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Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was 
conducted to investigate its effect on reproductive performance, antioxidant capacity, 
and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were 
selected and randomly divided into two treatment groups (n  =  36) based on their 
backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ 
kg genistin to the basal diet based on DMI for the entire gestation period. Results 
showed that dietary genistin supplementation significantly increased the average 
number of live born per litter (p  < 0.05), and tended to increase the number of 
healthy piglets per litter (p  = 0.058), but decreased the average weight of live born 
per litter (p  < 0.05). Dietary genistin supplementation significantly decreased the 
number of mummified and stillbirths per litter (p  < 0.05). Moreover, the average daily 
feed intake (ADFI) and total feed intake of the gestating sows were also increased 
in the genistin-supplemented group (p  < 0.05). Genistin significantly increased the 
serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 
35 days of gestation (p  < 0.05). The serum concentrations of interleukin-10 (IL-
10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation 
(p  < 0.05). However, genistin supplementation tended to decrease the serum 
concentrations of total cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), and leptin at 85 days of gestation (p  = 0.081 and p  = 0.096, respectively). 
Interestingly, genistin supplementation decreased the transcript abundance of 
interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased 
the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid 
transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) 
and SNAT4 in the placenta (p  < 0.05). These results suggested that dietary genistin 
supplementation during gestation can improve the reproductive performance 
of sows, which was probably associated with improving of antioxidant capacity 
and immunity, as well as changes of transcript abundance of critical functional 
genes in the placenta.
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Introduction

The number of stillbirths, mummies, abortions, and early 
embryonic death has a significant impact on both the reproductive 
performance metrics of sows and the economic viability of farms (1). 
Previous studies indicated that the mortality rate of pre-implantation 
embryos in sows falls within the range of 20 to 50%, with the majority 
of losses occurring between 12 to 18 days post-breeding, during the 
embryonic implantation period (2–4). Furthermore, a separate study 
underscores that over 70% of embryonic fatalities occur within the 
initial 25 days of gestation (5).

In the intricate choreography of mammalian reproduction, a diverse 
array of hormones played a pivotal role. Among these, estrogen, which 
was secreted by the ovary and placenta, held particular significance. It 
was instrumental in inducing estrus, fostering oocyte maturation, 
sustaining gestation, and triggering parturition mechanisms in the later 
stages of gestation (6–8). Prior research had shown that sows in their 
second to fifth parity demonstrated superior reproductive performance 
(9). However, as the number of mammalian litters increases, it was often 
accompanied by a lack of estrogen production, leading to a rapid decline 
in mammalian reproductive performance (10). Studies had demonstrated 
that estrogen supplementation could effectively enhance the 
physiological state and reproductive capabilities of animals. For example, 
studies have found that estrogen could improve the physiological state of 
menopausal mice, increase body weight and feed intake, and increase 
vitality (11). Another study showed that estrogen could promote the 
development and activation of chick primordial follicles (12).

Phytoestrogens have similar chemical structure as natural 
estrogens and can bind to estrogen receptors to exert estrogenic 
function (13). Phytoestrogens may be  divided into chalcones, 
flavonoids (flavones, flavonols, flavanones, isoflavones), lignans, 
stilbenoids and miscellaneous classes according to their chemical 
structure and biosynthesis (14, 15). The isoflavonoids has attracted 
more attention than other groups, as they are abundant in a wide 
variety of natural plants (16). Recent studies have shown that animal 
reproductive performance can be improved by dietary supplementation 
of various phytoestrogens. For instance, daidzein and genistein are two 
major components of isoflavones. Daidzein could improve the 
reproductive performance of female Zhedong White geese by altering 
serum hormone concentrations (17). Genistein has been reported to 
improve the reproductive performance of breeder hens during the late 
egg-laying period (18) and might exhibit therapeutic potential for 
polycystic ovarian syndrome mice the ER-Nrf2-Foxo1-ROS pathway 
(19). However, an extremely high dose of genistein may lead to 
infertility in female mice (20, 21). Although, numerous studies 
investigated the influence of phytoestrogens on animal production, 
there are few reports on the application of genistin in sows. Therefore, 
this study was aimed to investigate the effects of dietary 
supplementation with genistin during gestation on reproductive 
performance, antioxidant capacity, and immunity of sows.

Materials and methods

Animals and experimental design

A total of 72 multiparous sows (3 to 6 parity, Yorkshire × 
Landrace) with an average backfat thickness of 13.79 ± 2.45 mm were 

selected from Sanmenxia Tianyuan swine farms. From the first day of 
artificial insemination, the sows were randomly divided into two 
groups (n = 36); (I) control group [basal diet (BD)], (II) genistin group 
(BD was supplemented with 150 mg/kg genistin). Genistin was 
provided by Guilin Fengpeng Biotechnology Co., Ltd. (Guilin, China), 
purity: 10% soybean isoflavones, genistin accounted for 8.5%. Before 
the start of the trial, genistin was thoroughly blended with the premix 
and subsequently incorporated into the compound feed to ensure 
even distribution, resulting in a genistin concentration of 150 mg/kg 
in the feed. One week prior to parturition, the sows were transferred 
from the gestation house to the farrowing room. Five sows in the 
control group and two sows in the genistin group were empty or had 
an abortion.

Diets and feeding management

The nutritional requirements recommended by the National 
Research Council (U.S.) in 2012 were met or slightly exceeded by the 
basic diet (Table 1). In this experiment, the concentration of genistin 
in the basal diet was 24.7 mg/kg (detected by Qingdao Kechuang 
Quality Testing Co., Ltd.). Gestation sows are raised in a single column 
in the gestation house, and the gestation house adopts a full fecal floor. 
The sows were fed twice a day (7:30 and 15:00), 1.8–2.0 kg/d (1–30 d); 
2.3–2.7 kg/d (31–85 d); 3–3.5 kg/d (86–114 d). The gestation house 
was kept ventilated and breathable, dry and clean, and the room 
temperature was controlled at 20–25°C. Sows had ad libitum access to 
drinking water. Management and treatment plans were performed 
according to the swine farm plan.

TABLE 1  The composition and nutrient level of the diets used for the 
experiment.

Ingredients % Nutritive 
value

Calculated 
nutrient 

concentrations, %

Corn 37 Crude protein 13.8

Wheat middling 15 Crude fat 6.3

Dehulled soybean 

meal 46
7.5 Crude fiber 5.5

Wheat bran 15
Available 

calcium
0.8

Full-fat rice bran 10
Available 

phosphorous
0.33

Extruded flaxseed 1 Salt 0.45

Soybean hull 9.5 SID-Lys 0.68

Soybean oil 1 NE, MJ/kg 9.62

Premix1 4

Total 100

1The premix provides the following per kilogram of diet: vitamin A, 8,000 IU; vitamin D, 
32,000 IU; vitamin E, 40 mg; vitamin K, 2 mg; vitamin B1, 3 mg; vitamin B2, 5 mg; vitamin 
B6, 3 mg; vitamin B12, 0.04 mg; niacin, 30 mg; pantothenic acid, 20 mg; folic acid, 1.5 mg; 
biotin, 0.3 mg; riboflavin, 8 mg; Fe, 100 mg; Cu 20 mg; Zn, 80 mg; Mn, 40 mg; I, 0.3 mg; Se, 
0.25 mg.
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Sample collection and farrowing record

At 7:00 in the morning of 35 and 85 days of gestation, 6 sows with 
similar average backfat thickness and parity were randomly selected 
from each group. These sows were fasted, and the standing Baoding 
method was employed to secure them with Baoding ropes, ensuring 
both their safety and comfort. Subsequently, blood samples were 
obtained via venipuncture of the anterior vena cava. The collected 
blood was allowed to stand at room temperature for 30 min. Thereafter, 
serum separation was accomplished by centrifugation at 3,500 r/min 
for 15 min and stored at −20°C for later analysis.

To calculate the average weight of piglets per litter and average 
weight of live born piglets, the weight of each piglet was recorded 
during farrowing (before drinking colostrum). The number of piglets 
per litter (including total born, live born, healthy piglets, weak piglets, 
and mummified and stillborn) was recorded. Healthy piglets refer to 
piglets with birth weight ≥0.9 kg, and weak piglets refer to piglets with 
birth weight <0.9 kg (farm regulations). Sow natural childbirth. The 
farrowing duration was recorded. The duration of farrowing means 
the time from the birth of the first piglet to the expulsion of all 
placentas. The daily feed intake of each sow was recorded to calculate 
the total feed intake and average daily feed intake.

After delivery, 6 sows with successful delivery were selected from 
each group, and the placenta was washed with saline water. Placental 
tissues of 3 cm × 3 cm were collected in sterilized cryopreservation 
tubes, which was quickly frozen in liquid nitrogen and transferred to 
−80°C for storage.

Analysis of serum hormone and metabolite 
contents

The contents of estradiol (E2, Item No. MM-0480O1), leptin (LEP, 
Item No. MM-0395O1), progesterone (PROG, Item No. MM-1205O1) 
and insulin growth factor-1 (IGF-1, Item No. MM-78075O1) were 
analyzed using the respective enzyme-linked immunosorbent assay 
(ELISA) kits (Jiangsu Meimian Industrial Co., Ltd., China) following 
the manufacturer’s instructions; and the serum concentrations of total 
protein (TP), albumin (ALB), glucose (GLU), blood urea nitrogen 
(BUN), triglyceride (TG), total cholesterol (TC), high-density 
lipoprotein cholesterol (HDL-C) and low-density lipoprotein 
cholesterol (LDL-C) were determined using Hitachi Automatic 
Biochemical Analyzer 3100 (Hitachi Diagnostic Products Co., Ltd., 
Shanghai). The minimal detection limits for E2, PROG, LEP and 
IGF-1 were 8 pmol/L, 80 pmol/L, 80 ng/L and 3 ng/L, respectively. And 
the intra-assay coefficient of variation (CV) of all kits was 10%, and 
the inter-assay CV was 12%.

Analysis of serum immunoglobulins and 
cytokines contents

The contents of immunoglobulin A (IgA, Item No. MM-0905O1), 
IgG (Item No. MM-0403O1), IgM (Item No. MM-0402O1), 
interleukin-1 (IL-1, Item No. MM-0426O1), IL-6 (Item No. 
MM-0418O1), IL-10 (Item No. MM-0425O1), interferon-γ (IFN-γ, 
Item No. MM-0412O1) and tumor necrosis factor-α (TNF-α, Item No. 
MM-0383O1) were analyzed using the respective enzyme-linked 

immunosorbent assay (ELISA) kits (Jiangsu Meimian Industrial Co., 
Ltd., China) following the manufacturer’s instructions. The lowest 
detectable levels of kit IgA, IgG, IgM, IL-1, IL-6, IL-10, IFN-γ and 
TNF-α were 1 μg/mL, 1.2 μg/mL, 12 μg/mL, 3 ng/L, 50 ng/L, 8 ng/L, 
100 pg/mL and 10 pg/mL, respectively, and the intra-assay coefficient 
of variation (CV) of all kits was 10%, and the inter-assay CV was 12%.

Analysis of serum oxidant and antioxidant 
contents

The contents of superoxide dismutase (SOD, Item No. A001-2-2), 
total antioxidant capacity (T-AOC, Item No. A015-1-2), glutathione 
peroxidase (GSH-Px, Item No. A005-1-2), catalase (CAT, Item No. 
A0071-1) and malondialdehyde (MDA, Item No. A005-1-2) were 
analyzed using the respective assay kits (Nanjing Jiancheng 
Bioengineering Institute Co., Ltd.). All measurements were carried out 
in accordance with the manufacturer’s procedures.

RNA extraction and quantitative real-time 
polymerase chain reaction (qPCR)

Total RNA was extracted from frozen placenta samples in strict 
accordance with the reagent instructions of RNAiso Plus (TaKaRa, 
Japan). The concentration and purity of total RNA were determined 
by a Thermo NanoDrop-ND2000 spectrophotometer. Samples with 
OD260:OD280 ratios ranging from 1.8 to 2.0 were regarded as suitable 
for cDNA synthesis. Additionally, we determined the RNA integrity 
of term placentas using 1% agarose gel electrophoresis, which showed 
5S, 18S, and 28S rRNA bands. Moreover, the 28S:18S ribosomal RNA 
band ratio was found to be ≥1.8.

The RNA samples were reverse transcribed into cDNA using a 
reverse transcriptase HiScript III RT SuperMix for qPCR (+gDNA 
wiper) kit (Vazyme, Nanjing, China) with approximately 1.0 μL RNA 
sample by following the manufacturer’s protocols. Detection the 
glutamate cysteine ligase modified subunit gene GCLM in placental 
tissue; fatty acid transporter 1 (FATP1); glucose transporters gene 
SLC2A3 and SLC2A13; amino acid transporter gene SANT1, SNAT2 
SNAT4 and SLC38A10; insulin-like growth factors-1 (IGF1) (22); 
placental imprinting genes IGF2 and H19; placental pro-inflammatory 
cytokine gene IL1-β and TNF-α; the transcript abundance of 
antioxidant gene SOD2 and GSH-Px. TB Green® Premix Ex TaqTM 
II (Takara, Japan) reagent instructions are referred to for the operation 
steps and reaction system. The reaction system was 10 μL, containing 
TB Green premix Ex Taq II 5 μL, forward primer 0.4 μL, reverse 
primer 0.4 μL, ROX reference 0.2 μL, DEPC water 2 μL and cDNA 
2 μL, The concentration of primers used was 10 μM. The thermal 
cycling conditions were as follows: initial denaturation at 95°C for 5 s, 
annealing at 60°C for 34 s and finally, extension at 72°C for 5 min. 
After amplification, a melting curve analysis was performed following 
each qPCR assay to check the specificity and purity of the resulting 
PCR products. The primers were consulted in the NCBI database and 
the primers of target gene sequence were synthesized by Sangon 
Biotech (Shanghai) Co., Ltd. The Primer and probe sequences are 
shown in the Table 2. The mRNA transcriptional abundance of the 2 
groups were calculated using the TC2−∆∆  method with b-actin as the 
reference gene (23).
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Statistical analysis

All data were initially collated using Excel 2021 and analyzed 
using the t-test in SAS 9.4 for analysis. Normality of the data was 
assessed with the Shapiro–Wilk statistic (W > 0.05). In analyzing the 
reproductive performance of sows, the sows and their litter size were 
analyzed as the experimental unit. A Poisson regression analysis was 
carried out to analyze the number of live born, healthy piglets per 
litter, weak piglets per litter, mummified and stillborn by using the 
total born as a covariate and other data were analyzed using the 
relevant samples of randomly sampled sows from each group as the 
experimental unit. Mean and SEM were used to express the results of 
the experiments. When p < 0.05, differences were considered 

significant, while 0.05 ≤ p < 0.1 were considered to indicate 
a tendency.

Results

Reproductive performance and feed intake

As shown in Table  3, dietary genistin supplementation 
significantly increased the average number of live born per litter 
(p < 0.05), and tended to increase the number of healthy piglets per 
litter (p = 0.058), but decreased the average weight of live burns per 
litter (p < 0.05). Dietary genistin supplementation significantly 

TABLE 2  Primers used for quantitative real-time PCR.

Genes Primer and probe sequences (5′ to 3′) Length, bp Accession number

IL1-β F: GAAAGCCCAATTCAGGGACC 90 NM_214055.1

R: GGCGGGTTCAGGTACTATGG

TNF-α F: TTGAGCATCAACCCTCTGGC 123 NM_214022.1

R: GGCATACCCACTCTGCCATT

IGF-1 F: CTCTTCAGTTCGTGTGCGGAGAC 136 NM_214256.1

R: TCCAGCCTCCTCAGATCACAGC

IGF-2 F: CAGCCGTGGCATCGTGGAAG 170 NM_213883.2

R: AGGTGTCATAGCGGAAGAACTTGC

H19 F: TTCCTTGGAGGCTGTTCTGCT 109 XM_005659862.3

R: ACGGTTTCTCATTTTGCCTTTAC

SNAT1 F: GCAGGTCTTCGGCACCACAG 80 XM_003355629.4

R: GGTAGCTCAGCATTGCTCCAGTG

SNAT2 F: GCCGCAGCCGTAGAAGAATGATG 125 NM_001317081.1

R: AAGCAATTCCGTCTCAACGTGGTC

SNAT4 F: CTGCTTGCTGTGGCAATCCT 119 XM_021092582.1

R: TTCCCAGGCCATCCAAATGC

SLC38A10 F: CATGTTCGTGATCGTGCTCTCC 168 XM_005668573

R: TCGTCCAGGCTGTCGTAGGT

SOD2 F: TGCAAGGAACAACAGGTCTGG 188 NM_214127.2

R: TGATGTACTCGGTGTGAGGC

GSH-Px F: GCTCGGTGTATGCCTTCTCT 103 NM_214201.1

R: AGCGACGCTACGTTCTCAAT

GCLM F: GTGCAGTTGACATGGCCTGC 282 XM_001926378.4

R: CAGTTAAATCGGGCGGCATC

FATP1 F: GTGCTGGTGATGGACGAACTGG 180 XM_021076151

R: GCCTGCTTTGCCCTCTACTCCT

SLC2A3 F: TGGGCATCGTCATCGGGATTCT 134 XM_021092392

R: AAAGGGAAGGGCGGCACAGT

SLC2A13 F: GCTGCGGCGAACAACAAAGGA 167 XM_021092534

R: AACTGCCCTCCCGTGATGAAGA

β-actin F: TGGAACGGTGAAGGTGACAGC 177 XM_021086047.1

R: GCTTTTGGGAAGGCAGGGACT
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decreased the number of mummified and stillbirths per litter 
(p < 0.05), and significantly increased the total feed intake of sows in 
gestation and their average daily intake (p < 0.05).

Serum hormones and metabolites

As compared to the control group, genistin supplementation 
tended to decrease the serum concentrations of TC (p = 0.081) and 
LDL-C (p = 0.096) at 85 days of gestation (Table 4). Moreover, the 
serum leptin (LEP) concentration also tended to be decreased in the 
genistin group (p = 0.073).

Serum immunoglobulins and cytokines

As shown in Table  5, genistin supplementation significantly 
increased the serum concentrations of IgA, IgG, and IgM at 35 days of 
gestation (p < 0.05). The serum concentrations of IL-10 and IFN-γ 
were both increased upon genistin supplementation (p < 0.05). 
Moreover, genistin supplementation tended to increase the serum IgM 
concentration at 85 days of gestation (p = 0.098).

Antioxidant capacity

As shown in Table  6, dietary genistin supplementation 
significantly increased the serum concentration of CAT at 35 days of 
gestation (p < 0.05). It has no influences on the serum concentrations 
of antioxidative enzymes such as the SOD, GSH-Px, and CAT at 
85 days of gestation (p > 0.05).

Transcriptional abundance of placental 
genes

As shown in Table  7, genistin supplementation significantly 
decreased the transcript abundance of IL-1β and H19 in the placental 

(p < 0.05), but increased the transcript abundance of critical imprinting 
genes such as the SNTA2, SNAT4, and IGF-1 (p < 0.05). However, 
transcript abundance of nutrient transporters (e.g., SLC2A3, SLC2A13, 
SLC38A10, and FATP1) did not differ between the two groups 
(p > 0.1).

Discussion

The physiological significance of soy isoflavones has been widely 
elucidated over the past decade, with genistin, the main component of 
natural isoflavones, receiving particular attention for its estrogenic, 
anti-inflammatory and antioxidant properties (24). In the present 
study, we found that genistin supplementation at a dose of 150 mg/kg 
during gestation significantly increased the number of live born 
piglets, which is consistent with previous studies on sows (22). It is 
noteworthy that genistin supplementation reduced the average weight 
of live born piglets, which may be attributed to the limited uterine 
volume. Research has shown that uterine volume during gestation of 
sows does have an impact on litter size to some extent (25). As a result 
of the limited uterine volume and increased litter size, piglets may 
experience reduced birth weight (26). Modern pig breeds are known 
to have a high ovulation rate, but excessive ovulation in sows can 
negatively affect embryo development and survival during gestation 
(27). However, in this study, genistin was found to significantly reduce 
the number of stillbirths and mummies, corroborating earlier findings 
in sows (28).

Estrogen and progesterone are two important hormones that 
regulate reproductive processes in mammals (29). During gestation, it 
can promote embryo implantation and development, inhibit uterine 
contraction, and ensure the safe development of the fetus (8, 30, 31). 
Inadequate estrogen production is more likely to result in fetal loss 
during gestation (32). Previous research has indicated that dietary 
daidzein supplementation can result in a significant increase in serum 
progesterone and estrogen levels by the 35 days of gestation (22). 
However, this study showed that dietary genistin supplementation had 
no significant effect on progesterone and estrogen on either 35 days or 
85 days of gestation. This discrepancy may be  attributed to several 

TABLE 3  Effects of dietary supplementation with genistin on reproductive performance and feed intake of sows.

Item Control1 (n =  31) Genistin2 (n =  34) SEM p-value

Total born, n 15.19 16.13 0.73 0.207

Live born, n 13.76b 15.23a 0.63 0.016

Healthy piglets per litter3, n 12.97 13.83 0.47 0.058

Weak piglets per litter4, n 0.63 0.70 0.21 0.713

Mummified and stillborn, n 1.03a 0.52b 0.24 0.041

Average litter weight, kg 20.68 21.14 0.76 0.544

Average weight of live born piglets, kg 1.48a 1.35b 0.05 0.005

Duration of farrowing5, min 229.48 202.04 18.11 0.136

Total feed intake, kg 274.00b 282.20a 1.73 <0.001

ADFI6, kg 2.57b 2.63a 0.02 <0.001

1Control, sows were fed with a basal diet.
2Genistin, sows were fed a basal diet supplemented with 150 mg/kg of genistin.
3Healthy piglets refer to piglets with body weight ≥0.9 kg.
4Weak piglets refer to piglets with body weight <0.9 kg.
5The farrowing duration was recorded. The duration of farrowing means the time from the birth of the first piglet to the expulsion of all placentas.
6ADFI, average daily feed intake.
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factors: (I) distinct mechanisms of action between genistin and daidzein; 
(II) variances in animal species, dosages, and physiological states. 
Insulin-like growth factor 1 (IGF-1) has a positive regulatory effect on 
the supply of fetal glucose, affecting the transport of glucose and amino 
acids in the placenta, and is also an important factor in determining fetal 
size (33). IGF-I also plays an important role in controlling skeletal muscle 
growth (34, 35). In the present study, we found that genistin had no 
significant effect on serum IGF-1, probably because the 35 days of 
gestation and the 85 days of gestation were not the peak period of IGF-1 
secretion. Studies have shown that the serum concentration of IGF-1 in 
sows at 10–12 days of gestation is the highest (36). The uterus or placenta 
of a sow can also produce IGF-1. By detecting the transcript abundance 
of IGF-1 gene in placental tissue, it was found that genistin significantly 
increased the relative expression of IGF-1, which was similar to the 
results of daidzein treatment (22). It is hypothesized that genistin may 
increase the transfer of maternal nutrients to the fetus and reduce the 
incidence of mummification and stillbirth by enhancing the expression 
of the IGF-I gene. Late gestation is an important period of fetal 

development. During this period, the mother needs to increase feed 
intake and fat deposition to meet the energy needs of fetal growth. Leptin 
is a key hormone involved in the body’s regulation of energy balance. A 
high concentration of leptin acts on the hypothalamus, leading to a 
decrease in animal feed intake (37). The present study found that genistin 
had a decreasing trend in serum leptin content on the 85 days of 
gestation, which may have the effect of promoting feed intake in sows 
and increasing nutrient supply to the fetus in the later stages of gestation.

Serum metabolites serve as indicators reflecting the nutritional 
metabolic status in animals. Abnormal lipid metabolism often leads to 
increased lipid levels and increases the susceptibility of polyunsaturated 
fatty acids to free radical oxidative damage, thereby affecting the 
reproductive performance of animals (38). Studies have shown that 
TC and LDL-C are related to the occurrence of preterm birth, TC 
concentration is negatively correlated with the occurrence of preterm 
birth, and high concentration of LDL-C in the third trimester of 
pregnancy may also lead to the occurrence of preterm birth (39, 40). 
In this experiment, by measuring the concentration of serum 

TABLE 4  Effects of dietary supplementation with genistin on serum hormones and metabolite levels of sows.

Item Control1 Genistin2 SEM p-value

Day 35 of gestation

E2, pmol/L 135.37 140.28 6.41 0.384

PROG, pmol/L 1746.48 1877.01 17.90 0.845

LEP, ng/L 2278.47 2267.55 29.96 0.724

IGF-1, μg/L 19.73 18.84 0.71 0.240

TP, g/L 66.85 68.87 4.71 0.685

ALB, g/L 27.85 28.71 0.85 0.337

GLU, mmol/L 3.03 3.00 0.22 0.915

BUN, mmol/L 3.20 3.34 0.42 0.721

TG, mmol/L 0.33 0.40 0.08 0.408

TC, mmol/L 1.73 1.64 0.24 0.742

HDL-C, mmol/L 0.96 1.00 0.06 0.578

LDL-C, mmol/L 0.89 0.83 0.13 0.659

Day 85 of gestation

E2, pmol/L 125.70 133.31 4.98 0.158

PROG, pmol/L 1837.96 1796.27 77.78 0.604

LEP, ng/L 2484.88 2414.05 34.90 0.073

IGF-1, μg/L 20.60 21.18 0.38 0.176

TP, g/L 69.23 67.32 3.59 0.663

ALB, g/L 31.74 27.9 2.30 0.126

GLU, mmol/L 3.46 3.32 0.13 0.339

BUN, mmol/L 4.08 3.60 0.38 0.233

TG, mmol/L 0.44 0.47 0.06 0.605

TC, mmol/L 1.63 1.40 0.12 0.081

HDL-C, mmol/L 0.90 0.79 0.11 0.367

LDL-C, mmol/L 0.75 0.65 0.05 0.096

E2, estradiol; PROG, progesterone; LEP, leptin; IGF-1, insulin-like growth factor-1; TP, total protein; ALB, albumin; GLU, glucose; BUN, blood urea nitrogen; TG, triglyceride; TC, total 
cholesterol; HDL-C, high density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol.
1Control, sows were fed with a basal diet.
2Genistin, sows were fed a basal diet supplemented with 150 mg/kg of genistin.
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metabolites, it was found that dietary genistin supplementation trend 
to decrease the total cholesterol (TC) and low-density lipoprotein 
cholesterol (LDL-C) in serum metabolites of pregnant sows on the 
85 days. It is concluded that genistin may reduce the incidence of 
miscarriage by reducing serum TC and LDL-C concentrations.

Oxidative stress in animals is often accompanied by inflammatory 
response, which is characterized by over-expression of 
pro-inflammatory factors and activation of the immune system (41). 
In the rat model of myocardial ischemia-reperfusion injury, it was 
found that 40–60 mg/kg genistin could significantly reduce the levels 
of TNF-α, IL-6 and IL-8 in serum (42). Another experiment showed 
that different doses of genistin significantly reduced the production of 
TNF-α, IL-1β and IL-6  in serum of rats (43). IL-10 is an anti-
inflammatory factor and IFN-γ is a lymph factor with a wide range of 
immunomodulatory effects. In the present study, we found that genistin 
could significantly increase the levels of IL-10 and IFN-γ in the serum 
of sows on the 35 days of gestation. At the same time, it was found that 
genistin could significantly increase the content of IgA, IgM and IgG in 
the serum of sows during the 35 days of gestation, and IgM in the 
serum of sows on the 85 days of gestation had an increasing trend. 
These are similar to the results that dietary supplementation of 40 mg/
kg genistein can significantly increase the content of IgM and IgG in 
the serum of broilers at 21 days of age (44), and diets were supplemented 
with 200 mg/kg daidzein can significantly increase the content of IgG 
in the serum of sows on the 35 days of gestation (22). Therefore, it is 
speculated that genistin can reduce inflammation and improve 
immunity by increasing the content of IL-10, IFN-γ, IgA, IgM and IgG 
in serum, so as to improve the reproductive performance of sows.

TABLE 5  Effects of dietary supplementation with genistin on serum immunoglobulin and cytokines of sows.

Item Control1 Genistin2 SEM p-value

Day 35 of gestation

IgA, μg/mL 40.38b 45.27a 1.77 0.022

IgG, μg/mL 243.85b 289.73a 19.28 0.039

IgM, μg/mL 29.54b 34.66a 1.13 0.002

IL-1, ng/L 75.89 79.69 2.30 0.133

IL-6, ng/L 774.58 838.88 43.75 0.172

IL-10, ng/L 89.88b 124.07a 8.29 0.002

IFN-γ, pg/mL 1345.37b 1886.92a 98.97 <0.001

TNF-α, pg/mL 273.49 307.36 25.12 0.208

Day 85 of gestation

IgA, μg/mL 45.40 45.63 1.84 0.904

IgG, μg/mL 258.83 259.84 15.29 0.949

IgM, μg/mL 30.34 35.19 2.43 0.098

IL-1, ng/L 94.45 96.29 5.48 0.744

IL-6, ng/L 890.03 902.54 43.77 0.781

IL-10, ng/L 100.66 110.60 8.29 0.258

IFN-γ, pg/mL 1756.15 1899.31 109.31 0.244

TNF-α, pg/mL 240.89 251.52 7.62 0.206

IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; IL-1, interleukin-1; IL-6, interleukin-6; IL-10, interleukin-10; IFN-γ, interferon-g; TNF-α, tumor necrosis 
factor-α.
1Control, sows were fed with a basal diet.
2Genistin, sows were fed a basal diet supplemented with 150 mg/kg of genistin.

TABLE 6  Effects of dietary supplementation with genistin on serum 
antioxidant indexes of sows.

Item Control1 Genistin2 SEM p-value

Day 35 of gestation

SOD, U/mL 243.69 222.47 24.49 0.407

MDA, 

nmol/mL

1.78 2.08 0.41 0.482

GSH-Px, 

U/mL

3655.23 3886.09 251.25 0.389

CAT, U/mL 0.58b 1.13a 0.20 0.029

T-AOC, U/

mL

1.69 0.81 0.61 0.209

Day 85 of gestation

SOD, U/mL 246.68 239.23 22.64 0.749

MDA, 

nmol/mL

3.71 3.91 0.69 0.776

GSH-Px, 

U/mL

4404.07 4612.48 152.00 0.200

CAT, U/mL 1.55 1.17 0.38 0.335

T-AOC, U/

mL

2.14 2.25 0.58 0.859

SOD, superoxide dismutase; MDA, malondialdehyde; GSH-Px, glutathione peroxidase; CAT, 
catalase; T-AOC, total antioxidant capacity.
1Control, sows were fed with a basal diet.
2Genistin, sows were fed a basal diet supplemented with 150 mg/kg of genistin.
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In the gestation stage, due to the rapid development needs of the 
fetus and envir that genistin has a scavenging effect on superoxide anion 
(O2

−) and 200 μM concentration is equivalent to 0.08 U/mg superoxide 
dismutase (45). In the rat model of myocardial ischemia-reperfusion 
injury, it was found that 40–60 mg/kg genistin onmental factors, it may 
cause metabolic disorders in pregnant sows and produce excessive free 
radicals in the body, resulting in oxidative stress in rat (46, 47). Free 
radicals can be  scavenged by antioxidant enzymes such as SOD, 
GSH-Px and CAT (48). Genistin has been proved to have antioxidant 
properties. Previous studies have shown genistin could significantly 
increase the concentration of CAT, SOD and GSH and significantly 
reduce the concentration of MDA in serum (42). In the present study, 
we found that genistin supplementation could significantly increase the 
concentration of CAT in the serum of sows on the 35 days of gestation, 
indicating that genistin could also play an antioxidant role in sows. 
Therefore, genistin may improve the antioxidant capacity in early 
pregnancy and improve the reproductive performance of sows.

The placenta has a crucial role in fetal growth by facilitating the 
exchange of gases, nutrients, and metabolites between the mother and 
the fetus (49). Both pro-inflammatory and anti-inflammatory cytokines 
are produced by the placenta, and the overproduction of these cytokines, 
such as IL-1β, is linked to the development of gestational complications 
(50). Studies have found that IL-1β is more capable of inducing apoptosis 
of fetal membrane cells than IL-6, and then affecting fetal development 
(51). The present study found that dietary genistin supplementation 

significantly decreased the transcript abundance of IL-1β in the placenta 
of sows. It is inferred that genistin can reduce the fetal inflammatory 
response by reducing the transcript abundance of IL-1β gene in the 
placenta, thereby reducing the fetal death. H19 and IGF-2 are maternal 
and paternal imprinted genes, respectively. Placental imprinted genes 
can regulate placental nutrient transport and are the main regulators of 
placental development and fetal growth. In general, maternally 
imprinted genes inhibit fetal growth, while paternal imprinted genes 
promote fetal growth (52–54). In the present study, we  found that 
genistin supplementation significantly reduced the transcript abundance 
of H19 gene in placental tissue of sows, but had no significant effect on 
the transcript abundance of IGF-2 gene, indicating that genistin may 
affect the transcript abundance of placental imprinting gene H19 gene 
to reduce the inhibition of fetal growth. Both SNAT2 and SNAT4 are 
amino acid transporter genes that are crucial for transporting both 
essential and non-essential amino acids from the mother to the fetus 
(55). In the current study, genistin supplementation significantly 
increased the gene expression of SNAT2 and SNAT4 in placental tissue. 
Therefore, it is presumed that genistin can aid in the deposition and 
growth of fetal proteins by facilitating the transfer of amino acids from 
the mother to the fetus. In summary, genistin may promote fetal growth 
and ensure fetal health by affecting the transcript abundance of 
inflammatory genes, placental imprinting genes and nutrient transport 
genes to improve the reproductive performance of sows.

Conclusion

In conclusion, these results suggest that genistin can be used as an 
effective additive to improve the reproductive performance of sows. 
The benefits of genistin supplementation may be  attributed to 
enhanced immune and antioxidant capacity, as well as regulation of 
placental essential genes.
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