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Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of 
cells for cartilage regeneration therapy due to their chondrogenic differentiation 
potential. However, the regulatory mechanism has not yet been elucidated. In this 
study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of 
RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic 
differentiation at the molecular and histological levels. The results showed that RMCs 
showed typical MSC differentiation potentials. During chondrogenic differentiation, 
we obtained the expression profile of miRNAs, among which miR- 145 was the most 
prominent candidate as a key microRNA involved in the balance of chondral and 
endochondral differentiation. Knockdown of miR-145 promoted chondrogenesis 
and inhibited hypertrophy differentiation in RMCs. Mechanically, by prediction 
through online databases combined with dual-luciferase reporter assay, SOX9 
was suggested as a target of miR-145. Further validation experiments confirmed 
that knockdown of miR-145 contributed to the balance between endochondral 
versus chondral differentiation of RMCs by targeting SOX9. Additionally, RMCs 
transfected with the miR-145-knockdown-mediated lentiviral vector successfully 
promoted cartilage regeneration in vivo. In summary, our study suggested that 
the reciprocal negative feedback between SOX9 and miR-145 was essential for 
balancing between endochondral versus chondral differentiation of RMCs. Our 
study suggested that modification of RMCs using miRNAs transduction might be 
an effective treatment for cartilage defects.
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Introduction

Cartilage defect is a common orthopedic disease caused by trauma, necrosis, inflammation, 
and degeneration, which is an important cause of osteoarthritis (OA) (1). The lack of blood 
vessels in cartilage tissue and the inability of chondrocytes in the cartilage lacunae to migrate 
to the wound site make it difficult for cartilage to self-repair (2, 3). Mesenchymal stem cell 
(MSC) implantation is an important method for treating cartilage defects in tissue engineering. 
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MSCs not only have the potential to differentiate into chondrocytes 
but also possess paracrine function, anti-inflammatory activity, 
immunomodulatory capacity (4). However, the phenotype of 
MSC-generated chondrocytes is unstable and undergoes hypertrophic 
degeneration, ultimately resulting in the formation of endochondral 
bone (5). In addition, the lifespan and proliferation potential of MSCs 
are limited, and they even have a tendency for tumor formation (6). 
Therefore, it is necessary to explore more sources of MSCs.

Antler is the fastest animal-growing tissue in mammals (2 cm/
day) (7). The growth center of antler is located at its top, and the 
MSCs present in it are called reserve mesenchymal cells (RMCs) 
(8). RMCs can differentiate into chondrocytes, and despite high cell 
division rate, they do not undergo cancerous transformation (9). 
Accumulating evidence demonstrates that antler has evolved 
efficient cell apoptosis in the reserve mesenchymal, offsetting the 
tendency toward neoplastic transformation (9). It can be seen that 
RMCs effectively avoid the neoplastic tendencies of previous MSCs, 
thereby reducing the risk of treating cartilage defects in clinical 
practice. In our previous study, we  have successfully repaired 
cartilage defects in rat models using RMCs (10). Therefore, RMCs 
will become a potential cellular resource for the treatment of 
cartilage defects.

Increasing evidence suggests that the post-transcriptional 
regulation of miRNAs can target transcription factors to determine 
cell fate (11). miRNAs play a crucial role in cell differentiation, 
development, proliferation, and other processes (12). miRNAs also 
regulate the differentiation of MSCs into chondrocytes, such as 
miR-140 targets RALA to promote chondrogenesis of bone marrow-
derived MSCs (BMSCs), while targeting BMP2 inhibits the 
osteogenic effect of BMSCs (13, 14). miR-140-transfected umbilical 
cord MSCs (UC-MSCs) effectively repair cartilage repair in an OA 
rat model (15). miR-199b-5p targets JAG1 and stimulates 
chondrogenesis of BMSCs by increasing SOX9 and COL2 protein 
levels (16). miR-181a targets RSPO2 to activate BMP signaling 
pathway and reduce typical WNT signaling pathway in BMSCs 
(17). In our previous study, we  have identified a group of 
differentially expressed miRNAs in antler growth centers at four 
different developmental stages but did not characterize the target 
mRNAs (18). We have noticed the differentially expressed miR-145 
among them. The study has found that miR-145 can directly target 
SOX9 in the initial stage of chondrogenic differentiation of MSCs, 
thereby inhibiting cartilage formation. On the contrary, knockdown 
of miR-145 can increase the expression of SOX9, thereby delaying 
the differentiation process of MSCs into hypertrophic chondrocytes 
(19). SOX9, as an essential gene for chondrogenesis, 
transcriptionally activates the genes for many cartilage-specific 
structural component (20). Unfortunately, it is still unclear which 
miRNAs are involved in post-transcriptional regulation of the 
chondrogenic differentiation of RMCs, especially the important role 
of miR-145 in this process.

In this study, we screened miRNAs directly involved in post-
transcriptional regulation of RMC chondrogenic differentiation-
related genes by miRNA expression profiles. We  identified 
miR-145 as the optimal candidate for targeting chondrogenic 
genes and further determined the expression pattern and function 
of miR-145 during RMCs chondrogenic differentiation. This will 
help improve the efficacy of RMC-derived chondrocytes in 
repairing cartilage defects.

Materials and methods

Tissue collection and cell cultures

All animal experiments were performed as per the laboratory 
animal—guidelines for ethical review of animal welfare (GBT 35892.-
2018) and were approved by the Jilin Agricultural University 
Committee on the use of live animals (Approval No: 20220311008). 
The sika deer was procured from Sika Deer Breeding Farm of Jilin 
Agricultural University. Healthy adult male sika deer (3 years old; 
n = 6) was used for this study. The sika deer was anesthetized by 
intramuscular injection of 50 mg/kg chlorpromazine hydrochloride. 
The sika deer was awakened at the end of experiments with 0.075 mL/
kg composite awakening agent consisting of atemizole, naloxone, and 
flumazenib (0.90:0.95:0.26). Antler tips were collected from six 
anesthetized male 3-year-old sika deer. According to the previously 
reported method, the tissues of reserve mesenchyme and cartilage 
were collected from the growing antler tips at 30 days and 60 days 
(21). The culture of RMCs and antler chondrocytes (CC) was 
determined following Li et  al. (22). Three biological replicate 
experiments for each tissue type were performed.

Flow cytometry

Flow cytometry was used to identify the surface markers of RMCs 
as previously described (10). In brief, the RMCs were mixed with 
different fluorescently labeled monoclonal antibodies, including 
CD34, CD45, CD73, and CD90. After washing the RMCs, 
we immediately determined them using a flow cytometer.

Immunofluorescent staining

The RMCs on 24-well plates were fixed with 4% paraformaldehyde 
and permeabilized by 0.5% Triton X-100. After being blocked by 
serum, the cells were incubated overnight with primary antibodies 
(CD34, CD45, CD73, CD90). Then, the RMCs were incubated for 1 h 
with the secondary antibodies. Finally, the nucleus was stained with 
DAPI, and the images were analyzed using a fluorescence microscope.

Multilineage differentiation

We used a chondrogenic differentiation kit to determine the 
chondrogenic ability of RMCs. In short, 500,000 cells were placed in 
centrifuge tubes. Then the culture medium was changed from 
maintenance medium to chondrogenic medium, changing every 
2 days for a course of 14 days. The final formed cartilage-like nodules 
were embedded in optimal cutting temperature (OCT), cut into 5-μm 
frozen sections, and stained with Alcian blue. MesenCult adipogenic 
differentiation kit and osteogenic differentiation kit were used to 
determine the adipogenic and osteogenic abilities of RMCs. A 12-well 
plate was cultured with 200,000 RMCs/well. Then the culture medium 
was changed from maintenance medium to adipogenic medium or 
osteogenic medium, changing every 3 days. After 14 days, oil red O 
was used to stain lipid droplets of adipocytes. After 21 days, Alizarin 
Red was used to stain calcium deposits of osteoblasts.
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Quantitative real-time PCR (qRT-PCR)

Total RNA from cells and cartilage-like nodules was isolated using 
RNA-quick purification kit. Isolated RNAs were reverse-transcribed 
into cDNAs with the use of PrimeScript™ RT reagent kit, and cDNA 
was amplified with the use of TB Green®Premix Ex Taq™ II. The 
primer sequences are shown in Supplementary File S1. Relative 
expression levels of miRNAs and mRNAs were normalized to U6 and 
GAPDH internal control.

Western blot

RIPA lysate (Beibokit, Shanghai, China) was utilized for extracting 
total proteins from cells and cartilage-like nodules. Quantification of 
proteins was achieved using a BCA protein kit assay. Protein was 
separated by 10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred to polyvinylidene 
difluoride (PVDF) membranes, which were subsequently blocked 
with 5% skimmed milk. The PVDF membranes were incubated with 
primary antibodies on a shaker overnight at 4°C. The membranes 
were subsequently incubated with secondary antibodies at ambient 
temperature. The protein was detected using ECL detection reagents 
(Tanon, Shanghai, China) and signal was normalized to β-actin.

MiRNA sequencing

Total RNA was collected from chondrocytes and RMC-induced 
chondrogenic differentiation was done for 0, 7, and 14 days to 
construct small RNA libraries. Small RNAomics were sequenced on 
the Illumina Novaseq 6000. The small RNA libraries were constructed 
and sequenced according to the method described previously (18). 
The differential expression miRNAs (DE miRNAs) were obtained 
with p < 0.05 and fold-change cutoff of two. Online databases 
including miRmap, TargetScan, and miRanda were used to predict 
the targets of miRNAs. A Venn diagram was constructed to display 
overlapping interactions.

Transfection procedure

miR-145-overexpression lentivirus, miR-145-knockdown 
lentivirus, scrambled miRNA controls lentivirus, SOX9-
overexpression lentivirus, and SOX9-knockdown lentivirus were 
purchased from Hanbio Biotechnology Co. Ltd. (Shanghai). The 
transfection process of lentivirus followed the manufacturer’s 
instructions. About 2 × 105 RMCs were inoculated overnight in a 
12-well plate and infected with lentivirus expressing either target gene 
lentivirus at a multiplicity of 50 after 48 h for further testing.

Dual-luciferase reporter assay

The binding sequences of miR-145 and SOX9 3’UTR were 
predicted according to targetscan database. The 

SOX9-3’untranslated region-wild type and SOX9-3’untranslated 
region-mutant type in luciferase reporter plasmids were 
constructed. Then, the luciferase activity was measured after 
co-transfection with the plasmids and miR-145 mimic or 
miRNA-NC in 293 T cells.

Animal experiments

Sprague Dawley (SD) rats were procured from Experimental 
Animal Center of Jilin Agricultural University. The animals were kept 
in a standard laboratory condition. Healthy adult male rats (weight: 
250 ± 30; 8 weeks old; n = 48) were used for this study. The rats were 
anesthetized by intraperitoneal injection of 20% urethan (1 g/kg). The 
rats were euthanized at the end of experiments with 20% urethan 
(4 g/kg). The rats were randomly divided into miR-145 mimic group, 
miR-145 inhibitor group, miR-145 NC group, RMCs group, PBS 
group, and Sham group to establish a cartilage defect model. The rat 
articular cartilage defect model was produced by our previous 
description (10). miR-145 mimic group received RMCs transfected 
with miR-145-overexpression lentivirus (106 cells/joint). miR-145 
inhibitor group received RMCs transfected with miR-145-knockdown 
lentivirus (106 cells/joint). miR-145 NC group received RMCs 
transfected with miR-145-NC lentivirus (106 cells/joint). The RMC 
group received RMCs (106 cells/joint). The PBS group received 
100 μL PBS. Sham control animals only underwent surgery without 
treatment once a week for 3 weeks. The grip strength level of rats was 
investigated using the grip strength test. After 8 weeks of treatment, 
the maximum pulling force of the hind limbs was measured five 
consecutive times, and the average value was recorded. At 4 and 
8 weeks after surgery, the femurs of rats were collected for the 
evaluation of disease progression. The macroscopic evaluation of 
cartilage defects was made according to the Innovative Clinical 
Research Solutions (ICRS) criteria.

Histological examination

Hematoxylin and eosin (HE) staining (Bioss, Beijing, China), 
Safranin-O-Fast green staining (Phygene, Fuzhou, China), and IHC 
reagent kit (ZSGB Bio, Beijing, China) were used to assess the 
histological changes in sampled femurs. Briefly, the whole femurs were 
incubated in 4% paraformaldehyde for 1 day and decalcified for 
1 month using 10% EDTA. All samples were embedded in paraffin 
blocks and sectioned at a thickness of 4 μm. Then, sections were 
stained with HE and Safranin-O-Fast green. The methods of Pineda 
and Wakitani were used to score the severity of the degree of cartilage 
defects. The parameters of Pineda score included percent filling of the 
defect, reconstitution of the osteochondral junction, matrix staining, 
and cell morphology. The range was from the best 0 to the worst 14 
(23). The parameters of Wakitani score included cell morphology, 
matrix-staining, surface regularity, thickness of cartilage, and the 
integration of donor with host. The range was from the best 0 to the 
worst 14 (24). For immunohistochemical analysis, the tissue sections 
were incubated with primary antibodies overnight at 4°C. Horseradish 
peroxidase-labeled secondary antibody was incubated at 37°C for 
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60 min. The color was developed by applying 3,3′-diaminobenzidine. 
The sections were counterstained with hematoxylin.

Statistical analysis

All statistical analyses were conducted with SPSS 26. The means of 
two groups were compared using two-tailed independent Student’s t-test, 
and the means of multiple groups were compared by one-way analysis 
of variance (ANOVA). The difference was considered statistically 
significant at p value < 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001).

Results

Characteristics of RMCs and chondrocytes

Firstly, we evaluated whether the cultured RMCs exhibited the 
characteristics of MSCs. RMCs had spindle-shaped, fibroblast-like 
morphology (Figure 1A). The surface marker profile of RMCs was 
confirmed by immunofluorescent staining, including the expression 
of CD73 and CD29 (Figure  1D). Following the induction of 
adipogenic, chondrogenic, or osteogenic differentiation, the RMCs 
were positively stained for oil red O, Alcian blue, or Alizarin red, 
respectively (Figure  1E). Furthermore, real-time quantitative 

FIGURE 1

Identification of characteristics of RMCs and chondrocytes. (A) Morphology of RMCs. (B) Morphology of chondrocytes. (C) Alisin blue staining of 
chondrocytes. (D) IF analysis of RMCs surface markers. (E) Multilineage differentiation capacity. (F) Analysis of adipogenic, chondrogenic, and 
osteogenic gene expression after multilineage differentiation of RMCs by qRT-PCR. (G) Analysis of chondrogenic protein expression by WB.
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reverse transcription polymerase chain reaction (qRT-PCR) showed 
an increased expression of adipogenic, chondrogenic, and 
osteogenic genes of RMCs after designated induction (Figure 1F). 
These results showed that RMCs exhibited typical characteristics of 
MSCs. Secondly, we evaluated the basal characteristics of antler 
chondrocytes. They resembled paving stones in morphology 
(Figure 1B). Alisin blue staining of antler chondrocytes was positive 
(Figure 1C), and the expression of chondrogenic markers COL II 
and COMP was further detected by WB (Figure 1G). These results 
indicate that the cultured cells in this study exhibited typical 
chondrocyte characteristics.

miR-145 was differentially expressed 
during the chondrogenic differentiation of 
RMCs

miRNA sequencing was used to identify and select the 
differentially expressed miRNAs from chondrocytes and 
RMC-induced chondrogenic differentiation for 0, 7, and 14 days. A 
total of 475 known miRNAs were identified, of which 240 were 
differentially expressed (Figure  2A). The expression levels of 74 
differentially co-expressed miRNAs in all comparison groups were 
more than two-fold different (Figure  2B). Hierarchical clustering 

FIGURE 2

miR-145 was assumed as a putative miRNA that might participate in the chondrogenic differentiation of RMCs. (A) Volcano map of differentially 
expressed miRNAs in the pairwise comparisons. (B) Venn diagram of differentially expressed miRNAs in the pairwise comparisons. (C) Clustering 
heatmap of 74 differentially co-expressed miRNAs. (D) Clustering heatmap of 12 candidate miRNAs related to antler growth. (E) Analysis of miR-145 
expression after chondrogenic differentiation of RMCs by qRT-PCR. CP_0: RMCs induced chondrogenic differentiation for 0 days; CP_7: RMCs 
induced chondrogenic differentiation for 7 days; CP_14: RMCs induced chondrogenic differentiation for 14 days; CC: chondrocytes.
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analysis was performed to display the dynamic profiles of 74 
differentially expressed miRNAs in Figure 2C. Based on our previous 
miRNA sequencing results on 10 different tissues of sika deer, 
we  identified 12 candidate miRNAs related to antler growth 
(Figure 2D). Among them, miR-145 was well-known for regulating 
the proliferation and differentiation of chondrocytes. We  further 
identified the dynamic expression of miR-145 by qRT-PCR 
(Figure  2E). This expression trend was consistent with miRNA 
sequencing. Therefore, we  speculated that miR-145 might play a 
crucial role in the chondrogenic differentiation of RMCs.

Low expression of miR-145 promoted 
chondrocyte differentiation of RMCs

Lentivirus was selected for RMC transfection to increase or 
reduce miR-145 expression. Chondrogenic differentiation was 

induced in RMCs with different treatments by pellet culture for 
14 days. It was confirmed that miR-145 mimic group showed a 
significant increase in miR-145 expression, while miR-145 inhibitor 
group showed a significant decrease in miR-145 expression by 
qRT-PCR (Figure 3A). Histological analysis of pellets displayed that 
the staining of glycosaminoglycan in miR-145 inhibitor group using 
Alcian blue was stronger than control group, while the results of the 
miR-145 mimic group were opposite (Figures 3B,C). The expression 
of chondrogenic and hypertrophic markers in RMC after different 
treatments was detected through qRT-PCR, IF, and WB. The results 
consistently showed that the expression of COL II and COMP 
decreased in the miR-145 mimic group, while the expression of COL 
X increased. On the contrary, the expression of COL II and COMP 
increased in the miR-145 inhibitor group, while the expression of 
COL X decreased (Figures 3D–L). Thus, it can be concluded that 
knockdown of miR-145 may effectively promote the chondrocyte 
differentiation of RMCs, while overexpression of miR-145 may 

FIGURE 3

miR-145 inhibited chondrocyte differentiation of RMCs. (A) The relative expression of miR-145 in RMCs with different treatments was evaluated by 
qRT-PCR. (B) Alisin blue staining of RMCs with different treatments. (C) Quantitative analysis of Alcian blue staining. (D) The expression of 
chondrogenic genes of RMCs with different treatments was analyzed using qRT-PCR. (E) IF of COL II of the RMCs with different treatments. 
(F) Quantitative analysis of IF of COL II. (G) IF of COMP of the RMCs with different treatments. (H) Quantitative analysis of IF of COMP. (I) IF of COL X of 
the RMCs with different treatments. (J) Quantitative analysis of IF of COL X. (K) The expression of chondrogenic proteins of RMCs with different 
treatments was analyzed using WB; (L) Quantitative analysis of WB.
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promote hypertrophic differentiation after chondrogenic induction 
in culture.

SOX9 was a target gene of miR-145

Using miRmap, TargetScan, and miRanda databases to identify 
putative target genes of miR-145, we obtained 2,615 intersecting target 
genes (Figure 4A). Then, the intersected target genes were compared 
with the differentially expressed genes in the CP_7 vs. CP_0, CP_14 
vs. CP_7, CP_14 vs. CP_0, CC vs. CP_7, and CC vs. CP_14 groups, 
and 128 intersected candidate target genes were further identified 
(Figure  4B). Among them, 43 intersecting candidate target genes 
showed a significant negative correlation with the expression of 
miR-145 during chondrogenic differentiation of RMCs (Figure 4C). 
According to previous reports, SOX9 and KDM6A were closely related 
to chondrogenesis, and SOX9 was particularly important as a switch 
for MSCs to induce chondrogenic differentiation (25, 26). Therefore, 
we further validated the expression of SOX9 during chondrogenic 
differentiation of RMCs, and qRT-PCR results showed that the 
expression trend of SOX9 was opposite to that of miR-145 
(Figures  4D,E). Moreover, using dual-luciferase reporting system, 
we found that miR-145 mimic could significantly reduce the luciferase 
activity of the tested SOX9 3′UTR reporter (Figure 4F). These data 
demonstrated that miR-145 can directly target 3′UTR of SOX9. The 
empty vector or recombinant lentivirus containing the entire coding 
sequence of miR-145 or miR-145 inhibitor was transfected into RMCs. 
Then, the SOX9 expression was measured after inducing chondrogenic 
differentiation of RMCs for 14 days using qRT-PCR, IFA, and WB. The 
results consistently showed that overexpression of miR-145 inhibited 
the expression of SOX9, while knockdown of miR-145 promoted the 
expression of SOX9 (Figures 4G–K). Therefore, it was speculated that 
miR-145 regulates the chondrogenic differentiation process in RMCs 
by targeting SOX9.

miR-145-targeted SOX9 to inhibit 
chondrogenic differentiation of RMCs

To verify whether miR-145 regulated the chondrogenic 
differentiation of RMCs through SOX9, the empty vector or 
recombinant lentivirus containing the entire coding sequence of 
miR-145, miR-145 inhibitor, SOX9, and SOX9 shRNA was transfected 
into RMCs. The results of Alcian blue staining demonstrated the 
following: miR-145 knockdown or SOX9 overexpressing increased the 
staining intensity; miR-145 overexpressing or SOX9 knockdown 
decreased the staining intensity; SOX9 knockdown reversed the 
promotion effect of the low expression of miR-145 on 
glycosaminoglycan deposition; SOX9 overexpressing rescued the 
inhibitory effect of miR-145 overexpression on glycosaminoglycan 
deposition (Figures 5A,B). Furthermore, the results of qRT-PCR, IF, 
and WB highlighted that the overexpression of miR-145 knockdown 
or SOX9 promoted the expression of COL II, COMP, and SOX9, while 
such overexpression inhibited the expression of COL X. On the 
contrary, miR-145 overexpression or SOX9 knockdown inhibited the 
expression of COL II, COMP, and SOX9 but promoted the expression 
of COL X. SOX9 knockdown reversed the promoting effect of 
miR-145 low expression on the chondrogenesis of RMCs, and SOX9 

overexpression rescued the inhibitory effect of miR-145 overexpression 
on the chondrogenesis of RMCs (Figures  5C–E, 6A–H). Overall, 
miR-145 targeted SOX9 to inhibit the chondrogenic differentiation 
process in RMCs.

Low expression of miR-145 in RMCs 
enhanced the repair efficacy of cartilage 
injury

The role of miR-145 in regulating cartilage repair by RMCs on rats 
with full-thickness cartilage defect was evaluated. The in vivo models 
were injected with RMCs treated with miR-145 mimic, miR-145 
inhibitor, and miR-NC. At the macroscopic level, 8 weeks after 
operation, grip strength testing shown that RMC treatment could 
significantly improve the hind limb grip level of rats 
(Supplementary Figure S1). The defect of miR-145 inhibitor group was 
filled with newly formed tissue, appearing smooth on the surface. The 
defects of RMCs group and miR-NC group were also filled with the 
newly formed tissue but with clear boundaries from the surrounding 
tissue. The defects of miR-145 mimic group and PBS group were only 
partially filled (Figure 7A). The ICRS scores showed that the miR-145 
inhibitor group had the highest score, followed by the RMCs group 
and miR-NC group, while the miR-145 mimic group and PBS group 
had the lowest scores (Figure 7B). At the histological level, HE staining 
and Safranin-O-Fast green staining results revealed that the top layer 
cartilage of the miR-145 inhibitor group was perfectly integrated with 
the adjacent cartilage, and well-differentiated chondrocytes were 
surrounded by abundant matrix proteoglycan. In contrast, the 
cartilage in the miR-145 mimic group exhibited poor integration with 
the adjacent cartilage, characterized by a reduction in chondrocyte 
clusters and a loss of matrix proteoglycans (Figures 7C,E). According 
to the histological assessment by Pineda and Wakitani, the miR-145 
inhibitor group had the lowest score, followed by the RMC group and 
miR-NC group, while the miR-145 mimic group and PBS group had 
the highest scores (Figures 7D,F). At the molecular level, the qRT-PCR 
results confirmed a significant change in the miR-145 expression after 
treatment with miR-145-modified RMCs (Supplementary Figure S2). 
The immunohistochemical results demonstrated that the expression 
of fibrous chondrocyte markers COL I and COL X was strong in the 
miR-145 mimic group, while the expression of SOX9 and COL II was 
lower (Figure 8). On the contrary, the expression of COL I and COL 
X was downregulated in the miR-NC and miR-145 inhibitor groups, 
while the expression of SOX9 and COL II was upregulated (Figure 8). 
This indicated that miR-145 tended to promote hypertrophy 
differentiation and endochondral bone formation of RMC-derived 
chondrocytes in vivo. In summary, the histological staining results 
were consistent with the protein expression of SOX9, COL II, COL X, 
and COL I. These data suggested that a low expression of miR-145 
effectively enhanced the repair efficacy of the RMCs and reduced their 
hypertrophic differentiation in the cartilage defect model.

Discussion

This was the first study on the treatment of cartilage defects using 
miRNA-modified RMCs. We  analyzed the expression profile of 
miRNAs and the biological function of miR-145 during the 
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FIGURE 4

miR-145 targeted and suppressed SOX9 expression. (A) The target genes of miR-145 were predicted by online websites. (B) Venn diagram of 
differentially expressed target genes of miR-145 in the pairwise comparisons. (C) Clustering heatmap of 128 differentially co-expressed target genes of 

(Continued)
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chondrogenic differentiation of RMCs. We obtained the following 
results: (1) miR-145 was significantly differentially expressed during 
the chondrogenic differentiation of RMCs; (2) Knockdown of miR-145 
contributed to the phenotype of RMC-derived chondrocytes; (3) 
miR-145 targets SOX9 to inhibit the phenotype of RMC-derived 
chondrocytes; (4) RMCs with low expression of miR-145 could 
differentiate into non-hypertrophic chondrocytes, thereby improving 
the effectiveness of cartilage repair in  vivo (Figure  9). Our study 
provided theoretical support for exploring the mechanism of the 
regulation of RMCs chondrogenic differentiation by miRNAs, as well 

as new pathways for the treatment of cartilage lesions by 
RMC implantation.

Cartilage tissue is mainly composed of proteoglycans and 
extracellular collagens, with lower cell types and vascular components. 
Therefore, the healing ability of damaged cartilage is very limited (27). 
The current methods for treating cartilage defects include 
pharmacological intervention, surgical intervention, and chondrocyte 
implantation (28). However, these treatment methods have drawbacks, 
such as small repair area, fibrocartilage formation, and even cartilage 
degeneration (29). Recent studies have found that MSC implantation 

miR-145. (D) qRT-PCR analysis of SOX9 expression during RMC chondrogenic differentiation. (E) The expression trend of miR-145 and SOX9 was 
negatively correlated. (F) Normalized luciferase activity after co-transfection of miR-NC mimics or miR-145 mimics together with SOX9 3’UTR-WT or 
SOX9 3’UTR-MUT. (G) The expression of SOX9 of RMCs with different treatments was analyzed using IF. (H) Quantitative analysis of IF. (I) The 
expression of SOX9 of RMCs with different treatments was analyzed using qRT-PCR. (J) The expression of SOX9 of RMCs with different treatments was 
analyzed using WB. (K) Quantitative analysis of WB.

FIGURE 4 (Continued)

FIGURE 5

MiR-145-targeted SOX9 to inhibit chondrogenic differentiation of RMCs. (A) Alisin blue staining of RMCs with different treatments. (B) Quantitative 
analysis of Alcian blue staining. (C) The expression of chondrogenic genes of RMCs with different treatments was analyzed using qRT-PCR. (D) The 
expression of chondrogenic proteins of RMCs with different treatments were analyzed using WB. (E) Quantitative analysis of WB.
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is a promising treatment strategy for promoting cartilage regeneration. 
Due to the potential for cartilage differentiation, MSCs are very 
suitable for the treatment of cartilage regeneration (30). Bone marrow 
mesenchymal cells (BMSCs) are considered the best source of cells for 
repairing cartilage defects (30). However, the self-renewal ability of 
BMSCs is limited, characterized by a decrease in their proliferation 
and differentiation abilities as the donor age increases (31). In 

addition, BMSCs have a limited lifespan and cannot retain their ability 
to proliferate and differentiate into cartilage for a long time in vitro 
(32). They may even differentiate into carcinoma-associated fibroblasts 
(6). In these aspects, RMCs have become the most ideal MSC 
resources due to their unparalleled proliferative potential, directional 
differentiation into cartilage lineages, and ability to prevent 
carcinogenesis (8, 22, 33). However, the regulatory mechanism by 

FIGURE 6

The expression of chondrogenic and hypertrophic markers in RMCs transfected with different lentiviruses were identified using IF. (A) IF of COL II of the 
RMCs with different treatments. (B) Quantitative analysis of IF of COL II. (C) IF of COMP of the RMCs with different treatments. (D) Quantitative analysis 
of IF of COMP. (E) IF of SOX9 of the RMCs with different treatments. (F) Quantitative analysis of IF of SOX9. (G) IF of COL X of the RMCs with different 
treatments. (H) Quantitative analysis of IF of COL X.
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FIGURE 7

Low expression of miR-145 enhanced the repair efficacy of the RMCs and reduced their hypertrophic differentiation in the rat cartilage injury model. 
(A) Femoral was evaluated by Gross appearance. (B) Macroscopic ICRS scores of the femur. (C) Femoral section was evaluated using HE staining. 

(Continued)
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which RMCs differentiate into cartilage has not been 
thoroughly elucidated.

There was growing evidence that miRNAs are crucial in 
maintaining self-renewal and differentiation in MSCs. Manipulating 
the expression of specific miRNAs could alter the characteristics of 
MSCs (32). However, few have explored whether miRNAs are involved 
in RMC-induced formation and differentiation of cartilage. Therefore, 
we compared and analyzed the expression profiles of miRNAs during 

the chondrogenic differentiation of RMCs. Our focus was on finding 
the characteristics miRNAs that could define the phenotype of 
different chondrocytes. Ultimately, miR-145 was chosen as a 
candidate. It was well known that miR-145 had played a regulatory 
role in the phenotype transition of vascular smooth muscle cells, 
tumor development, and self-renewal of embryonic stem cells (34–
37). However, there were very limited reports on the role of miR-145 in 
cartilage formation, and even some opposite conclusions have been 

(D) Pineda scoring of the HE staining. (E) Femoral section was evaluated using Safranin-O-Fast green staining. (F) Wakitani scoring of the Safranin-O-
Fast green staining.

FIGURE 7 (Continued)

FIGURE 8

Immunohistochemical staining of SOX9, COL II, COL X, and COL I in femoral sections to evaluate repair efficacy.
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proposed. On the one hand, it was pointed out that miR-145 inhibited 
the chondrogenic differentiation of MSCs and caused the degradation 
of extracellular matrix (ECM) in cartilage tissue. Wu et al. reported 
that miR-145-5p targeted TLR4 to inhibit chondrogenic differentiation 
of synovium MSCs (38). Martinez et al. reported that miRNA-145 
negatively regulated the function of chondrocytes by targeting SOX9 
(39). miR-145 regulates MMP13 upregulation by targeting DUSP6, 
leading to ECM damage (40). Yang et  al. found that miR-145 
contributed to impaired ECM in OA cartilage by targeting Smad3 
(41). On the other hand, it was supposed that miR-145 could reduce 
OA-induced chondrocyte death. Wang et  al. demonstrated that 
miR-145 can reduce OA-induced chondrocyte apoptosis by targeting 
BNIP3 and regulating the Notch signaling pathway (42). Ke et al. 
reported that miR-145 protected chondrocytes by regulating the miR–
FRS2–autophagy axis (43). But so far, no studies have been conducted 
on the role of miR-145 in RMCs. In the present study, the knockdown 
of miR-145  in RMCs may effectively promote the chondrocyte 
differentiation of RMCs, while overexpression of miR-145 may 
promote hypertrophic differentiation after chondrogenic induction in 
culture. However, we  still need to further explore the regulatory 
network of miR-145 on chondrogenic differentiation of RMCs.

miR-145 has many target genes, including SOX9, ACAN, FOXO1, 
and RUNX3 (44). Verbus et  al. reported that miR-145 had a 
corresponding action site in the 3’UTR of the SOX9 gene during 
chondrogenic differentiation in human MSCs, inhibiting its expression 
(45). In our study, based on target prediction, qRT-PCR, and dual-
luciferase reporter assay, we  analyzed the targeted regulatory 
relationship between SOX9 and miR-145. At mRNA and protein 
levels, overexpression of miR-145 inhibited the expression of SOX9, 
while knockdown of miR-145 promoted the expression of SOX9. 
Therefore, we speculate that SOX9 was a targeted gene of miR-145 in 
chondrogenic differentiation of RMCs. SOX9 was a transcription 

factor that triggered the determinative switch to chondrocyte 
differentiation in MSCs (46). SOX9 was very active during the 
prechondrocytic mesenchymal condensation stage and maintains 
high levels of expression in fully differentiated chondrocytes (46). In 
the rat cartilage injury model, inhibiting the expression of SOX9 
greatly inhibited the chondrogenic differentiation ability of BMSCs. 
Interference with SOX9 expression in vivo led to the obstruction of 
cartilage regeneration (47). In the rabbit cartilage injury model, after 
overexpression of SOX9, the cartilage marker protein COL2 began to 
express on the third day of transfection and reached its peak on the 
14th day. The results indicated that SOX9 promoted chondrogenic 
differentiation of BMSCs (48). Zhang et al. found that overexpression 
of SOX9 could adjust the ratio of COL2 and COL1 in cartilage injury 
sites, which was similar to the proportion of normal cartilage (49). The 
above study suggested that SOX9, as a switch for chondrocyte 
phenotype, could promote the chondrogenic differentiation of MSCs. 
In our study, SOX9 overexpressing promoted chondrogenic 
differentiation of RMCs and inhibited the process of hypertrophy. On 
the contrary, SOX9 knockdown inhibited the chondrogenic 
differentiation of RMCs. SOX9 knockdown reversed the promoting 
effect of miR-145 low expression on chondrogenesis of RMCs, and 
SOX9 overexpression rescued the inhibitory effect of miR-145 
overexpressing on chondrogenesis of RMCs. In summary, SOX9 was 
necessary for the initiation of chondrogenic differentiation of RMCs, 
and miR-145 targeted SOX9 to inhibit the chondrogenic differentiation 
process of RMCs.

In addition, this study successfully promoted the repair of 
cartilage damage by inhibiting miR-145 expression using lentivirus. 
Previous studies have reported that modifying MSCs with miRNAs is 
a new approach to enhance the ability of these cells. Lv et al. reported 
that BMSCs overexpressed with miR-27b can effectively treat OA rats 
(50). Therefore, miRNA-modified RMCs formed a potentially effective 

FIGURE 9

Schematic to illustrate that deer antler reserve mesenchyme cells modified with miR-145 promotes chondrogenesis in cartilage regeneration by 
targeting SOX9.
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strategy for treating cartilage defects. This study elucidated the 
regulation mechanism of chondrogenic differentiation of RMCs by 
miR-145, while also contributing to the efficient repair of cartilage 
defects by RMC implantation. There are still some limitations to this 
study. We  only focused on miR-145, which cannot regulate the 
complex process of cartilage defects alone. We also observed other 
differentially expressed miRNAs, such as miR-140, miR-21, and 
miR-199a-3p. In addition, miR-145 had many target genes for 
chondrogenic differentiation of RMCs, such as MTR and 
KDM6A. Therefore, future studies should focus on identifying 
common signaling pathways or transcription factors that regulate the 
expression of miRNAs cluster networks, ensuring a more 
comprehensive exploration of the important role of RMCs in 
chondrogenesis. However, due to the injection of cells into the joint, 
it was not yet clear how many cells were engrafted into the defect. It 
was recommended to directly implant the cells into the defect. In 
future research, we  will extend the time for RMCs to induce 
chondrogenic differentiation in vitro and cartilage repair in vivo to 
ensure their viability and stability in future applications. To avoid the 
immune rejection effect of xenograft RMCs, researchers can use the 
RMC-derived extracellular vesicles, including exosomes and 
microvesicles, to treat cartilage defects in the future. This will provide 
new resources for the clinical application of cell-free therapy.

Conclusion

miR-145 contributed to the balance between endochondral versus 
chondral differentiation in RMCs by targeting SOX9. This was a 
preliminary exploration of the mechanism of chondrogenesis and 
hypertrophy differentiation of RMCs. It has also helped to develop 
novel approaches that allow for manipulating the differentiation 
outcome of RMCs for the treatment of cartilage defect.
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(A) Macroscopic ICRS scores of the femur; (B) Pineda scoring of the 
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FIGURE S1

After 8 weeks of treatment, the grip strength level of rats was investigated 
using the grip strength test.

FIGURE S2

The qRT-PCR detection of miR-145 expression after treatment with miR-145 
modified RMCs.
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