV). The

research algorithm consists of three steps: First, data collection

and manipulation to study the association between liver flukes and

watershed regions in sub-basins. A description of the workflow of

the GWRmodel can be seen in Figure 4.

(2) The GWR model utilizes the same methodology as the

traditional linear GWR model for coefficient estimation.

However, by incorporating a geostatistical statistic, it is

possible to generate a variable dataset with a smaller sample

size, while still maintaining a comparable Z-value to the

original dataset. According to Littidej and Buasri (28), the

best location for shellfish implantation appears to be the

buffer zone distant from the water’s accumulated flow line.

Variable X5 represents the independent variable group 1

(spatial variables), which is the distance index from the flow

accumulation lines. The mean of the line length, or the level 3

to 3 water flow level, is a variable that indicates the likelihood

of embedding the host’s intermediary of liver flukes along

two sides of the stream within a range of 500–2,000m. The

variable data points are generated based on the village locations

where the OV data were surveyed. For each feature in the

collection, GWR generates a local regression equation. When

a cluster of spatial descriptive variables is available, issues with

local multicollinearity are more likely to arise. The output

feature class’s conditional number (COND) field indicates if

the outcome is unstable due to local multicollinearity.

(3) Unlike traditional models such as the global model and

multiple regressionmethod, GWRmodeling uses a local model

of spatial statistics. In this study, the original shape data of

area units was not suitable for constructing the geographically-

weighted regression (GWR) model. To address this, we

developed a method for creating new area unit boundaries,

allowing us to generate a set of coefficients for independent
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FIGURE 4

Acquiring new spatial units for GWR modeling.

variables that align consistently with the distribution of the

independent variable data layer. This means that a specific

model is created for each sub-basin in order to analyze and

predict the relationship between liver fluke, other parasite

types, and spatial factors more accurately. GWR stands for

geo-weighted regression model. In contrast to the original

method (OLS), where a model is obtained to predict every unit

area with different coefficients, In the study, GWR employs

the distance reciprocal weighting method to establish the

coefficient of the relationship between the independent and

dependent variables (29, 30, 46). Based on this research, it is

recommended that GWR modeling incorporates a data layer

that considers additional spatial factors, such as proximity

to roads and water bodies, as well as the prevalence of liver

fluke infection in the sub-basin region. This analysis can be

conducted using 5-mDEMdata, and the independent variables

can be created using mathematical functions that correlate

satellite image wavelengths. Equation 10 provides a visual

representation of how the GWRmodel estimates the regression

coefficient for each survey point or linear regression point.

This estimation is achieved by analyzing a polylinear regression

equation and applying sub-spatial statistics to determine the

relationship between the independent and dependent variables

(35) (Equation 13).

Yi = β0 (uivi) + β1 (uivi) x1 + β2 (uivi) x2....+ βk (uivi) xk

+εi (13)

where (uivi) are the orthogonal coordinates at each linear

regression point. βk (uivi) is the regression coefficient estimated

at each linear regression point. At each linear regression point,

the regression coefficient (β) of each independent variable (X) is

estimated as a matrix of n×(k+1).

The GWR model is an analysis of multiple linear regression

equations at each linear regression point that must be weighted

to focus on the data (29, 47–50). The regression coefficient is then

estimated, as shown in Equation 14.

β(i) = (XTW(i)X)−1XTW(i)y (14)

In this study, three approaches were utilized, as illustrated in

Equations 13–16. We used Equations 15, 16 to calculate the root

mean square error (RMSE) and coefficient of determination (R2).

RMSE =

√

∑m
i=1 (ρi − σi)

2

m
(15)

Where, ρi = prediction, σi = existing value, m = total count

of data.

R2 = 1−

∑m
i=1 (ρi − σi)

2

∑m
i=1 (z − σi)

2
(16)

In order to assess the accuracy of the GWR, we used the

Receiver Operating Characteristic-Area Under Curve (ROC-AUC)

technique. This method is commonly employed in machine

learning to evaluate the precision of various models and identify

any issues related to interpretation and criteria selection (51). ROC

curves are created by plotting the True Positive Rate (TPR), also

known as sensitivity, against the False Positive Rate (FPR), which

represents specificity. The TPR, located on the y-axis, measures

the proportion of existing positives accurately detected, while the

FPR, on the x-axis, measures the proportion of negative instances

or non-events incorrectly classified as positive or events (52).

Moreover, the ROC curve also indicates how frequently the model

incorrectly predicts a positive outcome when the true outcome is

negative (53). The Equations 17, 18 can be used to calculate the TPR

and FPR.

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + FN
(18)

TP represents the count of correctly predicted positive

instances, FN represents the count of actual positive instances

that were incorrectly predicted as negative, FP represents the

count of actual negative instances that were incorrectly predicted

as positive, and TN represents the count of correctly predicted

negative instances. After calculating TPR (True Positive Rate) and

FPR (False Positive Rate), an AUC (Area Under the Curve) value

of 50% indicates that the estimation lacks discrimination (53).

However, if the AUC exceeds 90%, the model can be considered

to have exceptional effectiveness (54). The positional data analyzed

by AUC is derived from the predictions generated by the GWR

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2024.1487222
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Pumhirunroj et al. 10.3389/fvets.2024.1487222

model, expressed as a percentage of infections. A value of (+/-

0.5%) is designated as the infection threshold for a given point

when it is not classified as infected, and this is compared with

the actual percentage of infected sites. It is important to note that

the impact of these independent variables on dependent variables

may vary across different sub-regions (spatial units). Consequently,

agencies or organizations can utilize these analysis results to

effectively manage parasite infection prevention systems, provided

they are able to assess the spatial characteristics of parasite species

distribution (55). This proactive approach enables communities

to preserve their wellbeing and reduce healthcare expenses by

preventing future illnesses.

2.5 An optimized spatial unit for GWR
modeling

The original sub-basin boundary only covers an area of 10

units, which is insufficient for building the GWRmodel. To address

this, a guideline is proposed to increase the number of area units.

This can be achieved by using the attribute values of the nine

independent variables to adjust the standard value within the range

of 0–1. The risk of infection in the water source is analyzed, and

the standardized value is used for further analysis. The Clustering

Getis-Ord Gi∗ method is then employed to demonstrate the

grouping of independent variables that influence liver leafworm

infection in water bodies. The resulting groups are superimposed

on the existing 10 boundaries to obtain a new boundary for creating

the GWRmodel. This leads to an increase in the area units from the

original 10 units to 33 units. Refer to Figure 4 for the sub-operation

diagram illustrating this process.

3 Results

3.1 Distribution of variables

The variables used in the GWR model are obtained by

generating raster data using a heat map approach, as depicted

in Figure 5. The average value of the raster represents the

percentage likelihood of water source infection in the 10 subbasins.

These values will then be converted to match the boundaries

of the 33 new area units, resulting in the variable values.

The heat map’s raster data needs to have a cell size of 10m

to match the grid size of the Sentinel-2. The corresponding

variable represents the total number of grids obtained from this

heatmap, and it is calculated as an average for the boundaries

of each subbasin reconstructed using the spatial boundary

design approach.

Figure 6 displays the descriptive data values for the index values

of the nine independent variables that were used to construct

mathematical models from Equations 1–9. Preparing independent

variable sets using ArcGIS Pro version 3.2.0 was a crucial phase in

the GIS process. This phase involved utilizing various techniques

of spatial data interpolation to generate multi-raster and vector

datasets. The percentage of cases in Wanplachuem-1, Phonnoi,

and Wanplachuem-2 sub-basins was extremely high, with values

of 9.18, 7.84, and 6.489, respectively. These three watersheds are

close to each other and joined by an outlet. When considering

the values of nearly all the indices, Wanplachuem-2 is more

valuable than other river basins. This is mainly because the

index’s value is divided by the smaller basin area more than

in the case of the other basins. For Jomjaeng, Phonnoi, and

Phonkaeyai, the spatial units of the sub-basin with comparable

FIGURE 5

The heat map of prevalence of ov-infection in term of percentage Y(prevalence of OV, %).
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FIGURE 6

Derived index map using mathematical model of X1–X9 (a–i).

island index values of the X1 index are 14.773, 17.688, and

14.279, respectively.

The index values of X2 for Wanplachuem-2, Klangmai,

and Nakaew are 24.128, 24.577, and 29.858, respectively. The

island groups Jomjaeng, Phonnoi, Phonkaeyai, andWanplachuem-

1, as well as X3, X4, and X5, are all located in the same

basin. Although the groups of remote-sensing indices are not

significantly different from each other, they still need to be

studied along with other variables in GWR modeling. Another

round of correlation analysis is also necessary to check for

duplicate factors. It is important to use mathematical models to

standardize data across different groups of factor index values.

Standardizing the data to a comparable range improves the

accuracy of building and fitting models in GWR. Instead of

directly importing raw data into models, this approach yields

better results.

The primary distribution of the intermediate index on the

map is shown by the X6 index. Figure 6f shows yellow regions

with flat surfaces between 26 and 28◦C, while red regions with

high temperatures primarily consist of constructions like roads

and villages. The X7 index depicts the distribution of high-

level indices, which are areas near water bodies with index

values >0.6 or more, and indicate ideal habitat substrate host

areas. The X8 and X9 indices, both composed of vegetation

index, have similar distributions. However, the X9 index adds

a constant value to the vegetation value to increase reflectivity,
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and both can be used interchangeably. Correlation findings from

consistency can be seen to validate the modeling, and the red

areas in both indices indicate suitable locations that resemble the

X7 index.

The raster map data results of the X1 variant were dispersed

across most sub-basins and within a buffer distance of up to

500m. These results were similar to the X3 index values, except

for the upper basin areas where the index values were low due

to the absence of road networks. In the lower sections, which are

near sizable freshwater marshes, the X4 and X5 index map values

indicated high scores mainly in the lower basin and scattered low

values in the higher parts. Figure 7 presents the results in both a

map and radar graph format. The map illustrates the distribution

of the independent variables, while the graph demonstrates how

this distribution varies across different sub-basin boundaries.

This visual representation helps to highlight the extent of the

map effect.

3.2 Selected the influence factors
associated with spatial liver fluke
(Opisthorchis viverrini) infection

To ensure that GWRmodels canmaintain acceptable R2 values,

it is important to reduce redundancy in the number of independent

variables. In this study, spatial correlation analysis was used to

screen for independent variables. The independent variable set is

divided into two categories: variables generated from vector data

(represented by points, polylines, and polygons) and solving factors

derived from vector data (represented by X1–X5). This type of data

can be imported and examined alongside other variables without

the need to create raster data or assign score values based on

quantifiable requirements in advance. X6–X9 are already raster

data, but they were mathematically created to normalize the data

and enable correlation with the preceding set of variables. Figure 8

demonstrates that the percentage of individuals infected with OV

FIGURE 7

Derived index radar graph using mathematical model of X1–X9 (a–i).
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FIGURE 8

The correlation matrix of independent variables.

is inversely related to factors X5 and X9. The analysis of variable

groupings using a dendrogram reveals three main groups based on

their correlations. The first group consists of variables that have a

high correlation with each other, specifically variables X2 and X9.

The second group includes independent variables X5, X7, and X9,

while the third group consists of independent variables X5, X7, and

X8. Notably, variable X9 is a key factor in the association with

infections identified in past tests of Pumhirunroj et al. (44, 45).

These groupings are represented as Model-1, Model-2, and Model-

3, respectively.

This means that the risk of infection increases as one moves

further away from this set of characteristics, but the likelihood of

contracting the fluke decreases. Factors X1 and X2 indicate that the

risk of infection increases with poor drainage, as poorly drained

soil retains more moisture. Additionally, the use of agricultural

land near irrigation canals leads to increased moisture on the soil

surface compared to other types of land. Factor X5, which correlates

with the percentage of infected individuals (0.226), can be used as

a representation of factors X1–X4 in the analysis of vector factors,

where X1, X2, X3, and X4 have correlation values of 0.985, 0.838,

0.984, and 0.612, respectively.

Apart from being screened, the independent variables X5–X9

were also used to generate correlation graphs for examining the

regression of the GWR model. Two techniques were employed to

identify reliability patterns through residual plot graph analysis.

The first technique involved plotting the residuals, which are

estimates of the difference between the observed values of Y (%

of OV) and the fitted values. These residuals should be dispersed

randomly when observations occur. The second technique involved

plotting the normal probability plots of the errors and the expected

values. If the plot resembles a straight line, it indicates that the

disparities have a normal distribution. As mentioned in the section,

the X5 variable set shows a normal distribution of the data, as

illustrated in Figure 8. This table demonstrates how the vertical

distribution of information for variables X6–X9 translates into a

limited range of index values that can predict the proportion of

infections across a wide range.

3.3 The best GWR model for liver fluke
(Opisthorchis viverrini) infection prediction

Comparingmultiple alternative models increases the likelihood

of selecting the correct model for prediction (56, 57). In spatial

factor correlation simulation, an independent set of variables is

used as an alternative to GWR modeling. This allows for the

visualization of tolerance patterns at the small area unit level.

Correlation analysis was conducted to select the independent

variables to be integrated into GWR models. Specifically, variables

X5–X9 were chosen, simulated, and presented in Table 1. Based on
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TABLE 1 Results of GWR for selected alternative model.

GWR-models Factors Coe�cients t-stat p-value R2 (OLS) Avg-R2 (GWR) RMSE (%) AUC

Model-1 Intercept 15.632 4.634∗∗∗ 0.000∗∗∗ 0.511 0.535 3.442 0.512

X2(soil) −1.414 −0.905 n/s 0.234 n/s

X9(savi) −6.019 −2.031 n/s 0.125 n/s

Model-2 Intercept 60.236 3.029∗∗∗ 0.000∗∗∗ 0.762 0.817 2.465 0.675

X5(stream) −5.036 −2.071∗∗∗ 0.046∗∗∗

X7(ndmi) 4.287 1.794∗∗∗ 0.036∗∗∗

X9(savi) −9.795 −2.698 n/s 0.186 n/s

Model-3 Intercept 62.467 1.851∗∗∗ 0.000∗∗∗ 0.754 0.800 2.571 0.659

X5(stream) −5.167 −2.045∗∗∗ 0.016∗∗∗

X7(ndmi) 1.118 0.784∗∗∗ 0.085∗∗∗

X8(ndvi) −3.109 −0.851 n/s 1.072 n/s

∗∗∗Significant at 5% level.

n/s, not significant.

Results of Monte Carlo test for spatial non-stationarity.

the analysis results, a suitable GWR model with a high R2 value

was identified for forecasting the percentage of infected individuals.

This variable demonstrates a high level of significance, as indicated

by the extremely high t-statistics or extremely low p-values (58, 59).

The results presented in the table compare the precision between

GWR and OLS (ordinary least square) models, offering a visual

representation of the differences in accuracy between the two

models (60).

Model-1, Model-2, and Model-3. To assess the negative

projection of the findings from GWR Model-1 as a percentage

of infected individuals, two independent variables, X2 and X9,

were imported. The spatial non-stationarity test table presents

results from Monte Carlo (22, 28), and compares R2 values to

those of OLS models. The model exhibits negative coefficients of

−1.414 and −6.019 on the respective scales, accompanied by t-

stat values of −0.905 and −2.031, and p-values of 0.234 and 0.125.

These results suggest that there is currently no significant (n/s)

correlation between the two parameters and the proportion of

infected individuals. In addition, the model reveals an R2 value

for the GWR model, which stands at a higher level of 0.535

compared to the OLSmodel’s 0.511. Since both components exhibit

a respectable level of relationship with R2, further examination is

needed for the second alternative model.

The second GWR model (Model-2) shows a negative and

positive correlation between the components X5 and X7, while the

X9 factor reveals a negative relationship. This suggests that the

percentage of infected people decreases as the area of separation

between vegetation covers increases. The X9 factor is statistically

significant with a p-value of 0.186, indicating that the likelihood

of individuals with liver fluke infection increases with mid-range

and less-than-peak soil correction index factors. The t-statistic

for X9 is also larger than the other two factors (−2.698). The

accuracy of the model, as measured by R2, improves to 0.762

and 0.817. Although factors X5 and X8 have been accepted and

tested for t-stat and p-value, both of which have a negative impact

on infection, it is essential to test these two factors in Model-3

to confirm their suitability as alternative predictors for sub basin

infection. In alternative Models-3 when the X8 component is

included. Both the X5 and X8 coefficients exhibit a negative trend

and have more significant t-statistics and p-values compared to

the other variables. Model-3 is considered the best GWR model

for predicting case percentage because it maintains a confidence

level >80% without including too many independent variables

that could lead to inaccurate predictions. Although Model-2 has a

higher R2 value, it may introduce duplication of the independent

variable set and result in coincidental relationships, which could

inflate the R2 value.

The standard residual index (SR) is a commonly used measure

to assess the prediction accuracy of a model. It provides an

index value that indicates the accuracy of the model, with values

displayed in intervals of 0.5 (28, 35), Figure 9 shows the depiction

of these values. Sub-basin units with SR values between −0.5 and

0.5 are considered areas where GWR models can make accurate

predictions with smaller tolerances compared to other locations.

In the case of the GWR Model-3, the sub-basins Maikrabok,

Klangmai, Nongphue, Phonkaeyai, and Wanplachuem-1 are

highlighted in yellow. These sub-basins have a tolerance that is

five units lower than the other models. Additionally, the SR results

from GWR Model-3 further support the idea that the deviation

area has the same direction and can help minimize the discrepancy

in sub-basin areas. Furthermore, the results obtained from the

SR analysis using the Model-2 model continue to support the

conclusion that the Maikrabok, Klangmai, and Nongphue river

basins are comparatively lower than other river basins and display

less variation. These findings reinforce the suitability of the Model-

3 model when it comes to lower tolerances compared to the two

alternative models. The results of this analysis using the SR index

were used to develop a policy aimed at reducing the suitability of

embedding the medium host in moist soils.

The accuracy of the prediction results was compared to the

existing infection levels to determine if sub-basin locations with

poor tolerances could show a spatial correlation map in an island

group. The SR map of the forecast results using Model-3. The

figures illustrate that various factor, like densely distributed water
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FIGURE 9

Comparison of standard residual of alternative GWR-model: (a) Model-1, (b) Model-2, and (c) Model-3.

FIGURE 10

Result of spatial autocorrelation index (a) predicted by Model-1, (b) predicted by Model-2, and (c) predicted by Model-3.

flow lines, affect the moisture retention of surface water during

droughts. Moreover, road networks that intersect with water flow

channels play a significant role in elevating the risk of infection

in this region (45). The Phonkhaeyai basin exhibits a narrow

range of SR, indicating the reliability of the prediction results,

unlike the forecasts for other watersheds that show similarities.

Consequently, it can be inferred that the upper and middle basins,

situated farther away from Nongharn, might experience elevated

rates of liver fluke infection. This is due to the independent

variables that transport water and fish to the vicinity of the road

fold area, which acts as an ideal moisture reservoir. To ensure the

reasonable predictability of Model-3, it is important to check the

coherence of infection percentages in the prediction results. This

can be done by comparing the percentage of current infections. The

prediction results from various models and SR data are combined

to create a spatial correlation index. The results show that the

geographically correlation between the observed OV infection

percentages, predicted percentages, and SR is−0.015927, 0.196553,

and 0.230877, respectively. The study not only analyzed the residual

values but also indicated the likelihood of differences in predictions

across each area unit, which does not guarantee the consistency

of these predictions. To tackle this issue, a spatial autocorrelation
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FIGURE 11

Comparison of RMSE of (a) Model-1, (b) Model-2, and (c) Model-3.

FIGURE 12

Comparison of AUC of (a) predicted by Model-1, (b) predicted by Model-2, and (c) predicted by Model-3.

analysis was performed. While the AUC values of Model-3 and

other models were comparable, a comparison with Moran’s I

index showed only slight differences in AUC. Additionally, Model-

3 displayed a cluster of residual values, reinforcing the model’s

effectiveness by suggesting that these area units yielded values close

to the actual infection rates. The distribution patterns are illustrated

in Figure 9 and they appear to be random, random, and clustered,

depicted in Figure 10.

The results in Figure 11 indicate that Model-1, Model-2, and

Model-3 have RMSE (root mean square error) values of 3.442,

2.465, and 2.571%, respectively. The corresponding R2 values are

0.5347, 0.8472, and 0.8001. To evaluate the overall model accuracy.

Based on the RMSE test results, it is evident that both Model-

2 and Model-3 yield similar results. Consequently, it becomes

challenging to determine which model performs better, leading to

the need for an additional test method using AUC (area under

curve). The AUC value ranges from 0 to 1, with 1 representing

the highest performance in classification, 0.5 indicating random

classification, and values below 0.5 suggesting a less efficient

model. Figure 12 demonstrates this classification efficiency. Since

the infection percentage variable is not initially represented as

binary values (infection vs. non-infection), it needs to be adjusted

and converted into a binary dataset for comparison with the actual

infection data. However, the approach to model development can

identify a set of independent variables that consistently correlate

with infection predictions.

The AUC results of the three models indicate that Model-

2, Model-3, and Model-1 performed the best, with performance

values of 0.675, 0.659, and 0.512, respectively. Furthermore, upon

comparing the predicted range in the red bar shown in Figure 12,

it is evident that the deviation range of Model-2 is larger than

that of almost every data range used for testing. Therefore, it can

be concluded that the Model-3 is the most suitable for predicting

ov-infections, as illustrated in Figure 13.

The forecast results indicate the location of the river’s flow line

within each sub-basin, which serves to connect the water flow to

the community area. The positioning of infection simulation points

is determined based on the accessibility of fishing locations for the

public and the link between the stream and the river bank. Figure 13

reveals that the Model-3 model, which has been deemed the most

effective, predicts a risk value for the water source ranging from

7.01 to 9.00%. This range of risk levels is crucial to monitor as it

represents the largest distribution of locations and covers the most

area. However, it is still important to consider the potentially risky

effects from the other two models for observation. Additionally,

other test results such as SR, spatial correlation, RMSE, etc., should

be taken into account.

4 Discussion

4.1 Independent variable set redundancy

X3, X4, and X5 are vector-type independent variables that

are automatically connected geographicallyally. These variables

are redundant because the method used to analyze the data
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FIGURE 13

The mapping of ov-infected prediction (a) predicted by Model-1, (b) predicted by Model-2, and (c) predicted by Model-3.

TABLE 2 Sub-basin descriptive auxiliary data for use in independent

variable modeling.

Sub-basin name Area
(sq.km.)

Perimeters
(km.)

Average of
DEM (m.)

Jomjaeng 66.183 46.434 160.445

Poopim 18.432 23.986 161.624

Phonnoi 64.081 46.779 166.147

Phonkaeyai 72.794 43.279 172.894

Wanplachuem-1 51.264 36.087 180.397

Wanplachuem-2 16.071 20.354 174.412

Klangmai 27.738 28.053 167.640

Nakaew 12.708 24.316 164.155

Nongphue 10.04 18.698 170.894

Maikrabok 14.259 19.312 163.884

calculates the distance from the vector data, generates a score

range based on the distance of infection risk, and uses the

Euclidean distance function. Before adding the three independent

variables to the model, only the representative factor, X5, needs

to be chosen. This factor must be distinct from the X1 and

X2 datasets, which determine scoring values differently based on

their relationship to infection. There are additional duplicated

variables in the raster variable set created from satellite imagery

indices, including X6, X8, and X9. The X7 component can

also contribute to the model, but it does not improve accuracy

when included. It is automatically correlated when observed by

correlation. Therefore, using the independent variables X5, X7,

and X9 yields the best modeling results. Despite being less than

the bulk inputs in Model 4, the results of R2, t-stat, and p-

value statistics were sufficient to validate the choice of models

and a suitable range of independent variables for forecasting

liver fluke cases in small basin systems. To create GWR models,

which divide unit areas into sections based on the distribution

of dependent variables and produce precise results, it is crucial

to mathematically model independent variable data to meet

quantifiable standards.

4.2 Design of spatial units

In order to specify the amount of data, it is necessary

to draw boundaries for spatial subspace units. The analysis

results were obtained from 10 sub-basin boundaries, which were

distributed based on the flow sequence level (3–6) from upstream

to downstream at the marshes shown in Figure 4. Other descriptive

information about the sub-basin, such as its size, was also included.

In this study, digital elevation model (DEM) data with a cell size of

12.5m was utilized to generate the sub-basin layer data. Perimeter

length and average height of the unit area are presented in Table 2.

The fill and sink tool were used to readjust the spatial height of the

DEM dataset, which is a technique for hydrological analysis that

realistically analyzes the altitude data using GIS procedures. This

allows for continuous analysis of water flow. The Wanplachuem-1

river basin had the highest average elevation (180.397m), followed

by the Wanplachuem-2 and Phonkaeyai basins. These basins had

elevations of 174.412 and 172.894m, respectively. The upper basin

of the Phon Na Kaeo district is also at this higher elevation.

However, despite being in the upper basin, a significant portion of

the population in these areas is still affected by OV infection. The

upper basin is prone to flooding during different seasons, allowing

carp groups and intermediate host mollusks to migrate to these

areas for feeding. The Wanplachuem-1 river basin has the highest

average height (180.397m), followed by the Wanplachuem-2 and

Phonkaeyai basins with measurements of 174.412 and 172.894m,

respectively. The upper basin of the Phon Na Kaeo district is

also considered to be at this height. Despite being in the upper

basin, a significant portion of the population in these areas is

infected with OV. The upper basin is prone to floods during

different seasons, which attracts carp groups and intermediate host

mollusks for feeding. The average calculation for all sub-basins is

consistent due to the continuous number of infected individuals

displayed in the case percentage data. However, the average may

vary depending on the values used to compute the raster. The

Z-value represents the percentage of affected individuals in the

hamlet. To incorporate all details in the raster data, a radius of

4 km is used to generate a heatmap for the raster map. Yellow

areas indicate high density and a higher probability of coming

into contact with infected individuals, while green areas show low
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percentages of infected individuals (Figure 5). In order to analyze

positional data and other raster data of independent variables and

create trend graphs, the GWR model requires a continuous value

of raster data, which can be achieved by creating heatmaps of

infected individuals.

4.3 Model capabilities and other areas’
development approaches

The GWR model utilizes the Gaussian model to enhance

the data by increasing the number of cells and graphing the

trend of independent variables more effectively compared to other

models. This is achieved through the calculation of boundary

distance from the location of an infected person, resulting in the

generation of raster data. The changes in data are then analyzed

to identify trends (56, 57). The optimization method used by

the GWR model has a benefit of ensuring the continuation of

the data surface. Additionally, it screens independent variables

that strongly connect fluke infection with t-stat and p-value

indices, reducing duplication and keeping the model compact.

Creating geographicallyal units from an independent set of

variables’ actual correlation is crucial when using the GWR

model to forecast the percentage of fluke infections in a local

area. The Sakon Nakhon Provincial Public Health Office, an

organization in the area with extensive knowledge on liver fluke

infection, approved the input of independent variables in this

study. However, the organization was interested in understanding

the intricate relationships between spatial variables to formulate

policies and conduct spatial analysis to lower the number of

infected individuals.

4.4 Guidelines for using the model to
inform provincial public health policy

The guidelines for preventing and controlling liver fluke

and bile duct cancer, as provided by the Sakon Nakhon

Provincial Public Health Office (40), include various measures.

These measures encompass the implementation of sanitation

systems and sewage management to disrupt the parasite cycle,

health literacy education in schools, liver fluke screening

for individuals over 15 years old, bile duct cancer screening

for individuals aged 40 and above who are at risk and have

undergone ultrasounds, systematic management of referrals

for suspected cholangiocarcinoma for diagnosis and treatment,

safe food practices, and a campaign aimed at eradicating

parasites from fish. Furthermore, the guidelines include a

system for receiving and referring patients from hospitals

to communities, and reporting their performance through

the Ministry of Public Health’s reporting system or the Isan

Cohort database (21). According to a study utilizing a spatial

model, this approach can support sanitation and sewage

management strategies in breaking the parasite cycle (12).

Moreover, the GWR model, which tracks the number of infected

individuals, can be employed to examine trends by continually

collecting data.

5 Conclusion

This study created a geographicallyally weighted regression

(GWR) model to monitor liver fluke infection. The results were

compared to determine the accuracy and suitability of the spatial

statistical model compared to ordinary least squares (OLS) models

in similar studies. The findings indicated that the GWR model is

more accurate and appropriate for investigating liver fluke infection

at the local level (28, 29, 31). To fully utilize the model, it is

essential to first construct a spatial unit data layer that appropriately

and independently separates the variables (49, 50, 61). In many

cases, GWR models yield low coefficients of determination due to

improper subarea unit allocations. However, this study proposes

establishing sub-basin units with continuous nearby boundaries

as a potential strategy to study spatial correlations with liver

fluke infections. Therefore, this work can serve as a prototype for

such investigations. In order to establish a relationship between

the percentage of infected individuals and a set of independent

factors, it is important to regularly collect local fluke case data.

Future predictions should incorporate factors that are consistent

with infection in both stream variables. Additionally, SAVI should

develop forecasts using alternative models, such as machine

learning techniques, including logistic models that generate

probabilistic dependent variable datasets, thereby enhancing the

realism of the forecasts. In more advanced research, it would be

beneficial to use spatial survey parameters, such as soil wetness in

the field where mollusks are located, instead of the factors used in

this study, which are only prototypes for testing the GWR model.

Another approach to improving the model’s prediction is to use

mathematical modeling to adjust the measurements in the database

so that they can be analyzed together (30). Ultimately, the findings

of this research can guide the development of spatial models on

a small-watershed scale to monitor liver fluke infections in other

regions with similar watershed characteristics.
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