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Large languagemodels (LLMs) can extract information from veterinary electronic

health records (EHRs), but performance di�erences between models, the e�ect

of hyperparameter settings, and the influence of text ambiguity have not

been previously evaluated. This study addresses these gaps by comparing

the performance of GPT-4 omni (GPT-4o) and GPT-3.5 Turbo under di�erent

conditions and by investigating the relationship between human interobserver

agreement and LLM errors. The LLMs and five humans were tasked with

identifying six clinical signs associated with feline chronic enteropathy in 250

EHRs from a veterinary referral hospital. When compared to the majority opinion

of human respondents, GPT-4o demonstrated 96.9% sensitivity [interquartile

range (IQR) 92.9–99.3%], 97.6% specificity (IQR 96.5–98.5%), 80.7% positive

predictive value (IQR 70.8–84.6%), 99.5% negative predictive value (IQR 99.0–

99.9%), 84.4% F1 score (IQR 77.3–90.4%), and 96.3% balanced accuracy (IQR

95.0–97.9%). The performance of GPT-4o was significantly better than that of its

predecessor, GPT-3.5 Turbo, particularly with respect to sensitivity where GPT-

3.5 Turbo only achieved 81.7% (IQR 78.9–84.8%). GPT-4o demonstrated greater

reproducibility than human pairs, with an average Cohen’s kappa of 0.98 (IQR

0.98–0.99) compared to 0.80 (IQR 0.78–0.81) with humans. Most GPT-4o errors

occurred in instanceswhere humans disagreed [35/43 errors (81.4%)], suggesting

that these errors were more likely caused by ambiguity of the EHR than explicit

model faults. Using GPT-4o to automate information extraction from veterinary

EHRs is a viable alternative to manual extraction, but requires validation for the

intended setting to ensure accuracy and reliability.

KEYWORDS

machine learning, artificial intelligence, generative-pretrained transformers, Chat-GPT,
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1 Introduction

Efficient, accurate, and scalable methods for extracting information from electronic

health records (EHRs) are essential for conducting retrospective studies in veterinary

medicine. Inaccurate information extraction can introduce bias and lead to inappropriate

conclusions (1). Veterinary EHRs commonly lack standardized diagnostic codes, making
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automated information extraction challenging. This limitation has

been identified as a barrier for leveraging routinely collected animal

health data (Real-World Data) as a source for clinical evidence

(Real-World Evidence) for veterinary medicine (2). Manual review,

the current gold-standard for extracting information from free

text, is time-consuming, tedious, and error-prone. In addition,

there is a limit to the number of EHRs a human can assess,

which hinders large-scale information extraction. Introducing an

automated filtering step before the manual review can improve the

efficiency and sensitivity of information extraction (3). Key-word

searches, commonly used as a pre-filtering step, are a crude tool

and risk excluding relevant EHRs. Rule-based programming (e.g.,

regular expressions) and supervised machine learning have shown

improved classification performance over key-word searches (3).

However, these methods are costly to develop, require large

amounts of labeled data, and generalize poorly across different

institutions and conditions. In addition, they require fine-tuning

and retraining for new tasks, making them impractical for small

observational studies (3).

A new and rapidly evolving tool for information extraction is

the use of large language models (LLM), a form of unsupervised

machine learning that can predict the next element in a text

sequence after being trained on a large amount of unlabeled text

(4). Early LLMs used a semi-supervised approach, where models

trained on unlabeled text could be fine-tuned on labeled text for

specific tasks (4). Modern LLMs can solve new tasks with few or no

labeled training examples (5). However, LLMs can produce true-

sounding falsehoods (hallucinations) or exhibit reasoning errors

(6, 7). A recent study demonstrated good performance of GPT-

3.5 Turbo for extracting information from veterinary EHRs (8).

However, the performance of GPT-3.5 Turbo was not compared to

that of other models, the nature of errors was not explored, and

the influence of hyperparameter settings and text ambiguity were

not assessed (8). Identifying the strengths, weaknesses and cost of

different models is important for model selection. Understanding

the cause of errors and the context in which they occur is

crucial for optimizing model performance, and for setting of

realistic expectations.

The objective of this study was to assess the classification

performance and reproducibility of GPT-4 omni (GPT-4o) for

identifying six clinical signs associated with feline chronic

enteropathy (FCE) from EHRs. In addition, we compare the

classification performance of GPT-4o to that of GPT-3.5 Turbo,

compare the reproducibility of GPT-4o to human respondents

under different conditions and investigate the relationship between

human interobserver agreement and LLM errors.

2 Methods

2.1 Study design and sample size

Constructed as a retrospective cross-sectional study, the sample

size was determined to estimate the sensitivity of a single test

(9). The calculations accounted for a type I error rate of 5%,

an acceptable margin of error of 7%, an expected sensitivity of

95% and an expected prevalence of 15%. Methods for prevalence

estimation are detailed in the Supplementary material S1 and

prevalence estimates for each clinical sign are available in

Supplementary Table S1.

2.2 Case material

A test set consisting of 250 EHRs was sampled from all feline

visits at the Veterinary Medical Teaching Hospital (VMTH) at

University of California Davis, between 1985 and 2023. EHRs

without text in the “Pertinent history field” or those used for study

planning were excluded. EHRs for patients already represented

in the test set were also excluded and replaced with resampled

EHRs. The EHRs in the test set included only the admission date,

presenting complaint, and pertinent history field from the original

EHRs. The EHRs were manually deidentified by redacting possibly

identifying information (see Supplementary material S2).

Pilot sets, used for initial prevalence estimation, and a tuning

set, used to refine prompts andmodel parameters, were used during

the study planning phase. These sets were distinct from the test

set and are outlined in detail in Supplementary material S3 and

Supplementary Figure S1.

2.3 Software, data type classification,
scripts, and packages

The test set EHRs were analyzed using GPT-4o and GPT-

3.5 Turbo (Open AI, San Francisco, CA, USA) accessed through

Microsoft Azure’s Open AI Application Programming Interface

(API) (Microsoft Azure Redmond, WA, USA) provided by

UC Davis AggieCloud Services. The account was commissioned

based on a data type classification of “De-identified patient

information (with negligible re-identification risk)”, a Protection

Level Classification of P2 and an Availability Level Classification

of A1 in accordance with UC Davis’ Information Security Policy 3

(IS-3) (request RITM0074868). IS-3 is based on security standards

ISO 27001 and 27002 and supports cybersecurity compliance

requirements NIST 800-171, PCI, and HIPAA.

The analysis was conducted using a custom Python script

(10) that leveraged the chat-completion endpoint with API

version 2024-02-01. The script utilized Python’s standard library

(11), as well as the openai (12) and tiktoken (13) packages.

Human respondents accessed the test set EHRs through a custom

online survey (Qualtrics, Provo, UT, USA). All data analysis and

statistical computations and visualizations were conducted using R

programming language within the RStudio integrated development

environment (14, 15). The custom R scripts were supported by a

range of open-source packages for data science (16, 17), data import

and data export (18–20), statistics (21, 22), and visualization (23–

25). All scripts used in this study are available at GitHub (https://

github.com/ucdavis/llm_vet_records).

2.4 Model tasks and prompt engineering

Respondents (humans and LLMs) were asked to perform two

tasks: (1) Determine whether an EHR mentioned the presence
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of six clinical signs associated with FCE (classification task) and

(2) cite pertinent sections of the EHR supporting the decision

(citation task). Detailed instructions for both tasks were developed

through iterative evaluation and adjustment (prompt engineering),

informed by human and GPT-4o responses to the tuning set. The

prompt used for LLM analysis only differed from the instructions

provided to human respondents in the specific instructions to

output the response in a JSON format.

2.4.1 Classification of presence of clinical signs
The clinical signs associated with FCE were selected based

on a recent diagnostic consensus statement (26) and included

decreased appetite, vomiting, weight loss, diarrhea, constipation

and polyphagia. The instructions specified that a “current”, or

“recently present” clinical sign qualified as “present” and allowed

answers were “true” or “false”. A precise time cut-off for what was

considered “recent” was not provided as preliminary experiments

indicated that such a criterion led to false negative results for

intermittent signs (see Supplementary material S4).

2.4.2 Citation of supporting text
To trace respondent decisions for classification error analysis,

respondents were instructed to cite pertinent sections of the

EHR. The instructions specified that only copy-pasted text

should be provided, each text section should be enclosed in

quotation marks, different portions of the text should be separated

by white space, and ellipses should not be used to shorten

the text.

2.5 EHR analysis

2.5.1 EHR analysis by LLM
The Azure Open AI API allows setting a “temperature” value

between 0 and 2, where a temperature of 0 produces the most

likely response, while higher values prompt the model to generate

more varied and creative outputs (27). The test set was analyzed

at temperatures 0, 0.5, and 1, which were chosen based on initial

experiments that showed high failure rates and invalid JSON

formats at temperatures 1.5 and 2 (Supplementary Figure S2). Each

analysis was repeated five times at each temperature setting. In

addition to question responses and text citations, the time to

complete and the cost were documented.

2.5.2 EHR analysis by humans
The test set records were analyzed by five human respondents:

two veterinary students (who had completed their second and third

years of study, respectively), and three veterinarians (one recent

graduate and two with 2-years post-graduate experience each). The

humans were blinded to each other’s responses and to the responses

of the LLMs.

2.6 Assessment of classification
performance

The majority opinion (mode) of human responses was

considered the reference standard and the mode of the LLM

responses was classified as either a true positive, false positive, true

negative, or false negative. For each clinical sign, sensitivity (also

referred to as “recall”), specificity, positive predictive value (PPV)

(also referred to as “precision”), and negative predictive value

(NPV) were calculated and reported along with 95% confidence

intervals, using the “Wilson” method (28). The F1 score (the

harmonic mean of sensitivity and PPV) and balanced accuracy

(the arithmetic mean of sensitivity and specificity) were computed.

To summarize classification performance across clinical signs, the

median and interquartile range (IQR) were reported for each

performance metric. The statistical significance of differences in

responses between GPT-4o and GPT-3.5 Turbo at temperature 0,

as well as between different temperature settings of GPT-4o was

assessed with McNemar’s chi square test with continuity correction

and 1 degree of freedom.

2.7 Assessment of reproducibility

Reproducibility was analyzed for both human respondents

and repeated runs of GPT-4o. Cohen’s Kappa was calculated

separately for each unique pair of respondents and averaged

across human pairs and pairs of repeated GPT-4o runs at

each temperature.

2.8 Assessment of compliance with
instructions

Compliance with instructions was assessed in three main areas:

(1) adherence to output format instructions, (2) providing a true or

false response to classification questions, and (3) following citation

instructions (citation compliance). The responses generated by

the LLMs were assessed for all three areas, while human

responses were only evaluated for citation compliance (see

Supplementary material S5).

2.9 Assessment of classification errors

All instances where the mode LLM response differed from

the majority opinion (mode) of human respondents were

considered errors. If discrepant responses cited the same text

sections, the cause of error was assumed to be a difference in

interpretation (interpretation discrepancy). If the citations differed,

it was assumed that some respondents missed relevant sections

(citation discrepancy).

Additionally, errors were further categorized based on

ambiguity in the alignment between the description of the clinical

sign in the EHR and its definition. If the description could
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not be conclusively interpreted as meeting or not meeting the

qualitative definition of a clinical sign, the error was classified

as “qualitative ambiguity”. Similarly, if the timing or chronology

described in the record could not be conclusively aligned with

the temporal definition of a clinical sign (e.g., distinguishing

between a historic vs. present sign), the error was classified as

temporal ambiguity.

3 Results

3.1 Case material

The test set consisted of 250 EHRs from cat visits occurring

between 1991 and 2023 and ranging in word length from 3

to 1262. Although all feline EHRs between 1985 and 2023

were initially considered, no EHRs prior to 1991 contained

text in the “Pertinent History” section of the report and

were thus excluded. The flow of EHR selection is depicted in

Supplementary Figure S1.

3.2 Classification performance

The performance metrics were computed using the majority

opinion of human respondents as a reference standard. The

sensitivity specificity, balanced accuracy and NPV for GPT-4o

averaged over 96% across clinical signs, regardless of temperature

(Figure 1). The average PPV and F1 scores were lower (80.7% and

84.4% respectively at temperature 0) due to GPT-4o errors being

dominated by false positives.

The temperature setting did not significantly impact the

classification performance (Temperature 0 vs. temperature 0.5: χ2

= 0.9, p-value = 0.34; temperature 0 vs. temperature 1: χ2
= 1.07,

p-value = 0.3, temperature 0.5 vs. temperature 1: χ2
= 0, p-value

= 1). GPT-3.5 Turbo performed significantly worse than GPT-4o

at temperature 0 (χ2
= 29.9, p-value < 0.0001), particularly for

sensitivity (81.7%, IQR 78.9–84.8%).

The average (median) performance metrics for GPT-

4o and GPT-3.5 Turbo, across all clinical signs, are

reported together with interquartile ranges (IQRs) in

Supplementary Table S2.

3.3 Reproducibility

The interobserver agreement of GPT-4o responses across

consecutive runs decreased at higher temperature settings yet

remained higher than human interobserver agreement even

at the highest temperature setting (Figure 2A). The average

Cohen’s kappa between repeated runs of GPT-4o ranged from

0.98 at temperature 0 to 0.93 at temperature 1, while the

average Cohen’s kappa between human respondents was 0.8.

Supplementary Table S3 contains the summary statistics as well as

Cohen’s Kappa per pair of respondents for human respondents and

repeated runs of GPT-4o at each temperature.

3.4 Compliance with instructions

Unlike preliminary experiments at temperatures 1.5 and

2.0 (Supplementary Figure S1), GPT-4o produced outputs for all

questions and maintained correct JSON format for over 99% of

questions at temperatures 0, 0.5, and 1.0. All output with incorrect

JSON format were manually corrected. GPT-4o adhered to the

instructions to provide “true” or “false” answers in over 99.9%

of classification questions across all temperatures. However, it

responded with “NA” to one question at temperature 0 and two

questions at temperature 1. Compliance with citation instructions

decreased as temperatures increased for GPT-4o (Figure 2B).

Human respondents complied with citation instructions less

often than GPT-4o at temperature 0 but more frequently

than GPT-4o at temperature 0.5 and 1. Supplementary Table S4

contains details on compliance with instructions for GPT-4o and

human respondents.

Citations for both human respondents and GPT-4o at

temperature 0 that did not exactly match the EHR text were

manually reviewed. All discrepancies were attributed to either

minor deviations in quotations, capitalization, punctation or

spacing, shortening of the text, paraphrasing, or including the

question or field name in the response. No hallucinations (citations

not present in the EHR) were detected. Supplementary Table S5

contains details on discrepancies between citations and

EHR texts.

Only one instance of a citation by GPT-4o at temperature 0

altered themeaning of the text: the EHR stated “occasionally strains

in litter box to defecate, no diarrhea” but GPT-4o shortened this

to “occasional diarrhea”. Despite this change, GPT-4o correctly

classified the case as “false” for diarrhea, indicating that the

misquotation did not affect the classification outcome.

3.5 Classification errors

The mode response of repeated runs of GPT-4o at temperature

0 differed from the majority opinion response of the five human

respondents in 43 out of 1,500 questions (2.9%) (Figure 3A). Most

errors were false positives [35 out of 43 total errors (81.4%)]. All

human and GPT-4o responses at all temperatures are depicted in

Supplementary Figures S3–S8.

Most GPT-4o errors [35 out of 43 total errors (81.4%); 35

out of 1,500 questions (2.3%)] occurred in questions where at

least one human assessor disagreed with the human majority,

indicating potential ambiguity regarding the clinical sign in the

EHR (Figure 3B). In 22 of these errors [51.2%; 22 out of 1,500

questions (1.5%)], two human respondents disagreed with the

human majority opinion and sided with GPT-4o. In 13 errors

[30.2%; 13 out of 1,500 questions (0.9%)], one human assessor

disagreed with the majority opinion and sided with GPT-4o. Only

eight errors [18.6%; eight out of 1,500 questions (0.5%)] involved

GPT-4o responding incorrectly to a question where all human

respondents agreed. For instance, an EHR noting “owner found a

spit-up phenobarbital pill on the ground” led all GPT-4o runs to

answer “true” for vomiting, while all human respondents answered

“false”, not citing the text section.
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FIGURE 1

Classification performance metrics of GPT-4 omni (GPT-4o) for extracting the presence or absence of six clinical signs at di�erent temperatures.

Classification performance metrics for each clinical sign was computed by comparing the mode of GPT-4o responses from five repeated runs at

each temperature to a reference standard composed of the majority opinion (mode) of five human respondents. Note the wide confidence intervals

of classification performance metrics for three clinical signs of low prevalence in the test set (diarrhea, constipation, and weight loss) hindering

interpretation of subtle variations of classification performance estimates across temperatures for these clinical signs. Error bars represent 95%

confidence intervals. F1 scores and balanced accuracy are derivatives of sensitivity, specificity, and positive predictive value (PPV); therefore, are

reported without confidence intervals. NPV, negative predictive value; PPV, positive predictive value.

Interpretation errors, i.e., errors where humans and GPT-4o

cited the same text but answered differently were more common

than citation errors where humans and GPT-4o cited different text

(Figure 3B) [32/43 (74.4%) vs. 11/43 errors (25.6%) of total errors].

Interpretation errors arose more frequently from EHR texts

with temporal ambiguity than from EHR texts with qualitative

ambiguity [22/32 (68.8%) vs. 10/32 (31.2%) of interpretation

errors]. For example, an EHR noting a cat was “polyphagic” at a

previous visit, but “eating less” after treatment, leading to mixed

responses among human respondents due to temporal ambiguity.

In contrast, an EHR describing a cat with “1 bowel movement

consisting of a hard, crusty piece of feces covered with a softer, outer
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FIGURE 2

Interobserver agreement and citation compliance for humans and GPT-4 omni (GPT-4o) at di�erent temperatures. GPT-4o, GPT-4 omni. (A)

Interobserver agreement. Cohen’s Kappa was calculated for each unique pair of human respondents, and repeated runs of GPT-4o at di�erent

temperatures. GPT-4o showed a decline in agreement between consecutive runs at higher temperatures yet maintained higher agreement than

human respondents even at the highest temperature. (B) Citation compliance. Citation compliance was assessed by ensuring each citation was

properly enclosed in quotes, separated by white-space and matched exactly with the electronic health record (EHR) text. GPT-4o had slightly higher

compliance than humans at temperature 0, but its compliance decreased at temperatures 0.5 and 1, falling below that of human respondents.

layer” led to mixed responses among humans for constipation due

to qualitative ambiguity.

While some citation errors involved EHRs with qualitative

or temporal ambiguity, others did not, suggesting that some

respondents overlooked relevant sections of the text (Figure 3B).

For example, an EHR noting, “weight 6/30/01 16.5 lb, weight 11/00

20.5 lb” led two out of five humans (and all GPT-4o runs) to answer

“true” for weight loss, while three out of five humans answered

“false” without citing the text. Notably, most of these instances

involved the majority of human respondents answering “false”

while GPT-4o answered “true”, suggesting that some errors might

reflect flaws in the human majority opinion rather than true GPT-

4o errors. Only one instance involved GPT-4o missing an explicit

mention of a clinical sign that the majority of humans did not,

indicating that GPT-4o was better at identifying relevant portions

of the text then human respondents.

3.6 Time and cost

GPT-3.5 Turbo analysis was quicker and cheaper than GPT-

4o analysis. The median time and cost per EHR were 1.6 s (IQR

1.4–1.9 s) and 0.07 US cents (IQR 0.06–0.08 cents) for GPT-3.5

Turbo and 2.5 s (IQR 1.9–3.3 s) and 0.7 US cents (IQR 0.7–0.9)

for GPT-4o.

4 Discussion

This study demonstrated a high classification performance of

the LLM GPT-4o in identifying clinical signs consistent with FCE

in EHRs from a single veterinary referral hospital. The findings

indicate near perfect sensitivity and negative predictive value, an

outcome favorable for the intended use of the model as a screening

tool. These results align with two previous studies that analyzed

the classification performance of GPTmodels using humanmanual

review as the reference standard. One of the studies used GPT-

3.5 Turbo to identify cases of obesity in veterinary medical EHRs,

reporting a sensitivity of 100% (8), while another study with a

previous version of GPT-4 (1106) achieved a 97% sensitivity in

identifying comorbidities in human cancer patient EHRs (29). In

both these studies, as well as the current one, errors were dominated

by false positives, where the LLM indicated a clinical sign as present

while the human reviewer considered it absent, resulting in lower

PPVs and F1 scores.

In addition to an excellent classification performance, this study

demonstrated good reproducibility, which was higher between

repeated runs of GPT-4o than human respondents, regardless of

temperature settings. At temperature 0, average Cohen’s Kappa

for repeated runs of GPT-4o approached perfect agreement,

suggesting that a single analysis run is sufficient and that

averaging the results over multiple runs may not be necessary

at this temperature. In contrast to previous studies, this study

employed multiple human reviewers, which enabled the evaluation

of interobserver agreement, and the identification of challenging

records characterized by low levels of consensus among reviewers.

Increasing the temperature did not negatively affect

classification performance but reduced reproducibility and

compliance, suggesting that lower temperature settings are better

suited for this analytic task. Since the temperature setting cannot

be adjusted in the web-based versions of ChatGPT, reproducing

the experiments conducted in this study would require the use of

an API interface.

Most GPT-4o errors occurred in instances where human

respondents disagreed, suggesting that many of these errors

were “reasonable interpretations” of ambiguous information. The

majority of disagreements among human respondents involved

temporal ambiguities. Notably, respondents were asked to assess

the “presence” of a clinical sign and that a “current”, or “recently

present” clinical sign qualified as “present”. Supplying a more

stringent definition of “presence”, such as including time cut-offs

for “current” or “recent”, might have reduced the frequency of

errors. However, this approach was ultimately dismissed to avoid
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FIGURE 3

Classification errors by GPT-4 omni (GPT-4o) at temperature 0. All questions where the mode GPT-4o classification response disagreed with the

majority opinion (mode) of human respondents were considered errors. (A) Human and GPT-4o responses. Five human respondents and five

repeated runs of GPT-4o responded to questions on the presence of six clinical signs. False positive errors (instances where GPT-4o answered “true”

and the majority of humans answered “false” were more common than false negative errors. Blue, true; Orange, false; white, NA; GPT-4o, GPT-4

omni; Temp, temperature. (B) Classification errors. Most errors occurred in questions where at least one human respondent disagreed with the

majority opinion. Interpretation errors were more common than citation errors. For interpretation errors, temporal ambiguity was more common

than qualitative ambiguity. Some citation errors involved electronic health records without ambiguity, suggesting that some respondents overlooked

relevant sections of the text.

the systematic exclusion of chronic intermittent clinical signs,

which are vital for identifying FCE.

The varying experience level of human respondents (students

and veterinarians) may have contributed to interobserver

variability. However, at our institution, manual review of EHRs for

retrospective studies is often assigned to students, making their

inclusion representative of real-world practice. In our experience

students’ caution and attention to detail can offset their lack

of experience and may even surpass veterinary specialists in

record review.

Although the classification performance of human reviewers

cannot be assessed when using human reviewers as a reference

standard, some discrepant responses arose from humans missing

relevant sections of the text. Similarly to a previous study (29),
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failing to cite explicit mentions of a clinical sign was much rarer for

GPT-4o than humans suggesting that in some instances, GPT-4o

may exceed human sensitivity.

These findings also highlight a broader issue: human reviewers,

while serving as the reference standard, are not infallible. Any

discrepancies between GPT-4o and human responses may reflect

differences from an imperfect standard rather than definitive model

failures. To address this issue, we complemented performance

metrics with a detailed error analysis. This approach provided

a more nuanced understanding of presumed model errors and

revealed instances where ambiguities in the EHR, rather than true

model errors accounted for the observed differences.

Hallucinations, a major concern for utilizing LLMs for

veterinary research (30), were not observed in this study. However,

instances of paraphrasing, shortening, and non-adherence to

instructions for citations occurred even at the lowest temperature

setting of 0. Although these deviations did not affect the GPT-4o

response in any of the observed cases, they underscore that LLMs,

unlike rule-based computer programs, are probabilistic, and may

not always comply with the instructions provided.

In our specific setting, GPT-4o outperformed GPT-3.5 Turbo

but was 10 times more expensive to run. However, it is possible that

the performances of both models are more similar when applied

to other tasks. For instance, Fins et al. (8) achieved near perfect

sensitivity for detection of mentions of obesity with GPT-3.5 Turbo

suggesting that this more cost-efficient model may be sufficient

for some applications. In addition, it is conceivable that LLMs not

tested in the current study perform better than GPT-4o or perform

similarly at lower cost. Open-source LLMs could be particularly

appealing when evaluating large numbers of EHRs, where cost is

a limiting factor.

Only EHRs from a single tertiary referral clinic were included in

this study. The quality of EHRs can vary across different veterinary

settings, and it is unclear if our findings would generalize to less

detailed records. This highlights the importance of validating LLMs

for the specific task and environment in which they are intended to

be used.

In contrast to ChatGPT, the online chat version of GPT, API

applications throughOpenAI orMicrosoft Azure can be configured

to comply with federal privacy regulations for human EHRs.

Previous studies using LLMs for this purpose have relied on de-

identified medical records (8, 29), synthetic data (31) or locally

run open source LLMs (31). While the de-identification of EHRs

is feasible for a dataset size such as used in the current study, de-

identifying larger sets of records might pose a significant barrier

and negate most benefits of using an LLM over manual review.

Although privacy and security regulations are less stringent in

veterinary medicine than in human medicine, obtaining approval

to use these types of applications is an essential point to consider

prior to study execution.

In conclusion, the use of GPT-4o to extract information

from veterinary EHRs can be a reliable alternative to human

manual extraction. While considerations for cost and data privacy

remain, this technology unlocks new possibilities for retrospective

data analysis at a scale previously unattainable. This capability

is critical for transforming routinely collected Real-World Data

into Real-World Evidence to inform clinical practice and research

in veterinary medicine. Future work should focus on scaling up

data mining in veterinary medicine, integrating data from multiple

institutions, and developing guidelines for ongoing validation and

comparison of LLMs in this field.
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