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Surface sterilization of the fertile eggs is a common process for commercial broiler 
breeding to avoid pathogenic bacterial infections before incubation. However, 
it is also possible to remove the beneficial microbes that might contribute to 
the development of chicken embryos. Thus, we established a model to mimic 
surface sterilization in the laboratory by rubbing fertile eggs with 70% ethanol 
and investigated the effect of eggshell surface sterilization on the yolk microbiota 
and its potential role in chicken (Gallus gallus) embryo development. In total, 460 
Ross 308 fertile eggs were randomly divided equally into the eggshell surface 
sterilized group (CS, commercial egg sterilization group) and the eggshell surface 
unsterilized group (CC, commercial egg control group). The shell surface of group 
CS was sterilized with 70% alcohol before incubation (E0, embryonic stage), 
while that of group CC was not sterilized before incubation. At each sampling 
day (E0, E07, E15, and E21), 24 fertile eggs from each of the two groups were 
randomly selected to collect the yolk samples and weigh the embryos. The results 
showed that the surface sterilization of eggshells before incubation improved the 
development of chicken embryos from E15 to E21 but reduced the diversity of the 
yolk microbiota. In the whole process of embryogenesis, the relative abundance 
of Firmicutes, Bacteroidetes, and Actinobacteria in the egg yolk of group CS was 
lower than that of group CC before incubation. Indeed, the surface sterilization 
of fertile eggs significantly reduced the relative abundance of Staphylococcus 
saprophyticus and other pathogenic bacteria in the yolk, which may result in the 
better development of chicken embryos.
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Introduction

Fertile eggs of commercial broilers were commonly sterilized before incubation by 
fumigation to prevent infection from pathogenic bacteria that come from the microbes 
in the maternal oviduct or hindgut (1, 2). However, the bacteria that reside on the shell 
surface of fertile eggs are a large community of microbial populations that play a role in 
shaping the microbiota of the embryo and even the intestine of newly hatched birds (3). 
Early studies showed that surface sterilization did not affect the hatchability of fertilized 
eggs but affected the microbial composition of the fertilized eggs (4, 5). In addition, a 
study compared different fumigation or spraying methods for fertile egg sanitization, but 
the results showed that the disinfected group did not influence the microbiota composition 
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of the yolk sac compared to the non-disinfected group (6). Thus, it 
is still controversial about whether the proper cleaning procedure 
of the fertile eggs would be  beneficial for the colonization of 
microbes in chicken embryos.

Microorganisms present during the embryonic development of 
animals have been proven to serve a great function in interacting 
with embryonic growth by modulating immune responses and 
nutrient exchanges (7, 8). Embryogenesis in avian species is largely 
determined by the nutrients and microbiota deposited in the eggs, 
as they develop separately from the maternal surrogate. Previous 
studies have shown that the administration of antibiotics in the 
diet of breeder hens would result in a decreased growth-promoting 
effect of the antibiotics in post-hatch birds (9, 10). In addition, in 
ovo delivery of prebiotics or synbiotics to developing chicken 
embryos was able to boost gut health and body immunity in post-
hatch chickens (11, 12). Our published data identified several 
microbial metabolites in egg yolk during embryonic development, 
which might indicate that microorganisms in fertile eggs are 
probably involved in nutrient metabolism for embryonic growth 
(13). Therefore, it is worthwhile to reconsider the effects of fertile 
egg sanitization not only on the elimination of anaerobic 
pathogenic bacteria but also on the unexpected loss of the bacteria, 
which might be beneficial to chicken embryo development.

In this study, we  simply stimulated the surface sterilization 
procedure by using 70% alcohol to clean the fertile eggshell before 
incubation and explored the effect of eggshell surface sterilization 
on the microbiota within the egg yolk and its potential role in the 
development of the chicken embryo.

Materials and methods

Animals and sample preparation

A total of 460 undamaged and uniformly sized fertile eggs of 
Ross 308 commercial broilers were purchased from the Shuncheng 
Broiler Breeder Farm (Ningxiang, Hunan). All eggs were collected 
from 35-week-old flocks. The animal procedures in this study were 
approved by the Institutional Animal Care and Use Committee of 
Hunan Agricultural University (GBT2018). The fertile eggs were 
randomly divided equally into group CS and group CC and the 
initial weight was recorded. There was no significant difference in 
the initial egg weight between the two groups of fertile eggs (CS: 
68.37 ± 3.75 g, CC: 67.81 ± 4.17 g, p = 0.135, n = 460). Before 
incubation at 37 ± 0.5°C with 60 ± 5% relative humidity, the shell 
surface of group CS was sterilized with 70% alcohol, while that of 
group CC was not sterilized. The alcohol was sprayed evenly over 
the entire surface of the egg and then wiped clean with sterile 
cotton. After sterilization of each egg, the gloves were sterilized 
with alcohol, followed by the surface sterilization of the eggshell of 
the next egg. A sterile marker (DOTCH Puru Marker) was used to 
number all eggs. The incubators were sterilized by ultraviolet light 
sanitization before use, and the two groups were separated. Eggs 
were transferred to pedigree hatch baskets at E18. Each egg was 
isolated from the others in individual cells in the hatcher tray, thus 
retaining the treatment information of each chick upon 
fertilization. All procedures were performed in a sterile room with 
all the manipulations in a sterile hood. The ventilation system was 

connected to the common environmental air supply without any 
sterilizing treatments. All the eggs were candled at E05 to check the 
fertility and the unfertilized eggs were eliminated. In total, 24 
fertile eggs from each of the two groups were randomly selected to 
collect samples (E0, E07, E15, and E21) and to weigh the embryos 
at the indicated time points (E07, E15, and E21) (3), respectively. 
Chicken embryo growth performance was measured by calculating 
the ratio of chicken embryo weight to initial egg weight. In total, 
12 of these 24 eggs were selected to investigate the microbiota in 
the egg yolk. The eggshell was gently peeled off using a sterile 
tweezer to expose the embryo, and then, the yolk samples (5 mL) 
were collected by puncturing the yolk sac membrane with a syringe 
and homogenized. Subsequently, the abdomens of chicken embryos 
were dissected with a scalpel and then the whole gut samples were 
carefully collected on a 4°C sanitized working bench. The yolk 
samples and gut samples were stored at –80°C after snap freezing 
in the liquid nitrogen. After hatching, the number of hatched 
chickens was recorded to determine the hatchability with the 
following formula: Hatchability = (No. of hatched eggs/No. of 
fertile eggs after sampling) × 100.

DNA extraction and 16  s rDNA sequencing

Approximately 5 mL of egg yolk samples were thawed on ice, then 
put in 10 mL of sterile 1× PBS buffer to remove the excessive yolk fat, 
and centrifuged at 16000 rpm for 5 min, and DNA was extracted from 
yolk samples using the TIANamp Micro DNA Kit (TIANGEN, 
cat#DP316). Total DNA was extracted from homogenized embryonic 
intestinal samples using the TIANamp Stool DNA Kit (TIANGEN, 
cat#DP328), according to the manufacturer’s instructions. The 
concentration and quality of the isolated DNA were assessed by using 
a NanoDrop spectrophotometer (Thermo Scientific, United States). 
Amplicons of the V4 and V5 hypervariable regions of 16S rRNA were 
amplified by using the sample-specific sequence barcoded fusion 
primers (forward 5’-GTGCCAGCMGCCGCGGTAA-3’ and reverse 
5’-CCGTCAATTCMTTTRAGTTT-3’). Sample-specific 7-bp 
barcodes were incorporated into the primers for multiplex sequencing. 
The PCR components contained 5 μL of Q5 reaction buffer (5×), 5 μL 
of Q5 High-Fidelity GC buffer (5×), 0.25 μL of Q5 High-Fidelity DNA 
Polymerase (5 U/μL), 2 μL (2.5 mM) of dNTPs, 1 μL (10 uM) of each 
forward and reverse primer, 2 μL of DNA template, and 8.75 μL of 
ddH2O. Thermal cycling consisted of an initial denaturation at 98°C 
for 2 min, followed by 35 cycles consisting of denaturation at 98°C for 
15 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s, with a 
final extension of 5 min at 72°C. PCR amplicons were purified with 
Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN) and 
quantified using the PicoGreen dsDNA Assay Kit (Invitrogen, 
Carlsbad, CA, USA). 16S rRNA sequencing was performed using the 
Illumina Novaseq_PE250 (Illumina) sequencing platform. Sequencing 
services were provided by Personal Biotechnology Co., Ltd., Shanghai, 
China. The data were analyzed by using the free online platform 
Personalbio GenesCloud1 and a software package for analyzing 
taxonomic or metabolic profiles (STAMP v2.1.3).

1 https://www.genescloud.cn
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Sequence analysis

In total, 13,356,685 high-quality reads were generated for further 
analysis. The Quantitative Insights Into Microbial Ecology (QIIME2, 
2019.4) pipeline was used to process the sequencing data, as previously 
described (14). Briefly, raw sequencing reads with exact matches to the 
barcodes were assigned to the respective samples and identified as 
valid sequences. The low-quality sequences were filtered through the 
following criteria (15, 16): sequences that had a length of <150 bp, 
sequences that had average Phred scores of <20, sequences that 
contained ambiguous bases, and sequences that contained 
mononucleotide repeats of >8 bp. Paired-end reads were assembled 
using FLASH (17). After chimera detection, the remaining high-
quality sequences were clustered into amplicon sequence variants 
(ASVs) with 97% sequence identity using UCLUST. A representative 
sequence was selected from each ASV using default parameters. ASV 
taxonomic classification was conducted by BLAST searching the 
representative sequences set against the Greengenes database (18, 60) 
using the best hit (19). An ASV table was further generated to record 
the abundance of each ASV in each sample and the taxonomy of these 
ASVs. ASVs containing less than 0.001% of the total sequences across 
all samples were discarded. To minimize the difference in sequencing 
depth across samples, an averaged, rounded, rarefied ASV table was 
generated by averaging 100 evenly resampled ASV subsets below 90% 
of the minimum sequencing depth for further analysis.

Bioinformatics and statistical analysis

Sequence data analyses were mainly performed using QIIME and 
R (v3.2.0) packages. ASV-level alpha diversity indices, such as the 
Chao1 richness estimator, abundance-based coverage estimator (ACE) 
metric, Shannon diversity index, and Simpson index, were calculated 
using the ASV table in QIIME (20, 61). ASV-level ranked abundance 
curves were generated to compare the richness and evenness of ASVs 
among samples. Beta diversity analysis was performed to investigate 
the structural variation of microbial communities across samples 
using non-metric multidimensional scaling (NMDS) and the 
unweighted pair-group method with arithmetic means (UPGMA) 
hierarchical clustering (21). Differences in the UniFrac distances for 
pairwise comparisons between groups were determined using 
Student’s t-test and the Monte Carlo permutation test with 1,000 
permutations and visualized through box-and-whiskers plots. 
Principal coordinate analysis (PCoA) was also conducted based on the 
genus-level compositional profiles (21). The significance of microbiota 
structure differentiation between groups was assessed by 
permutational multivariate analysis of variance (PERMANOVA) (22) 
an analysis of similarities (ANOSIM) (23, 24) using the R package 
“vegan.” The taxonomy composition and abundance were visualized 
using MEGAN (62) and GraPhlAn (25). The R package 
“VennDiagram” was used to generate Venn diagrams to visualize 
shared and unique ASVs between samples based on the occurrence of 
ASVs between samples, regardless of their relative abundance (26). 
Taxa abundances at the phylum, class, order, family, and genus levels 
were statistically compared between samples or groups by Metastats 
(27) and visualized as violin plots. Linear discriminant analysis effect 
size (LEfSe) was performed to detect differentially abundant taxa 
between groups using the default parameters (28). Partial least squares 

discriminant analysis (PLS-DA) was also introduced as a supervised 
model to reveal the microbiota variation between groups, using the 
“plsda” function in the R package “mixOmics” (29). Microbial 
functions were predicted by phylogenetic investigation of communities 
by reconstruction of unobserved states (PICRUSt) based on high-
quality sequences (30). T-test after inverse sine transformation of ratio 
data, with a p-value of <0.05 as the criterion for significant difference.

Culture and identification of 
Staphylococcus

A selective medium (Baird-Parker agar base, Hope Bio-Technology 
(Qingdao) Co., Ltd.) was used to isolate and culture Staphylococcus from 
the yolk. The yolks from the two groups were directly coated on the 
plate medium, placed in a biochemical incubator, and incubated for 48 h 
at 37°C, respectively. DNA was extracted from the colonies in the 
culture medium using the Ezup Column Bacteria Genomic DNA 
Purification Kit (Sangon Biotech Co., Ltd., Shanghai). Sequencing was 
performed after amplification by PCR, followed by comparative analysis 
on the NCBI ribosome database (Table 1).

Results

Changes in chicken embryo development 
and yolk microbiota due to eggshell 
surface sterilization

The results showed that the ratio of embryo weight to initial egg 
weight of group CS was similar to group CC at E7 and E15, but group 
CS was significantly higher than group CC at E21 (Table 2, p = 0.002, 
n = 48), and the weight of hatched chicks in group CS was also 
increased compared to group CC (p = 0.069, n = 48). Fertility 
(p = 0.549, n = 239), hatchability (p = 0.230, n = 229), and embryonic 
mortality (p = 0.307, n = 229) did not differ between treatments. To 
examine the effect of eggshell surface sterilization on the yolk 
microbiota within fertile eggs, we analyzed the yolk microbial diversity 
of fertile eggs in the two groups at each sampling time point. The 
results showed that the alpha diversity of the yolk microbiota in group 
CS was lower than that of group CC at E07 (Figure 1A) and E15 
(Figure 1B), and the difference in all indices between the two groups 
was significant at E15 (p < 0.050). The PCoA results indicated that the 
beta diversity of the yolk microbiota in the two groups was similar at 
the early stages of incubation (Supplementary Figure S1D). However, 
the clustering of beta diversity of the yolk microbiota was more 
concentrated in group CS than in group CC at E07 (Figure 1C) and 
E15 (Figure 1D). By the day the chicken hatched, the diversity of the 
microbiota in the yolk and gut tended to be the same between the two 
groups (Supplementary Figures S1E,F).

Changes in chicken embryo microbiota at 
different developmental stages

To analyze the changes in embryo microbiota in the two groups, 
we  compared the relative abundance of the yolk microbiota at 
different time points, respectively. The results showed that 
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TABLE 2 Effect of eggshell surface sterilization on the growth of chicken embryos and hatchability.

Items Control Sterilization group P-value*

E7

Egg weight (g) 68.88 ± 3.43 67.95 ± 5.84 0.636

Embryo weight (g) 0.82 ± 0.05 0.85 ± 0.17 0.535

Embryo weight/Egg weight (%) 1.19 ± 0.08 1.26 ± 0.26 0.397

E15

Egg weight (g) 69.06 ± 2.43 69.48 ± 3.55 0.733

Embryo weight (g) 17.22 ± 1.83 17.69 ± 1.67 0.518

Embryo weight/Egg weight (%) 24.92 ± 2.47 25.44 ± 1.96 0.573

E21

Egg weight (g) 66.48 ± 3.46 64.69 ± 3.00 0.189

Chick weight (g) 46.66 ± 2.68 49.38 ± 4.15 0.069

Chick weight/Egg weight (%) 70.28 ± 4.27b 76.26 ± 4.29a 0.002

Fertility (%) 95.83 ± 0.43 95.80 ± 0.47 0.549

Hatchability of set eggs (%) 87.50 ± 1.33 88.24 ± 1.24 0.230

Hatchability of fertile eggs (%) 91.70 ± 1.20 92.10 ± 1.11 0.307

In the same row, values with no letter or the same letter superscripts means no significant difference (p > 0.05), while with different letter superscripts mean significant difference (p < 0.05).

Proteobacteria, Firmicutes, and Bacteroidetes were dominant at the 
phylum level at all different stages, followed by Actinobacteria and 
Chloroflexi. The yolk microbiota affected by eggshell surface 
sterilization is mainly dominated on Proteobacteria and Firmicutes 
at the phylum level (Figure  2). Notably, the abundance of 
Proteobacteria in the yolk of the eggshell sterilization group (49.65%) 
was significantly lower than that of the non-sterilization group 

(78.53%) at E15 (Supplementary Table S1, p = 0.003, n = 24), while 
becoming similar at E21 (p = 0.262, n = 24). The abundance of 
Bacteroidetes in the yolk of eggs with shell sterilization was lower 
than that of eggs without shell sterilization during embryogenesis 
(Figure  2), and the same trend was observed in the intestines of 
hatched chicks (Supplementary Figure S2). At the genus level, 
Aquabacterium, Acidovorax, Lactobacillus, Novosphingobium, and 

TABLE 1 The identification of Staphylococcus strain.

Description Max score Total score Query cover Per. Ident Acc. Len Accession

Staphylococcus saprophyticus strain 

FDAARGOS_336 chromosome, 

complete genome

2,684 16,028 100% 99.93% 2,578,483 CP022056.2

Staphylococcus saprophyticus strain 

IARI-BGL 14 16S ribosomal RNA 

gene, partial sequence

2,684 2,684 100% 99.93% 1,514 KT441038.1

Staphylococcus pseudoxylosus strain 

Colony292 chromosome
2,684 18,740 100% 99.93% 2,910,105 CP075501.1

Staphylococcus saprophyticus strain 

IARI-ABR-2 16S ribosomal RNA gene, 

partial sequence

2,684 2,684 100% 99.93% 1,470 JX428964.1

Staphylococcus saprophyticus strain 

AT7 16S ribosomal RNA gene, partial 

sequence

2,684 2,684 100% 99.93% 1,519 GU097199.1

Staphylococcus saprophyticus strain 

UTI-045 chromosome, complete 

genome

2,678 15,998 100% 99.86% 2,639,876 CP054831.1

Staphylococcus saprophyticus strain 

UTI-058y chromosome, complete 

genome

2,678 16,013 100% 99.86% 2,550,339 CP054440.1

Staphylococcus saprophyticus strain 

UTI-056 chromosome, complete 

genome

2,678 16,007 100% 99.86% 2,553,871 CP054444.1

Staphylococcus saprophyticus strain 

UTI-035 chromosome, complete 

genome

2,678 16,041 100% 99.86% 2,569,353 CP054434.1
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Azospirillum were the dominant bacteria in the yolk (Figure 2), while 
Prevotella, Bacteroides, Faecalibacterium, and Clostridium were the 
dominant bacteria in the intestine (Supplementary Figure S2B). The 
abundance of Aquabacterium in the yolk of fertile eggs from the 
surface sterilization group was higher than that of the unsterilized 
group during the embryogenesis, and the difference reached a 
significant level at E15 (Supplementary Table S2, p = 0.012, n = 24). 
The changes in the relative abundance of Acidovorax in the yolk 
between the two test groups at each developmental stage were similar 
to those of Aquabacterium. Meanwhile, we found that Lactococcus in 
the yolk of fertile eggs with surface sterilization was clearly lower than 
that of the unsterilized eggs at E15 (Supplementary Table S2, 
p = 0.082, n = 24) and with negligible levels at other time points.

Filtration and analysis of the differential 
microbiota in the yolk

In the previous analysis, we found that the effect of eggshell 
sterilization before incubation on the yolk microbiota was most 
pronounced at E15, so we  further filtered and analyzed the 

differential yolk microbes at this time point. We finally filtered out 
eight major differential microbiota between group CS and group 
CC, namely, Staphylococcus, Turicibacter, Bdellovibrio, Nitrospira, 
Microbacterium, Aquabacterium, Pediococcus, and Methylibium 
(Figures  3, 4). The number of sequences of Staphylococcus 
(p = 0.009, n = 24), Turicibacter (p = 0.010, n = 24), and Nitrospira 
(p = 0.012, n = 24) in the yolk of the fertile eggs without surface 
sterilization was higher than that of sterilized eggs, while the 
sequence number of Bdellovibrio (p = 0.011, n = 24), Microbacterium 
(p = 0.031, n = 24), Aquabacterium (p = 0.036, n = 24), Pediococcus 
(p = 0.125, n = 24), and Methylibium (p = 0.595, n = 24) was lower in 
the yolk of the fertile eggs without surface sterilization than that in 
the yolk of sterilized eggs. In addition, LEfSe analysis of the yolk 
microbiota at different developmental stages showed that the 
variety of landmark microbiota in the yolk of the unsterilized eggs 
was higher than that of sterilized eggs at E7, E15, and E21 (Figure 
S4), especially at E15 (Figure 5). At E15, landmark microbiota at 
the genus level in the yolk of group CS mainly included 
Microbacterium, Clostridium, and Asticcacaulis, while that of group 
CC mainly included Phycicoccus, Arthrobacter, Anaerovorax, 
Gracilibacter, and Burkholderia (Figure 5).

FIGURE 1

Effect of eggshell surface sterilization before incubation on the microbial diversity in the yolk of fertile eggs. CC represents commercial broiler breeder 
eggs without eggshell surface sterilization, CS represents commercial broiler breeder eggs with eggshell surface sterilization, Y represents yolk, and the 
number represents the days of incubation. Alpha diversity of yolk microbiota. Beta diversity of yolk microbiota.
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Identification of Staphylococcus

We performed 16S rDNA full-length sequencing to identify the 
species of Staphylococcus isolated from the yolk by selective media 
(Figure S3). The results showed that there were eight species of 
Staphylococcus saprophyticus and one species of Staphylococcus 
pseudoxylosus, and the sequence matches were greater than 99.86% 
(Table 1).

Discussion

To date, studies on the microbiota in broilers have mainly focused 
on the post-hatch period, while studies on the presence and changes of 
microbiota in fertile eggs during embryogenesis are uncommon (31–
33). Early studies in our laboratory found that the egg yolk is rich in the 
microbiota during embryogenesis, and the microbiota plays an 
important role in the utilization of yolk nutrients by chicken embryos. 
However, it is still unknown what impacts the composition and 
abundance of the yolk microbiota during embryogenesis. Previous 
studies have found a close relationship between the microbiota in fertile 
eggs and the microbiota in the oviduct and cloaca of the maternal hens 
(32). The allantoic membrane of the chicken embryo functions as a gas 
exchange with the outside during the embryonic development stage (34). 
This result indicated that the fertile egg is not an airtight environment; 
the microbes on the eggshell surface may enter the fertile egg through 
the eggshell and the allantoic membrane. So, we speculated whether the 
microbiota on the surface of the eggs would affect the microbiota in eggs.

Numerous studies have concluded that in livestock and poultry 
production, favorable physical conditions of newborn animals play a 
key role in the subsequent production performance and organ 
development (35, 36). For specific species of oviparous animals such 

as chickens, the main source of nutrients for embryonic development 
is the egg yolk. The ratio of the chicken’s weight at hatching to the 
initial egg weight of the fertile eggs reflects the developmental status 
of the chicken during embryogenesis (37). Here, we found that the 
ratio of chicken hatch weight to initial egg weight was significantly 
higher in the eggshell surface sterilization group than in the 
unsterilized group; however, a significant reduction in yolk microbial 
diversity was found in our results in the eggshell sterilized group 
compared to the control group. The microbiota in the gut of newborn 
animals has a variety of roles, such as the activation of the immune 
system (38) and the establishment of microecological homeostasis 
(39). In general, a richer microbial composition had a positive effect 
on the promotion of these functions (40).

Notably, the results showed that the differential microbes 
enriched in the yolk of unsterilized fertile eggs were mainly 
pathogenic microbes, among which Staphylococcus was the most 
abundant. Subsequently, we identified that the Staphylococcus isolated 
from the egg yolk was mainly Staphylococcus saprophyticus (Table 1). 
Infection with pathogenic bacteria can dramatically reduce the health 
status of animals, and the mobilization of the immune system caused 
by infection leads to a substantial loss of nutrients, which would 
negatively affect the production performance of animals (41). A 
comparison of the NCBI databases revealed that Staphylococcus is 
associated with the appearance of many diseases, and the same is true 
for Turicibacter. A study on mice (Genus mus) also found that 
Turicibacter is closely related to metabolic diseases (42). Therefore, 
we speculated that the better growth and development of chicken 
embryos after eggshell surface sterilization of fertile eggs might 
be due to the reduction of infection by Staphylococcus saprophyticus, 
Turicibacter, and other pathogenic microbes. It is worth mentioning 
that no beneficial bacteria were found among the differential bacteria, 
which may be related to the very low relative abundance of beneficial 

FIGURE 2

Relative abundance of yolk microbiota in eggshell surface sterilized and unsterilized fertile eggs during the embryogenesis. CC represents commercial 
broiler breeder eggs without eggshell surface sterilization, CS represents commercial broiler breeder eggs with eggshell surface sterilization, Y 
represents yolk, and the number represents incubation days.  At the phylum level.  At the genus level.
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FIGURE 3

Filtration and analysis of the differential microbes in the yolk. Filtered count and log-transformed count of the differential microbes between the two 
groups. CC represents commercial broiler breeder eggs without eggshell surface sterilization, CS represents commercial broiler breeder eggs with 
eggshell surface sterilization, and the number represents incubation days.

bacteria in the cloaca and the environment, and the sterilization 
treatment of the eggshell surface would kill the beneficial bacteria as 
well. If the presence of pathogenic microbes in the eggshell is avoided 
at the source by improving disease eradication in broiler breeders and 
hatchery management, rather than relying on additional disinfection 
treatments on the eggshell surface, could pathogenic microbial 
infections be avoided while maintaining the rich microbiota within 
the fertile eggs? This could be an important research direction to 
improve the health of newly hatched birds. At the time of chicken 
hatching (E21), the diversity indices in both the yolk microbiota and 

the intestinal microbiota of the embryos showed an increasing trend, 
regardless of surface sterilization. This may be mainly due to the 
direct contact between the chicken and the external environment at 
this time.

Our results showed that sterilization of the eggshell surface does 
affect the yolk microbiota and intestinal microbiota of chicken 
embryos during incubation. At E15, the yolk of fertile eggs in group 
CS with surface sterilization had a significantly higher abundance of 
Proteobacteria and a lower abundance of Firmicutes than that in 
group CC without surface sterilization. There was no such significant 
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difference at other incubation time points. The allantoic membrane 
of a chicken embryo is immature enough to exchange gas with the 
outside in the early embryonic stage, while from the middle stage of 
incubation, the allantoic membrane gradually matures and the 
chicken embryo develops rapidly. During this stage, the chicken 
embryo efficiently used the yolk nutrients and conducted adequate 

gas exchange with the outside through the allantoic membrane (37), 
which may be  the main reason for the abundance changes of 
Proteobacteria and Firmicutes in the yolk. Moreover, we found that 
the changes in the yolk microbiota during incubation were mainly 
concentrated in Firmicutes and Bacteroidetes at the phylum level. 
Previous publications have indicated that the ratio of Firmicutes to 

FIGURE 5

LEfSe analysis of the yolk microbiota in fertile eggs between the sterilized group and unsterilized group (E15). CC represents commercial broiler 
breeder eggs without eggshell surface sterilization, CS represents commercial broiler breeder eggs with eggshell surface sterilization, Y represents yolk, 
and the number represents incubation days.

FIGURE 4

Analysis and comparison of the differential microbes in each replicate. CC represents commercial broiler breeder eggs without eggshell surface 
sterilization, CS represents commercial broiler breeder eggs with eggshell surface sterilization, and the number represents the number of samples.
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Bacteroidetes may be associated with nutrient absorption and weight 
gain (43–45). Interestingly, the relative abundance of all yolk 
microbiota in the fertile eggs without eggshell surface sterilization 
was higher than that of the sterilized ones at the phylum level, except 
for Proteobacteria. Such findings corroborated the previous results 
on microbial diversity and also suggested that sterilization of the 
eggshell surface had a noticeable effect on the yolk microbiota. 
Aquabacterium is a common microbe in the liquid phase 
environment, and the relative abundance of Aquabacterium in the 
yolk was always at the highest level during incubation. A recent study 
found that Aquabacterium may have a close relationship with the 
energy metabolic processes of the organism (46). Yolk is the main 
source of energy material during embryogenesis (47), so the presence 
of Aquabacterium may be associated with the development of chicken 
embryos. Moreover, Aquabacterium has generally been considered a 
potentially pathogenic microbe in previous studies (48, 49). Thus, 
we speculate that Aquabacterium may be related to the formation of 
the immune system during embryogenesis, and the exact relationship 
needs to be further studied. At the genus level, the gut microbiota of 
chicken embryos was most abundant in Prevotella, Bacteroides, and 
Faecalibacterium were most abundant in the gut microbiota of 
chicken embryos in both groups at E21. Earlier studies have shown 
that the fluctuation of Prevotella and Faecalibacterium in the 
microbiota of patients is related to metabolic disorders and 
inflammation, such as non-alcoholic steatohepatitis and adiposity 
(50–52). Bacteroides have been reported to decompose carbohydrate 
nutrients (53). Recent studies have found that these microorganisms 
are also closely related to the development of chickens (54, 55). The 
metabolic rates of chicken embryo liver and yolk sac are very active 
due to the vast consumption of lipids to supply energy and embryo 
growth during embryogenesis (56–58). At the late stage of embryonic 
development (approximately embryonic days 17–21), the yolk sac is 
withered gradually, and the function of nutrient absorption is 
degraded. Meanwhile, the remaining yolk directly enters the 
embryonic intestine through the yolk stem, and the nutrient 
absorption capacity of the intestine is increased gradually (59). The 
above may also be  an important reason for the changes in the 
abundance of Prevotella, Bacteroides, and Faecalibacterium in the 
intestine. LEfSe analysis allowed us to identify the landmark 
microbiota between the fertile eggs with and without eggshell 
sterilization. The results showed that the number of landmark 
microbiota in the unsterilized group was higher than that in the 
sterilized group (Figure 5 and Supplementary Figure S4), which also 
verified the results of the microbial diversity analysis in the previous 
section. Moreover, we found that the landmark microbes identified 
by LEfSe analysis were also the differential microbes screened in the 
previous section, indicating that the presence of pathogenic microbes 
in the yolk was indeed related to whether the eggshell surface was 
sterilized or not.

In conclusion, sterilization of the eggshell surface before 
incubation can effectively reduce the diversity of microbiota in the 
yolk and reduce infection with pathogens such as Staphylococcus 
saprophyticus. The reduction of microbial diversity in eggs may 
be unfavorable to the activation of the embryonic immune system and 
the establishment of early intestinal microecological homeostasis. 
Therefore, the preferred way to reduce the infection with pathogenic 
microbes in fertile eggs is through the eradication of pathogens in the 
breeder hens and the improvement of hatchery management.
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