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Introduction: Maternal nutrition during pregnancy critically influences offspring 
development and immune function. One-carbon metabolites (OCM) are 
epigenetic modifiers that may modulate antimicrobial peptide (AMP) expression, 
which is vital for innate immunity. This study investigated the effects of maternal 
nutrient restriction and OCM supplementation on mRNA expression of AMP in 
fetal and maternal lung, mammary gland, and small intestine of beef cattle.

Methods: Twenty-nine crossbred Angus beef heifers were synchronized for 
estrus and artificially inseminated. They were assigned to one of four treatments 
in a 2 × 2 factorial design: nutritional plane [control (CON) vs. restricted (RES)] 
and OCM supplementation [without OCM (−OCM) or with OCM (+OCM)]. 
Heifers on the CON diet were fed to gain 0.45 kg/day, while RES heifers were 
fed to lose 0.23 kg/day. Treatments were applied from day 0 to 63 of gestation, 
after which all heifers were fed a common diet to gain 0.45 kg/day until day 161 
of gestation, when samples were collected. Quantitative RT-qPCR was used to 
assess mRNA expression of AMP.

Results: Nutritional plane had no effect (p ≥ 0.24) on mRNA expression of AMP 
in either the fetus or dams. However, the mRNA expression of cathelicidin5 
(CATHL5; p = 0.07) and bovine neutrophil β-defensin5 (BNBD5; p = 0.07) in the 
fetal lung and mammary gland, respectively, was lower in the +OCM groups 
compared to the −OCM groups. In the maternal small intestine, the expression 
of enteric β-defensin (EBD) was lower (p = 0.01) in the +OCM groups compared 
to the −OCM groups. Additionally, in the maternal lung, there was a tendency 
(p = 0.06) for an interaction in CATHL5 mRNA expression, with the RES + OCM 
group showing greater expression compared to the CON + OCM (p = 0.07) and 
RES − OCM (p = 0.08) groups.

Discussion: Our findings suggest that while restricted maternal nutrition did 
not affect mRNA expression of AMP, OCM supplementation modulated AMP 
expression in both fetal and maternal tissues. Further research is needed to 
elucidate the mechanisms underlying OCM’s impact on AMP expression.
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1 Introduction

Maternal nutrition during pregnancy plays a crucial role in 
influencing the health and development of offspring (1, 2). Factors 
such as drought-induced forage shortages and inadequate intake of 
essential minerals and supplements can disrupt maternal nutrition, 
leading to lasting effects on fetal growth, immune function, and 
metabolic regulation in livestock (3, 4). This phenomenon, known as 
developmental programming, suggests that stressors, including 
nutritional stress, during critical developmental windows can elicit 
both immediate and prolonged consequences in the offspring (5). A 
principal mechanism by which maternal nutrition can affect fetal 
development is through epigenetic modifications (6–8).

Central to this epigenetic control are one-carbon metabolites 
(OCM), which include methyl-donors such as folate, vitamin B12, 
methionine, and choline. These metabolites serve as vital epigenetic 
modifiers, influencing DNA methylation and regulating the expression 
of genes involved in various biological processes, including immune 
function (9–12). Dysregulation of these metabolites and the 
one-carbon metabolism pathway can lead to immune dysfunction (13, 
14). Studies indicate increased maternal plasma concentrations of 
OCM are associated with greater expression of genes related to the 
immune system, histone modification, and RNA processing in 
offspring (15). Additionally, our previous research has shown that 
nutrient restriction in pregnant beef heifers can result in reduced 
concentrations of methionine, an essential OCM, in allantoic fluid and 
increased concentrations of homocysteine in maternal serum during 
early gestation (16). These alterations in OCM levels can subsequently 
alter metabolic pathways related to one-carbon metabolism and 
influence epigenetic modifications (10). This highlights the potential 
impact that altering OCM supply could have on the developing 
immune system.

Antimicrobial peptides (AMP), such as β-defensins (17), 
cathelicidins (18), and S100 proteins (19), are diverse molecules that 
serve as a first-line host innate defense mechanism. Typically short and 
positively charged, AMP interact with the negatively charged membranes 
of microbes, disrupting the membrane and causing microbial death (20, 
21). They can also target other microbial components, such as DNA or 
proteins (22). AMP offers several advantages over traditional antibiotics. 
They are less likely to trigger resistance in bacteria, act much faster, and 
can work against a wider range of bacteria, fungi, and enveloped viruses. 
This makes them particularly effective against even those strains of 
bacteria that are resistant to multiple antibiotics (23, 24). AMP exhibit 
potent bactericidal activity against pathogens affecting the respiratory 
tract, intestine, and udder, such as Mannheimia haemolytica, Histophilus 
somni, Pasteurella multocida, Escherichia coli, and Staphylococcus aureus 
(25–29). Epigenetic pathways, including DNA methylation and histone 
modification, play key roles in regulating the expression and production 
of AMP (30, 31). Bovine respiratory disease (32), infectious diarrhea 
(33), and mastitis (34) are significant health concerns in cattle industry, 
contributing to substantial economic losses and health complications. 
The rise in antimicrobial resistance due to the overuse of synthetic 
antimicrobials further emphasizes the need to enhance the natural 

immune system to prevent diseases and combat pathogens (35, 36). 
Therefore, understanding the variables that affect the epigenetic control 
of AMP is essential for enhancing their expression and boosting the 
natural immunity of cattle. However, the influence of maternal nutrition 
and strategic OCM supplementation on AMP expression remains to 
be elucidated.

The objective of this study was to determine the effects of restricted 
maternal nutrition during early gestation, with or without OCM 
supplementation, on mRNA expression of AMP in the bovine fetal and 
maternal lung, mammary gland, and small intestine. We hypothesized 
that maternal nutrient restriction would reduce antimicrobial peptide 
expression, while one-carbon supplementation would at least partially 
ameliorate these effects. The data will provide insight into how the 
maternal nutritional level affects the innate immune system in the 
bovine fetus and dams, and whether strategic supplementation with 
methyl-donor molecules may support normal innate immunity 
maturation under conditions of poor maternal nutrition.

2 Materials and methods

2.1 Animal ethics

All methodologies and experiments adhered to relevant guidelines 
and regulations. The design of the experiment, the management of 
animals, and the tissue collection processes were approved by the 
Institutional Animal Care and Use Committee at North Dakota State 
University (IACUC #20220059) on October 26, 2022.

2.2 Animals, diet, and treatment

Seventy-two Angus heifers were transported from the Central 
Grasslands Research Extension Center (Streeter, ND, USA) to the 
Animal Nutrition and Physiology Center at North Dakota State 
University (Fargo, ND, USA). After a 14-day adaptation to the feeding 
system, heifers were subjected to a 7-day Select Synch + CIDR estrus 
synchronization protocol (37) and artificially inseminated 18 to 22 h 
following the detection of estrus. To explore the effects of maternal 
nutrition and OCM on fetal development during gestation while 
removing sex-specific effects (38, 39), only female-sexed semen from 
a specific bull (Connealy Maternal Made [ST Genetics, Navasota, TX, 
USA]) was used for insemination. Of these 72 heifers, 29 (~ 14 months 
of age) successfully conceived [CON − OCM (n = 7), CON + OCM 
(n = 8), RES − OCM (n = 7), and RES + OCM (n = 7)]. The average 
initial body weight was 436 ± 42 kg. Upon breeding, the heifers were 
allocated into four different dietary groups based on a 2 × 2 factorial 
design that considered the level of nutritional plane (control vs. 
restricted) and OCM supplementation (with or without OCM). The 
heifers were individually fed daily in an electronic head gate facility 
(American Calan; Northwood, NH) at 0800 h daily.

Heifers on the control (CON) diet were fed to achieve 100% of the 
National Academy of Sciences, Engineering, and Medicine (NASEM) 
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(40) nutritional requirements aiming for an average daily gain (ADG) 
of 0.45 kg/day, though they actually gained 0.60 kg/day. This regimen 
intended to bring them to 80% of their mature body weight by calving. 
Conversely, heifers on the restricted (RES) intake regimen were fed less 
to achieve a weight loss of 0.23 kg/day, mimicking the natural production 
responses observed in heifers undergoing dietary and environmental 
changes in early gestation (40). Their diets consisted of a total mixed 
ration including corn silage, alfalfa hay, corn grain, mixed alfalfa/grass 
hay, and a vitamin/mineral premix (Trouw dairy VTM w/Optimins, 
Trouw Nutrition USA, Highland, IL, USA). Diet compositions are more 
fully described in (41). Diets were formulated based on initial body 
weight at breeding to contain 2.25 Mcal/kg ME, 9.75% CP, and 58.6% 
NDF. Heifers were weighed weekly, and their individual feed intake was 
adjusted throughout the study to achieve the targeted body weight gains. 
Heifers supplemented with OCM (+OCM) received daily doses of 7.4 g 
of rumen-protected methionine (Smartamine, Adisseo, Beijing, China) 
and 44.4 g of rumen-protected choline (ReaShure, Balchem Inc., New 
Hampton, NY, USA) in a corn carrier, following dosages from previous 
studies (42, 43). They also received weekly intramuscular injections of 
vitamin B12 (50 mg of cyanocobalamin/mL; MWI Animal Health, Boise, 
ID, USA) and folate (53.33 mg of folic acid/mL; Spectrum Chemical 
Mfg. Corp., New Brunswick, NJ, USA) supplements, aimed at delivering 
320 mg of folic acid and 20 mg of vitamin B12 each week, following 
previously described methods (43, 44). In contrast, the non-OCM 
supplemented heifers (−OCM) were given only the corn carrier daily 
and received weekly saline injections intramuscularly. These treatment 
protocols continued until day 63 of gestation, after which all heifers were 
managed on the CON − OCM treatment targeting a daily gain of 
0.45 kg for the remainder of the study.

Pregnancy confirmation occurred on day 35 via transrectal 
ultrasonography by detecting fetal heartbeats, and a subsequent 
ultrasound on day 63 assessed fetal sex (45), retaining only pregnant 
heifers with female fetuses for further study stages.

2.3 Sample collection and preparation

Heifers were slaughtered on day 161 of gestation. The gravid 
uterus was promptly removed, and the fetus was immediately 
separated from the placenta, and subsequently dissected. Given that 
the cranioventral area of the lung is predominantly affected in bovine 
respiratory disease (46), lung samples from both the fetus and the dam 
were collected from this region (left cranioventral). Reflecting findings 
that high levels of AMP mRNA are present in the ileum (47), samples 
from this region were obtained from a section 10 cm proximal to the 
ileocecal junction. Additionally, considering the involvement of the 
mammary gland parenchyma in mastitis (48) and the uniform 
expression of AMP across different quarters (17), mammary gland 
samples were taken from the parenchyma of the right forequarters. All 
samples were wrapped in aluminum foil, snap-frozen in liquid 
nitrogen, and stored at −80°C until further analysis.

2.4 RNA extraction

Total RNA was extracted using the RNeasy® Plus Universal Kit 
(Qiagen, Germantown, MA, USA), following the manufacturer’s 
protocol and tissues were lysed using the TissueLyser LT (Qiagen 

Germantown, MA, USA). The RNA concentration was determined 
using the Qubit® RNA BR Assay Kit (Thermo Fisher Scientific, MA, 
USA) and measuring it with a Qubit 3.0 Fluorometer 
(LifeTechnologies, Carlsbad, CA, USA).

2.5 cDNA synthesis

The RNA was reverse transcribed into cDNA utilizing the High-
Capacity Reverse Transcription Kit (Thermo Fisher Scientific, MA, 
USA) following the manufacturer’s protocol. The final cDNA 
concentration was 100 ng/μl in a volume of 20 μl, and samples were 
stored at −20°C until use.

2.6 RT-qPCR

The target AMP genes were as follows: lingual antimicrobial 
peptide (LAP), tracheal antimicrobial peptides (TAP), enteric 
β-defensin (EBD), bovine neutrophil β-defensin4 (BNBD4), bovine 
neutrophil β-defensin5 (BNBD5), S100 calcium binding protein A7 
(S100A7), and cathelicidin5 (CATHL5). For each gene, the primers 
were designed using NCBI/Primer-BLAST or sourced from 
previous literature.

Optimization was conducted to determine the optimum cDNA 
concentration and primer efficiencies in each tissue type (49). The 
amplification efficiency (E) of target genes was evaluated by plotting 
the cycle threshold (Ct) versus log concentration. The E was calculated 
using the equation ( ) 1/% 10 1 100slopeE − = − ×  , with acceptable 
efficiencies ranging between 90 and 110% (50, 51). Details of the 
primer sequences used in the qPCR analysis can be found in Table 1. 
The primer sets for two genes (S100A7 and TAP) fell outside the 
acceptable efficiency range, likely due to low expression levels, as they 
exhibited high Ct values at the highest cDNA concentrations. 
Consequently, the relative mRNA expression of S100A7 and TAP were 
deemed below our limit of detection and were not further evaluated 
in this study. All other primers demonstrated efficiency within the 
acceptable range (90–110%). The results of the amplification efficiency 
experiment, including slope, R2, and efficiency, are summarized in 
Supplementary Tables S1, S2.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta 
(ACTB) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) were 
used as reference genes. We employed the geNorm tool to assess the 
stability of their expression across all tissue samples. The lower 
M-values calculated by geNorm indicate more stable expression (52), 
and in our study, reference genes were considered stable if their 
M-values were below 0.5 (53).

Quantitative real-time PCR was performed using a QuantStudio™ 
3 System (Thermofisher Scientific, MA, USA), with a 10 μl reaction 
mixture comprising 2 μl of the diluted cDNA (10 ng), 5 μl of 2× SYBR 
Green Master Mix (Bio-Rad Laboratories, Hercules, CA), 0.5 μl each 
of 10 μM forward and reverse primers (final concentration of 
500 nM), and 2 μl of nuclease-free water. The amplification protocol 
included an initial denaturation at 95°C for 20 s, followed by 40 cycles 
of denaturation at 95°C for 1 s and annealing/elongation at 60°C for 
20 s. A dissociation melt curve was determined at the end of each run, 
involving a brief denaturation at 95°C for 1 s, annealing at 60°C for 
20 s, and a final denaturation at 95°C for 1 s. All runs included a 
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negative control (without cDNA) and were performed in triplicate on 
a 96-well reaction plate (Thermo Fisher Scientific, MA, USA). Relative 
gene expression levels were quantified using the 2-ΔΔCT method (54), 
employing GAPDH, ACTB, and HPRT1 as reference genes for 
normalization, and using the CON − OCM group as control (set to 1).

2.7 Statistical analysis

Data were analyzed using the PROC MIXED function of SAS v.9.4 
software (SAS Institute Inc., Cary, NC, USA). The normality of the 
data was assessed both before the analysis and for the resulting 
residuals after the analysis using PROC UNIVARIATE (Shapiro–Wilk 
test), followed by the QQ plot statement. In cases where the normality 
assumption was not met, data were transformed using ( )10log x 1+ . 
Residuals were subsequently re-evaluated for normality using the 
same methods. The model’s fixed effects included the level of nutrition, 
OCM treatment, and the interaction between these factors, with each 
individual heifer serving as the random effect. In the absence of 
significant interactions, the main effects of maternal nutrition and 
OCM treatment were presented. Means were separated using the 
PDIFF function of SAS (Tukey–Kramer adjustment) and all results 
were reported as least squares means (LSMEANS) and standard error 
of the mean (SEM). After analysis, the LSMEANS and SEM were back 
transformed to the original scale. The largest SEM is reported. All 
plots were generated using ggplot2 v.3.4.1 in R Studio v.4.2.2. Statistical 

significance was set at a p-value ≤0.05, and tendencies were reported 
for 0.05 < p ≤ 0.1.

3 Results

3.1 Genes expression in fetal tissue

The mRNA expression of BNBD4 in the fetal lung was not 
influenced by either the nutritional plane × OCM interaction or the 
main effect of treatment (p > 0.28; Figure 1A; Table 2); however, there 
was a tendency (p = 0.07) for OCM supplementation to affect the 
mRNA expression of CATHL5, with expression being 16.5% lower in 
the +OCM groups (0.81 ± 0.06 relative fold) compared to the −OCM 
groups (0.97 ± 0.06 relative fold) (Figure 1B; Table 2).

In the fetal mammary gland, the mRNA expression of BNBD5 
tended (p = 0.07) to decrease by 35% in the +OCM groups (0.80 ± 0.19 
relative fold) compared to the −OCM groups (1.23 ± 0.19 relative fold; 
Figure  1C; Table  2). No differences were observed in the mRNA 
expression of CATHL5 among the groups (p > 0.1; Figure 1D; Table 2).

3.2 Genes expression in maternal tissue

In the maternal lung, the mRNA expression of BNBD4 did not 
show differences among the groups (p > 0.1; Figure  2A; Table  3). 

TABLE 1 Primer sequences for validation and evaluation of amplification efficiency in RT-qPCR.

Gene1
Sequence (5′-3′)2 Product 

size, bp
Accession no.3 Tissues analyzed Source

LAP F: CCTGTCTGCTGGGTCAGGATTTA
134

NM_203435.4

Maternal small intestine NCBI Primer-BLAST
R: TTACTTGGGCTCCGAGACAGG

F: GCCAGCATGAGGCTCCATC
194 Maternal mammary gland (85–87)

R: CTCCTGCAGCATTTTACTTGGGCT

EBD F: TATAAAGCGGCAAGAGCAGCC
102 NM_175703.3 Maternal small intestine (88, 89)

R: AGCATTTTACTGAGGGCGTGA

BNBD4 F: CACAGCCTGCACAGAATTCCTC
172 NM_174775.1 Fetal and maternal lung NCBI Primer-BLAST

R: ACTCTTTGAGTAAATCCTGACCCA

BNBD5 F: CCTAGTCCTGTCTGCTGGGTC
122 NM_001130761.1

Fetal and maternal mammary 

gland
NCBI Primer-BLAST

R: AGGTGCCAATCTGTCTCATGTTG

CATHL5 F: ACCTCCCAAGGAGGACGATG
152

NM_174510.3

Fetal mammary gland NCBI Primer-BLAST
R: TGACTGTCCCCACACACTCT

F: TCGGGAGTAACTTCGACATCACCT
141 Fetal and maternal lung (89, 90)

R: GGCCCACAATTCACCCAATTCTGA

GAPDH F: CTGCCCGTTCGACAGATAGC
153 NM_001034034.2 All NCBI Primer-BLAST

R: GATGGCGACGATGTCCACTT

ACTB F: CCGCAAATGCTTCTAGGCGG
189 NM_173979.3 All NCBI Primer-BLAST

R: ACTGCTGTCACCTTCACCGT

HPRT1 F: CAGTTGCTGCATTCCCGAAC
125 NM_001034035.2 All NCBI Primer-BLAST

R: TTCCAGTCAATAGTGGTGTGGT

1LAP = lingual antimicrobial peptide, EBD = enteric β-defensin, BNBD4 = bovine neutrophil β-defensin4, BNBD5 = bovine neutrophil β-defensin5, CATHL5 = cathelicidin5. 
GAPDH = Glyceraldehyde-3-phosphate dehydrogenase. ACTB = Actin beta. HPRT1 = Hypoxanthine-guanine phosphoribosyltransferase1. 2F = Forward; R = Reverse. 3Accession numbers 
from NCBI database http://www.ncbi.nlm.nih.gov.
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Despite this, there was a tendency (p = 0.06) for an interaction for 
CATHL5 mRNA expression, with the RES + OCM group having 
higher expression compared to the CON + OCM (p = 0.07) and 
RES − OCM (p = 0.08) groups (Figure 2B; Table 3).

The mRNA expression of BNBD5 and LAP was assessed in the 
maternal mammary gland. No differences (p > 0.1) in the expression 
of these genes were observed (Figures 2C,D; Table 3).

In the maternal small intestine, the mRNA levels of LAP did not 
differ among the groups (p > 0.1; Figure 2E; Table 3). However, the 
expression of EBD was affected by OCM supplementation (p = 0.01), 
with the +OCM groups (0.77 ± 0.4 relative fold) showing a 67% lower 
expression compared to the −OCM groups (2.35 ± 0.4 relative fold; 
Figure 2F; Table 3).

4 Discussion

This study investigated the effects of maternal nutrient restriction 
during early gestation, with or without OCM supplementation, on the 
expression of AMP in the fetal and maternal lung, small intestine, and 
mammary gland tissues of beef cattle. Antimicrobial peptides play a 
crucial role in innate immunity, acting as a first line of defense against 

pathogens. To our knowledge, this is the first study to examine the 
impact of restricted maternal nutrition and OCM supplementation on 
AMP expression.

We aimed to assess the mRNA expression of several selected 
AMPs in bovine fetal and maternal tissues, based on previous research. 
Specifically, we chose representative members from three major AMP 
families—β-defensins, cathelicidins, and S100 proteins—that have 
been shown to be more highly expressed in these tissues compared to 
other family members. Most prior studies have been conducted in 
vitro, meaning that the influences of factors, such as the environment, 
have not been fully considered. Additionally, there is limited literature 
on AMP expression in bovine fetuses, which is critical for 
understanding the development of the innate immune system and 
how environmental factors might impact immunity across 
generations. To our knowledge, aside from studies on TAP in the lung 
(55) and EBD in the small intestine (56), no previous research has 
explored AMP expression in bovine fetal tissues.

To ensure the accuracy, reliability, and reproducibility of our 
RT-qPCR results, we validated primers and amplification efficiency 
within the CON − OCM group. Our findings revealed that S100A7 
and TAP did not fall within the acceptable amplification efficiency 
range, likely due to low expression levels, as they exhibited high Ct 

FIGURE 1

mRNA expression level of antimicrobial peptides in fetal tissues. (A) Bovine neutrophil β-defensin4 (BNBD4) in lung; (B) cathelicidin5 (CATHL5) in lung; 
(C) CATHL5 in mammary gland; (D) bovine neutrophil β-defensin5 (BNBD5) in mammary gland. Data presented as a 2-ΔΔCT-fold change normalized to 
GAPDH, ACTB, and HPRT1 as reference genes, and using the CON − OCM group as control. Different uppercase letters denote trends (0.05 < p ≤ 0.1).
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values at the highest cDNA concentrations. Thus, we deemed the 
mRNA expression of these genes to be below our limit of detection. 
This could be attributed to several factors. Previous in vivo studies 
have demonstrated variation in the expression of AMPs in a single 
tissue analyzed from several animals of the same age group in cattle 
(55) and sheep (57, 58), which can account for this discrepancy.

Furthermore, previous studies in humans (59) and sheep (57, 58) 
models have demonstrated the developmental regulation of AMPs 
expression from fetus to neonate, with defensins showing increased 
expression during gestation. For instance, α-defensins in human fetal 
Paneth cells were detectable only after the 19th–24th week (60). It has 
also been shown that certain AMPs predominant in adulthood were 
not detectable in the fetus, both in human (59) and bovine models 
(55). Our data indicated low or absent expression of certain AMPs, 
such as in the fetal small intestine, aligning with findings that 
developmental regulation might only become apparent closer to term. 
It has been observed that the expression of certain β-defensins is lower 
in preterm humans than in term neonates and adults (60).

The birth delivery method can influence AMPs gene expression. 
Data indicate increased AMPs synthesis during vaginal delivery due 
to labor stress (60). In bovine neonates, LAP expression in the lung 
was lower following elective cesarean section compared to transvaginal 
delivery (61). Since our samples were collected from fetuses at 
161 days of gestation without labor stress, the absence of certain gene 
expressions is logical.

Tissue-specific, or more precisely tissue-region-dependent, 
AMPs expression is another factor. For example, TAP is restricted 

to airway tissue, with the majority of expression in the trachea in 
cattle (55). In our study, lung samples were collected from the 
cranioventral region, where respiratory pathogens typically impact, 
and TAP was either not expressed or lowly expressed. This finding 
suggests that TAP is not constitutively expressed in the lung tissue 
of either mature cattle or their fetuses. Additionally, Tetens et al. 
showed a high level of S100A7 mRNA expression in the streak 
canal and the Rosette of Fürstenberg of the mammary gland; 
however, they could not detect S100A7 mRNA expression in the 
gland cisternal epithelium and udder parenchyma of healthy cattle 
(62). In agreement, our study found that S100A7 was either not 
expressed or lowly expressed in both fetal and maternal 
parenchyma of the mammary gland. Therefore, according to our 
findings and previous studies, it is conceivable that S100A7 is not 
constitutively expressed in the parenchyma of the mammary gland 
of both fetus and dam.

Inducible expression in response to stimuli is a characteristic of 
certain AMPs. In bovine studies, the inducible properties of 
β-defensins in the lung (63), mammary gland (64) and small intestine 
(56) have been properly shown, where AMPs expression was either 
low or nonexistent in the absence of stimuli. For example, LAP mRNA 
was significantly upregulated in the intestinal mucosa during chronic 
Mycobacterium paratuberculosis infection and in the bronchiolar 
epithelium during acute Pasteurella haemolytica infection, with low or 
absent signals in non-infected tissues (63). The absence of such stimuli 
in our study could explain the low or absent expression of 
certain AMPs.

TABLE 2 The effect of maternal nutritional levels [Nut; control (CON) or restricted (RES)]1 and supplementation with one-carbon metabolites [OCM; 
with OCM (+OCM) or without (−OCM)]2 from day 0 to 63 of gestation on mRNA expression of antimicrobial peptides measured in fetal lung and 
mammary gland.

Supplementation p-values

Tissue Gene3 Nut −OCM +OCM SEM4 Nut5 SEM6 Nut OCM Nut × OCM

Lung BNBD4 CON 1.21 0.91 0.23 1.06 0.15 0.90 0.28 0.84

RES 1.14 0.93 1.03

OCM7 1.18 0.92

SEM8 0.16

CATHL5 CON 1.01 0.87 0.08 0.94 0.05 0.24 0.07 0.85

RES 0.92 0.75 0.84

OCM 0.97G 0.81H

SEM 0.06

Mammary 

gland

BNBD5 CON 1.44 0.81 0.27 1.12 0.19 0.37 0.07 0.91

RES 1.03 0.78 0.90

OCM 1.23G 0.80H

SEM 0.19

CATHL5 CON 1.15 1.50 0.34 1.33 0.24 0.58 0.56 0.66

RES 1.49 1.54 1.52

OCM 1.32 1.52

SEM 0.24

The data are presented as the least square mean and standard error of the mean (SEM). 1CON (0.45 kg•heifer−1•day−1); RES = (−0.23 kg•heifer−1•day−1). 2+OCM = (with one-carbon 
metabolites supplementation); −OCM = (without one-carbon metabolites supplementation). 3BNBD4 = Bovine neutrophil β-defensin4; CATHLC5 = Cathelicidin5; BNBD5 = Bovine 
neutrophil β-defensin5. 4Average SEM for nutritional levels × OCM supplementation interaction [CON – OCM (n = 7); CON + OCM (n = 8); RES – OCM (n = 7); RES + OCM (n = 7)]. 
5Main effect of nutritional levels. 6SEM for Nut. 7Main effect of OCM supplementation. 8SEM for OCM supplementation. G,H Means within a row marked with uppercase letters denote trends 
(0.05 < p ≤ 0.1) for main effects.
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4.1 Impact of maternal nutritional 
restriction on expression of AMP

Maternal undernutrition prior to parturition has been shown to 
interfere with the innate immune system of the ovine fetus and 
offspring (4, 65). However, to our knowledge, no studies have explored 
the effects of restricted maternal nutrition during pregnancy on the 

bovine fetal expression of AMP. Our data indicate that restricted 
maternal nutrition did not significantly affect the expression of AMP, 
neither in the fetus nor in the dams.

Several potential reasons may explain why the restricted 
nutritional plane did not independently result in significant changes 
in AMP expression. First, the severity and duration of the nutrient 
restriction imposed in this study may not have been sufficient to elicit 

FIGURE 2

mRNA expression level of antimicrobial peptides in maternal tissues. (A) Bovine neutrophil β-defensin4 (BNBD4) in lung; (B) cathelicidin5 (CATHL5) in 
lung; (C) lingual antimicrobial peptide (LAP) in mammary gland; (D) bovine neutrophil β-defensin5 (BNBD5) in mammary gland; (E) LAP in small 
intestine; enteric β-defensin (EBD) in small intestine. Data presented as a 2-ΔΔCT-fold change normalized to GAPDH, ACTB, and HPRT1 as reference 
genes, and using the CON − OCM group as control. Different lowercase letters indicate significant differences (p ≤ 0.05), while uppercase letters 
denote trends (0.05 < p ≤ 0.1).
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significant changes in AMP expression. Although the extent of 
restricted nutrition was sufficient to assess impacts on gene 
expression associated with tissue metabolism, accretion, and function 
in our previous studies (66, 67), it may not have been severe or 
prolonged enough to affect AMP expression significantly.

Second, epigenetic adaptations might have occurred to maintain 
baseline AMP expression levels, potentially as a protective measure 
against nutrient restriction. It has been pointed out that the impact of 
prenatal events, such as undernutrition, on the immune system is not 
uniform. These events may lead to differential investments in various 
subsystems of the immune system, where some aspects might 
be downregulated or compromised, while others receive increased 
investment or remain unaffected (68, 69). In this context, it is possible 
that the body prioritized the maintenance of AMP expression over 
other immune functions in response to the prenatal nutritional stress 
experienced in our study. This differential investment could be an 
adaptive response, as it proposes that the immune system may shift its 
investment away from more energetically expensive specific immune 

defenses (like those involving specific antibodies and adaptive 
immune responses) and towards less costly nonspecific defenses (such 
as innate immune defenses) (68). This shift could help conserve 
resources while still providing adequate protection. It has been shown 
that undernutrition in ewes can upregulate specific genes, such as 
Cholesterol 25-Hydroxylase and MHC Class I Polypeptide-Related 
Sequence B, that modulate the innate immune response and inhibit 
the actions of receptors involved in cytotoxic activities, potentially 
beneficial for immunotolerance at the embryo-maternal interface (70).

Another factor is the variability in tissue response to stimuli. The 
AMP are constitutively expressed but can also be induced/increased 
in response to stimuli such as infection (17). Studies have shown that 
different energy levels during gestation do not affect the mRNA 
abundance of innate immune-related genes in weaned piglets under 
basal conditions; however, when challenged with lipopolysaccharide, 
the immune response was significantly higher in those born to dams 
under low-energy diets (71). Therefore, the lack of significant changes 
in AMP expression in the current study may be due to the absence of 

TABLE 3 The effect of maternal nutritional levels [Nut; control (CON) or restricted (RES)]1 and supplementation with one-carbon metabolites [OCM; 
with OCM (+OCM) or without (−OCM)]2 from day 0 to 63 of gestation on mRNA expression of antimicrobial peptides measured in maternal lung, 
mammary gland, and small intestine.

Supplementation p-values

Tissue Gene3 Nut −OCM +OCM SEM4 Nut5 SEM6 Nut OCM Nut × OCM

Lung BNBD4 CON 1.26 0.93 0.26 1.10 0.18 0.42 0.16 0.86

RES 1.10 0.68 0.89

OCM7 1.18 0.81

SEM8 0.18

CATHL5 CON 1.05AB 0.84A 0.16 0.95 0.11 0.47 0.52 0.06

RES 0.85A 1.26B 1.06

OCM 0.95 1.05

SEM 0.10

Mammary 

gland

BNBD5 CON 1.34 1.36 0.84 1.35 0.65 0.63 0.74 0.76

RES 1.48 2.05 1.77

OCM 1.41 1.71

SEM 0.65

LAP CON 1.84 2.52 1.66 2.18 1.44 0.36 0.48 0.72

RES 2.91 4.95 3.93

OCM 2.37 3.74

SEM 1.36

Small 

intestine

LAP CON 0.90 1.59 0.76 1.25 0.52 0.96 0.78 0.52

RES 1.35 1.07 1.21

OCM 1.13 1.33

SEM 0.52

EBD CON 1.90 0.91 0.57 1.41 0.40 0.57 0.01 0.19

RES 2.80 0.62 1.70

OCM 2.35g 0.77h

SEM 0.40

The data are presented as the least square mean and standard error of the mean (SEM). 1CON (0.45 kg•heifer−1•day−1); RES = (−0.23 kg•heifer−1•day−1). 2+OCM = (with one-carbon metabolites 
supplementation); −OCM = (without one-carbon metabolites supplementation). 3BNBD4 = Bovine neutrophil β-defensin4; CATHLC5 = Cathelicidin5; BNBD5 = Bovine neutrophil β-defensin5; 
LAP = Lingual antimicrobial peptide; EBD = enteric β-defensin. 4Average SEM for nutritional levels × OCM supplementation interaction [CON − OCM (n = 7); CON + OCM (n = 8); 
RES − OCM (n = 7); RES + OCM (n = 7)]. 5Main effect of nutritional levels. 6SEM for Nut. 7Main effect of OCM supplementation. 8 SEM for OCM supplementation. A,BMeans within a gene 
marked with uppercase letters denote trends (0.05 < p ≤ 0.10) for interactive effects. g,hMeans within a row marked with lowercase letters indicate significant differences (p ≤ 0.05) for main effects.
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an immunological challenge. Hence, it is suggested that evaluating the 
expression of AMP in both dams and fetal tissues in response to 
different immunological challenges could provide further insights into 
the potential effects of maternal nutrition on the inducible expression 
of these innate immune effectors.

Additionally, maternal organisms may have evolved compensatory 
mechanisms to mitigate the effects of nutrient restriction on the 
developing fetus. These mechanisms could include alterations in 
nutrient partitioning, placental adaptation, or changes in maternal 
metabolism to ensure the provision of essential nutrients to the fetus, 
thereby minimizing the impact on fetal development (72, 73), 
including AMP expression.

Furthermore, sex-specific effects could play a role. Although the 
effects of sex were not explored in this study, there is strong evidence 
supporting sexual dimorphism in the innate immune system. Females 
tend to have a more effective and protective innate immune response, 
leading to better outcomes in the face of infections and immune 
challenges (9, 74). The mechanisms behind these observations may 
include evolutionary adaptations for higher reproductive potential 
(75) and hormonal differences between males and females (74).

4.2 Impact of OCM supplementation on 
expression of AMP

The supplementation of OCM during early gestation influenced 
the expression of AMP in both fetal and maternal tissues, indicating 
a modulatory role of these metabolites on the innate immune system.

In the fetal lung and mammary gland, the mRNA expression of 
CATHL5 and BNBD5, respectively, tended to decrease in the 
OCM-supplemented groups compared to the non-supplemented 
groups. Similarly, in the maternal small intestine, the mRNA levels of 
EBD were significantly lower in the OCM-supplemented groups. 
These findings demonstrate that the expression of AMP was 
suppressed by OCM supplementation.

One-carbon metabolism and its metabolites are essential for the 
proper regulation of immune function through epigenetic modifications 
and metabolic reprogramming, ensuring that immune cells can respond 
effectively to infections and stress (13, 14). For instance, a study by 
Sinclair et al. (9) demonstrated that a maternal diet low in B vitamins 
and methionine can lead to altered immune responses in ovine 
offspring, indicating potential negative impacts on the immune system 
(9). Although our results showed a decrease in the mRNA expression of 
AMP in response to OCM supplementation, this does not necessarily 
contradict previous findings. It is possible that the improved overall 
condition of the OCM-supplemented fetuses reduced the need for 
immune responses, thereby influencing the expression of these 
immune-related genes. Further research is warranted to evaluate the 
activation and function of AMP in response to OCM supplementation.

It is widely acknowledged that the expression of AMP increases 
during an inflammatory response (76, 77). The nuclear factor-kappa B 
(NF-κB) through toll-like receptor (TLR)-NF-κB pathway, and the 
mitogen-activated protein kinase (MAPK) signaling pathway play 
crucial roles in regulating the expression of AMP (17, 78). On the other 
hand, a deficiency in one-carbon metabolites has been shown to elevate 
homocysteine levels, leading to increased inflammation. In agreement, 
our previous research has shown that nutrient restriction in beef heifers 
can result in reduced concentrations of methionine in allantoic fluid 

and increased levels of homocysteine in maternal serum during early 
gestation (16). Conversely, OCM reduces inflammation in two ways. 
First, it increases levels of S-adenosylmethionine (SAM) while reducing 
S-adenosylhomocysteine (SAH). The ratio between these compounds 
(SAM/SAH) regulates most methyltransferases (79–82). Second, when 
SAM levels rise, they help decrease inflammation by reducing NF-κB 
production and suppressing both the NF-κB and MAPK pathways. 
This leads to lower levels of inflammatory markers (80, 83, 84). 
Therefore, it is likely that OCM supplementation attenuated AMP 
expression by exerting its anti-inflammatory properties through the 
suppression of the NF-κB and MAPK pathways. Future studies should 
evaluate these pathways in the context of OCM supplementation to 
further elucidate their role in regulating AMP expression.

5 Conclusion

In conclusion, our study provides valuable insights into the effects 
of maternal nutrient restriction and OCM supplementation during early 
gestation on the mRNA expression of AMP in fetal and maternal lung, 
small intestine, and mammary gland tissues of beef cattle. We evaluated 
some AMP genes in fetal tissues for the first time, which is crucial for 
understanding the development of the innate immune system in cattle. 
Additionally, our findings revealed that restricted maternal nutrition 
alone did not significantly alter AMP expression; however, OCM 
supplementation led to a decrease in the mRNA expression of CATHL5 
and BNBD5 in fetal lung and mammary gland tissues, respectively, and 
a significant reduction in EBD expression in the maternal small intestine. 
Further research is warranted to elucidate the mechanisms by which 
OCM modulate AMP expression, potentially through exerting anti-
inflammatory effects by suppressing the NF-κB and MAPK pathways.
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