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Feather pecking (FP) is a significant welfare concern in poultry, which can result 
in reduced egg production, deterioration of feather condition, and an increase 
in mortality rate. This can harm the health of birds and the economic benefits of 
breeders. FP, as a complex trait, is regulated by multiple factors, and so far, no 
one has been able to elucidate its exact mechanism. In order to delve deeper 
into the genetic mechanism of FP, we acquired the expression matrix of dataset 
GSE36559. We  analyzed the gene modules associated with the trait through 
WGCNA (Weighted correlation network analysis), and then used KEGG and GO 
to identify the biological pathways enriched by the modules using KEGG and 
GO. Subsequently, we analyzed the module with the highest correlation (0.99) 
using three machine learning (ML) algorithms to identify the feature genes that 
they collectively recognized. In this study, five feature genes, NUFIP2, ST14, OVM, 
GLULD1, and LOC424943, were identified. Finally, the discriminant value of the 
feature genes was evaluated by manipulating the receiver operating curve (ROC) 
in the external dataset GSE10380.
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1 Introduction

Feather pecking (FP) is a significant welfare concern in poultry and is considered a 
pathological behavior of birds (1). FP can lead to decreased egg production, deterioration of 
feather conditions, and increased mortality rate, which can harm the health of birds and the 
economic benefits of breeders. Beak trimming is commonly used as a strategy to manage 
FP. However, an increasing number of countries are beginning to ban this practice owing to 
its violation of animal welfare principles and the harm it inflicts on animals. As this method 
gradually becomes obsolete, alternative strategies such as environmental enrichment must 
be considered to address FP. Although environmental enrichment is a reasonable coping 
strategy, its effectiveness in resolving production issues is insufficient (2).

Previous studies have established a connection between functional psychosis (FP) and 
various immune, microbiological, and psychiatric disorders (3–5), but no one has been able 
to explain the exact mechanism underlying this relationship. FP is closely associated with 
genetic factors (6) and behavior is regulated by specific brain centers. Therefore, investigating 
the genetic relationship of FP is an effective approach for analyzing the mechanism of FP. With 
the continuous research on the genetic relationship of FP, Based on the results of genome or 
transcriptome sequencing of the hypothalamus of chickens with different FP tendencies by 
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many researchers, as well as the measurement of 5-HT concentration 
in the blood, it is widely recognized that serotonin (5-HT) and some 
of its receptors (such as 5HT1A) have an impact on FP (7). However, 
some studies have not shown consistency (8), indicating that the 
factors influencing FP are complex, which may also suggest that 
traditional genomic analysis methods have limitations and cannot 
provide more information.

Breeding chickens with LFP traits is a reasonable strategy to solve 
FP, but if breeding is done without a purpose, unnecessary resources will 
be wasted. We need strong evidence to guide our breeding direction, and 
choosing molecular biology methods to verify this is a good idea that 
can reduce costs compared to direct breeding. However, conducting 
cellular molecular biology experiments is extremely challenging for FP 
because they require raising animals to a certain age for behavioral 
observation and cannot be replaced by experimental animals (such as 
rats). Therefore, it is possible to consider using cell models as an 
alternative; however, this method has two problems: 1. The difficulty in 
extracting neurons from adult poultry is high, and current technology 
is limited to the extraction of embryonic neurons (9). 2. FP lacks 
outcome indicators. Although some sequencing results of FP have 
identified differentially expressed genes, they have not been validated or 
have only been validated by qPCR in their own experiments and cannot 
be used as biomarkers. Biomarkers are effective indicators that reflect the 
physiological or pathological states of the body. Screening characteristic 
genes can not only provide clearer guidance for breeding objectives but 
also assist in cell and molecular biology experiments on FP.

The traditional feature gene screening method calculates p-values 
through parameter testing to screen for candidate genes. Analysis of 
differentially expressed genes has some obvious shortcomings, as it 
cannot analyze the correlation between genes, although such analysis 
methods are more widely used. Genes that are highly sensitive to 
changing trends, but have little change in expression levels, may not 
be identified. Currently, GWAS and eQTL are mainstream methods for 
studying the genetic mechanisms of FP, including genome and 
transcriptome sequencing. However, their results have limited 
explanatory power for traits based on the experimental results of some 
researchers in recent years. For example, 5-HT1A and SLC6A4 
(identified by sequencing and validated by qPCR) often show 
significant differences in their own datasets, while other datasets are 
completely unrecognizable. This indicates that the explanatory power 
of these genes for pecking feathers is low, so new methods are needed 
to improve traditional methods (10). WGCNA and machine learning 
are better methods for a more comprehensive analysis of the genetic 
mechanisms of FP (11). The former is closely related to traits, whereas 
the latter has stricter standards for evaluating the characteristic genes. 
Machine learning is an effective method for identifying feature genes, 
the most commonly used machine learning methods for feature 
selection currently are LASSO regression, SVM-RFE, and random 
forest (12). LASSO regression, an unsupervised machine learning 
technique, effectively identifies the most relevant predictive variables 
by simultaneously conducting feature selection and regularization. This 
approach offers excellent performance in constructing predictive 
models, reducing model complexity, and preventing overfitting (13). 
Recursive Feature Elimination (RFE) is a backward selection method 
that begins with all features and iteratively eliminates the least 
important features based on the model’s performance. Evaluation of 
the performance of the model using cross-validation techniques. The 
Support Vector Machine Recursive Feature Elimination (SVM-RFE) 

method provides feature ranking based on the importance of the 
features and can select the top-level features to construct the final 
model. The principle of random forest is to sample several subsets from 
the dataset with replacement, train different base classifiers based on 
each subset, and then obtain the final score result through voting of the 
base classifiers. The ML architecture can also accommodate multimodal 
data types that are not suitable for simple table formats. WGCNA and 
machine learning can identify genes closely related to traits, but with 
insignificant changes in expression levels, providing stronger 
explanatory power for complex traits and obtaining more biological 
information. However, traditional methods have obvious limitations in 
this regard, as they can only identify genes with significantly different 
expression levels. In addition, they can have a more objective screening 
process than traditional analytical methods. Finally, their analysis was 
more in-depth and their processing speed was faster. This method is 
becoming a new mainstream method for molecular genetic analysis.

This study aimed to identify the feature genes of high-feathered 
chickens through machine learning algorithms and WGCNA methods 
and to screen potential biomarkers at the DNA level to provide new 
insights for addressing FP through breeding strategies.

2 Materials and methods

2.1 Study design and datasets collection

This study utilized bioinformatic methods to develop predictive 
models for the different FP tendencies dataset from GEO.1 
We acquired the expression matrices for the datasets GSE36559 and 
GSE10380 (14, 15). The data in the selected dataset are already 
standard gene expression matrices (all of which have been 
normalized). We analyzed GSE36559 as the training set and GSE10380 
as the external validation set (without merging) to evaluate the 
performance of the feature gene model and the fundamental 
information of the dataset is presented in Table 1.

In the dataset GSE36559, data were collected from the brains of 
both the high FP and low FP (HFP and LFP) groups, with an age of 
approximately 2 years. Animals were initially obtained from White 
Leghorn laying hens. Two groups of individuals were observed for 
200 min within 2 days (100 times per day). Pecking activity was 
measured based on the frequency of severe pecking. Animals were 
placed in five compartments. Observe and arrange 40 animals per 
compartment, with 20 animals in each group, and observe one person 
for 20 min. Five observers observed each animal in each compartment. 
The organizational samples were divided into two clusters, each 
containing nine biological replicates from the HFP and LFP groups. 
Finally, genomic analysis was conducted.

In the dataset GSE10380, the test chicken flock was randomly 
allocated to the testing column, with 20 chickens in each column. The 
selected strain was White Leghorn and the observation period was 
180 min. The age of the birds during testing ranged between 26 and 
38 weeks. They recorded their FP frequency during the observation 
period to distinguish them as high-FP and low-FP birds. Finally, brain 
tissue was extracted for genomic analysis.

1 https://www.ncbi.nlm.nih.gov/geo/
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2.2 Weighted gene correlation network 
analysis

It is a systems biology method used to describe the gene 
association patterns between different samples, which can be used to 
identify gene sets with highly synergistic changes. This analysis 
method aims to identify gene modules that are co-expressed and to 
explore the correlation between gene networks and the phenotype of 
interest, as well as the core genes in the network.

We used GSE36559 as the dataset and the R (v4.3.2) statistical 
software for analysis, which aims to identify co-expressed gene 
modules and explore the correlation between gene networks and the 
phenotype of interest, as well as the core genes in the network. Firstly, 
we detected outlier samples and screened the genes with the top 25% 
variance. Then, the Pearson correlation coefficient was calculated 
between genes, and a gene co-expression correlation matrix was 
constructed. The optimal soft threshold was selected based on the 
criterion of approximate scale-free topology criterion (β = 1–20), and 
a weighted adjacency matrix was generated. The optimal soft threshold 
was selected based on the R2 > 0.9. The detection of modules was 
performed using the cutreeDynamic function with the parameters 
“minModuleSize = 50, deepSplit = 2, pamRespectsDendro = F.” 
CutHeight = 0.3 was used to merge modules. Finally, we selected the 
module with the best correlation for further analysis.

We chose a soft threshold (R2 > 0.9) to distinguish between strong 
and weak correlations between genes, which meant that even after 
calculating the power of the soft threshold, the correlation was still 
greater than 0.9. minModulus Size = 50 indicates that we selected 50 
genes with consistent expression trends as the gene set. DeepSplit is 
the sensitivity chosen, which refers to the number of modules in the 
identified gene set. Owing to the large number of genes, we chose a 
moderate depthsplit = 2. PamRespectsDdro = F indicates that there 
were no restrictions on the recognition method. When some identified 
genes cannot enter the appropriate module, they allocate themselves 
instead of forcibly merging into modules with similar expression 
trends. CutHeight represents the distance between the merging 
similarity modules. The smaller the value, the less likely it is to merge 
and more modules will be retained.

2.3 Enrichment analysis and module 
identification

In the2 Perform GO and KEGG enrichment analysis on the genes 
of the module with the highest correlation with FP obtained from 
WGCNA analysis, and annotate the biological pathways and functions 
enriched by the genes of this module.

2 https://metascape.org/gp/index.html#/main/step1

2.4 Machine learning recognition of feature 
genes in high pecking feathered chickens

We utilized three machine learning algorithms, namely LASSO 
regression, the random forest algorithm, and SVM-RFE, to further 
screen the module genes obtained from WGCNA. The ML models were 
created with R version 4.3.2 and the algorithms LASSO, SVM-RFE, and 
RF. The purpose of lasso regression is to assign genes a parameter (the 
most relevant module determined in wgcna) and compress unimportant 
genes in the regularization process to preserve meaningful feature genes. 
This method is suitable for use with linear data. SVM-RFE starts with all 
genes, recursively removes the least important features based on the 
performance of the model, and evaluates the performance of the model 
using cross-validation techniques. This method is suitable for nonlinear 
data. In addition, random forests classify and rank the results of each 
classification (pecking at feathers is a categorical variable), which has a 
better performance on data with missing and outlier values. These three 
machine learning methods overcome their respective limitations and 
ultimately yield feature gene models.

2.4.1 LASSO regression
The basic idea of LASSO regression is to minimize the sum of the 

squared residuals while constraining the absolute sum of the 
regression coefficients to be less than a constant. This constraint leads 
to some regression coefficients being equal to zero, resulting in a more 
interpretable model.
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Where a is the regularization parameter, denoted as λ. The 
cross-validation method involves randomly dividing the 
observation set into k folds of roughly equal size (10 folds in this 
study). The first fold is considered the validation set, and this 
method is applied to the remaining k-1 folds. Calculate the mean 
square error based on the observed values in the fold. This process 
is repeated k times; each time, different sets of observations are 
considered as validation sets. This process generates k estimated 
values of testing errors and calculates the k-fold cross-validation 
estimate by averaging these values. The primary advantage of the 
LASSO method is that it compresses variables with larger 
parameter estimates less, while variables with smaller parameter 
estimates are compressed to 0. Moreover, the parameter estimates 
analyzed by LASSO exhibit continuity and are suitable for model 
selection in high-dimensional data.

2.4.2 SVM-RFE
Support Vector Machine (SVM) is a type of generalized linear 

classifier that conducts the binary classification of data through 
supervised learning. This is an advanced classification technique. FP 
is a binary variable divided into HFP and LFP. The function of SVM 
is to classify the genes of a sample into appropriate traits as one of its 
features. We input a feature, which is the gene expression level. The 
pattern corresponds to chickens with different feather pecking 
tendencies, represented by the positive and negative signs, 
respectively. The training set features were {X1, X2,..., XK,.... X1} and 
the corresponding labels are {Y1, Y2,..., YK,..., Y1}, where Yk is {−1, 

TABLE 1 General information of obtained datasets.

Datesets Platform Sample LFP1 HFP2

GSE36559 GPL15357 18 9 9

GSE10380 GPL5480 120 60 60

1Represents high feather pecking. 2Represents low feather pecking.
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FIGURE 1

Outlier sample detection.

+1}. The training model was constructed as a decision function D(X), 
which can be utilized for classification.

 ( ) ( )D X 0 X class> ⇒ ∈ +

 ( ) ( )D X 0 X class< ⇒ ∈ −

 ( )D X 0 is the decision boundary=

SVM construction and optimization of classifier functions are 
aimed at better classifying genes into more accurate features. The 
challenge with feature gene selection is that the number of features 
often surpasses the sample size owing to the large number of genes 
available. Therefore, feature ranking has become a popular method 
for the selection processes. Sensitivity is used for sorting in the 
feature gene selection. This involved deleting a certain feature and 
observing its impact as a ranking criterion. For classification 
problems, the ideal objective function is the expected error value, 
which is the error rate calculated for an infinite number of examples. 
This objective function is represented by the loss function J, which 
was chosen for convenience and efficiency. The concept of calculating 
the change in DJ (i) involves removing a specific feature or setting its 
weight to zero.

The OBD (Optimal Brain Damage) algorithm (16) approximates 
the DJ (i) by expanding J into a second-order Taylor series. When J is 
optimal, the first-order term can be ignored, resulting in:

 
( ) ( )

2
2

Wi

1 J
2 2 iDJ i DWδ
δ

=

The change in the weight DWi = wi corresponds to the deletion of 
feature i. For a linear discriminant function, cost function J is a 
quadratic function of wi. These two criteria are equivalent, and for a 
linear support vector machine, its minimization under constrained 
conditions is:

 
21

2
J W=

This proves the rationality of Wi as a feature-ranking standard. 
However, a good feature sorting standard does not necessarily imply 
that it is a good subset sorting standard. If multiple features are deleted 
simultaneously, this may result in the subset not being optimal. This 
problem can be overcome using the following iterative process known 
as Recursive Feature Elimination (RFE). The process includes:

 (1) Training the classifier (optimizes the weight Wi and its 
corresponding loss function J).

 (2) Calculate the ranking criteria DJ (i) for all the features.
 (3) Features are removed by sorting based on the minimum criteria.

Thus, an optimal set of feature genes could be selected.

2.4.3 Random forest
The random forest algorithm extracts K new training samples 

from the original training dataset N that have been replaced and then 
generates K classification trees based on these samples to form a 
random forest. The classification results for the new data were 
determined by the number of categories that received votes, which led 
to a final score. Its essence lies in the enhancement of the decision tree 
algorithm, which involves the combination of multiple decision trees. 
The establishment of each tree depended on the extraction of an 
independent sample. Each tree in the forest had the same distribution, 
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and the classification error depended on the classification ability of 
each tree and its correlation. Feature gene selection involves the use of 
a random method to split each node and then compare the errors in 
different scenarios. The detectable intrinsic estimation error, 
classification ability, and correlation determine the number of selected 
features. The classification ability of a single tree may be limited, but 
by randomly generating a large number of decision trees, optimal 
classification can be selected.

2.4.4 External validation of feature genes
We selected the receiver operating characteristic curve (ROC) 

curve as the external validation method to evaluate the generalization 
ability of the identified feature genes. The feature genes selected by 
machine learning were tested on the external dataset GSE10380, and 

the significance of the individual feature genes was assessed by 
examining the ROC. The ROC curve of the feature genes was plotted 
with TRP on the x-axis and FPR on the y-axis. The area under the 
curve (AUC) value was used to assess the capability of the feature 
genes to distinguish chickens with varying feather pecking tendencies. 
The higher the AUC value, the better is the discrimination effect.

 
TPTPR

TP FN
=

+

TPR represents the true positive rate, also known as sensitivity. TP 
(Ture Positive) represents the number of correctly identified positive 
cases and FN (Fasle Negative) represents the number of incorrectly 
identified negative cases.

FIGURE 2

Analysis of scale-free index and mean connectivity of various soft thresholds, the red line indicating the selected soft threshold and topological overlap 
matrix.
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FIGURE 3

Module and trait correlation results.
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FPFPR

FP TN
=

+

where FPR represents the false positive rate, FP (Fasle Positive) 
represents the number of incorrectly identified negative cases as 
positive cases, and TN (Ture Negative) represents the number of 
correctly identified negative cases.

In order to more intuitively evaluate the value of characteristic genes, 
we also tested the factors 5HT1A, HTR1D, and SLC6A4, which had a 
significant impact on FP in previous studies. The genes selected as 
comparison objects were derived from the identification results of other 
experiments (7).

3 Results

Select the genes with the top 50% variance for subsequent analysis. 
Figure 1 shows that the selected dataset does not contain any obvious 
outlier samples, apply a soft threshold β (Figure 2). Select 9, the number 
of gene sets in the module is 50 The WGCNA analysis results show that 
the correlation between the MET module and the traits of the high 
pecking feather line is the highest. The correlation coefficient is 0.99, 
p < 0.01 (Figure 3). We chose the MET module for further analysis.

Perform GO and KEGG analysis on the initially identified MET 
modules from WGCNA to elucidate the biological pathways and functions 
associated with feather pecking. From the figure (Figure 4), it can be seen 
that the feature genes of the MET module are enriched in pathways such as 
TP53, Ca2+ regulation, cell growth, and neural cell signal transduction. 
From the results, we predict that the growth of neural cells and the signal 
transduction process are closely related to high pecking feathers.

Using the genes of the MET module as training data and a total of 
50 feature genes as independent variables, the LASSO regression 
algorithm in machine learning was used for screening. This was 
followed by 10-fold cross-validation. The model constructed with 
λmin = 0.006937798 identified a total of 15 feature genes (Figure 5). 

FIGURE 6

SVM-RFE algorithm feature gene ranking. The horizontal axis 
represents the Number of Features. The vertical axis is 5 × CV 
accuracy, which represents the accuracy of the curve change after 
5-fold cross-validation.

FIGURE 5

Performing LASSO algorithm. Coefficient profile plots of each independent variable and partial likelihood deviance for LASSO logistic regression.

FIGURE 4

GO and KEGG analysis of module.
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SVM-RFE identified the top  13 important genes (Figure  6). The 
random forest algorithm identified 5 feature genes (Figure  7). 
Subsequently, we determined the genes that were consistently included 
in three machine learning algorithms using a Venn diagram (Figure 8). 

Finally, a total of 5 feature genes were selected, namely NUFIP2, ST14, 
OVM, GLULD1, and LOC424943.

Due to the inconsistency between the sequencing platform used in the 
validation set and the dataset, some feature genes cannot be externally 
validated. OVM and NUFIP2, which were identified in the validation 
platform, were chosen for validation. The ROC curves above display AUC 
values of 0.68 and 0.6 (Figure 9), respectively. The AUC values for 5HT1A, 
HTR1D, and SLC6A4 are 0.54, 0.66, and 0.56 (Figure 10), respectively.

4 Discussion

4.1 Machine learning and WGCNA

We further explored the genetic mechanism of FP and provided key 
insights into its complex and multifaceted nature. In this study, Weighted 
Gene Co-expression Network Analysis (WGCNA) and machine learning 
were used to identify five feature genes: NUFIP2, ST14, OVM, GLULD1, 
and LOC424943. The aim was to explore features related to FP. Compared 
to traditional differential analysis, WGCNA is better at closely associating 
genes with traits (17). In this study, machine learning was used to reduce 
the dimensionality of the initially screened gene set in WGCNA in order 
to identify genes associated with varying feather-pecking tendencies in 
chickens. Finally, ROC curves were used to validate the selected feature 
genes in the external datasets, thereby assessing their significance of the 
feature genes. In the medical field, AUC = 0.70 or above is considered a 
moderate level of discrimination, while 0.5–0.70 is considered a low level 
of discrimination (18). It is worth noting that although the AUC values 
of NUFIP2 and OVM in this validation were both less than 0.70, 
biomarkers in some fields (such as medicine) have special significance, 

FIGURE 7

Random forest results. The horizontal axis represents each gene, the vertical axis represents the importance of that gene, and on the right is a list of 
hub genes.

FIGURE 8

Venn diagram: intersection the results of three machine learning 
algorithms.
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and the fault tolerance must be very low. Therefore, even if the AUC 
value of the OVM in the external dataset is only 0.68 (already very close 
to 0.70), it still has a certain discriminative value. To compare the 
recognition performance, we also identified genes that had previously 
affected FP in this dataset. The AUC values of 5-HT1A and SLC6A4 were 
both close to 0.5, while that of HTR1D was 0.66. This, to some extent, 
indicates the discriminative ability of OVM and NUFIP2.

4.2 Heterogeneity issues in FP genetic 
research

One of the observation indicators of an FP is its frequency/frequency, 
which can be converted into each other. Although FP is subjectively 
distinguished by different observers in different experiments, it has strict 
differentiation criteria, which makes the process of professional behavioral 
observers identifying LFP birds conservative, and does not recognize 

them as HFP birds. However, a very small number of HFP birds could not 
be  identified. Therefore, the HFP sample was highly representative. 
Furthermore, although the sequencing platforms for the selected datasets 
were different, they were not merged. In contrast, we used one of the 
datasets (GSE10380) as the validation set and used this as a validation 
method to validate the selected feature genes. Although differences in 
sequencing platforms resulted in varying levels of gene expression, the 
sequenced genes were the same. For the same trait, the expression trends 
of genes should be consistent within the same species. Without merging 
the data, it can be used for external validation to evaluate the generalization 
ability of the model.

4.3 Related research on feature genes

NUFIP2 was initially described as an RNA-binding protein that 
recognizes poly (G) homopolymers. A recent study found that DHT 

FIGURE 9

ROC is used to evaluate the discriminative ability of characteristic genes in GSE10380.
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FIGURE 10

Using ROC to compare the discriminative ability of feature genes with other genes that affect FP.
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inhibits neuroinflammation via the mmu_circ_0001442/
miR-125a-3p/NUFIP2 axis (19). Furthermore, FP birds have been 
proposed as models for human mental disorders because 
neuroinflammation can lead to the development of some mental 
disorders. They found that NUFIP2 directly interacts with 
GABARAP, a ligand-gated chloride ion channel that mediates 
inhibitory neurotransmission, which may be related to FP behavior 
(20). OVM (ovomucin) is the main allergen in the eggs. Previous 
studies have shown that ovomucin can improve the intestinal 
barrier and intestinal bacteria and increase SCFa production (21). 
OVM and its derivatives have beneficial biological functions such 
as anti-inflammatory, antioxidant, and immune regulation (22). In 
previous studies, the association between gut microbiota and the 
immune system with FP have been established, and it has been 
established. It has been noted that SCFa can influence the 
concentration of central 5-HT through the gut-brain axis, mediated 
by the microbiota (23). In previous studies, the central 5-HT 
activity in the brain has been associated with FP. Immunotumorigenic 
inhibitory factor 14 (ST14) (Matriptase) plays a crucial role in 
physiology and cancer biology by encoding a matrix enzyme and 
type 2 transmembrane serine protease (24). Matripose has a crucial 
promoting effect on hair follicle growth (25). In this study, the 
authors demonstrated that chickens prefer to consume feathers 
from specific positions on the mother hen, which may link ST14 to 
FP. Feathers in certain parts of the mother hen, which are in good 
condition, may be pecked by other chickens (26). GLULD1 belongs 
to the Gln synthetase family. Alterations in glutamine synthetase 
activity, gene expression, and excitatory toxicity have been observed 
in numerous neurological disorders. Glutamine can be converted 
into glutamic acid and can also enhance the brain’s function. 
Gamma-aminobutyric acid levels (27). Glutamine can easily pass 
through the blood–brain barrier and is the main source of energy 
for the brain, along with glutamate and γ-aminobutyric acid, which 
are mediators of monoamine activity. Glutamate is an excitatory 
neurotransmitter that stimulates the brain by increasing neuronal 
discharge, whereas γ-aminobutyric acid is an inhibitory 
neurotransmitter that plays a sedative role by reducing the activity 
of neurons and nerve cells (28). In previous studies, the expression 
of GABAR2 receptors in HFP was reduced when analyzing the 
transcripts of HFP and LFP (29). Absence of GABA in the brain 
may cause chickens to be in an excited state, leading to FP. GLULD1 
may regulate chicken FP by affecting GABA concentration in the 
brain. Unfortunately, as a locus of the gene, LOC424943 could not 
provide a functional explanation. In the current situation, more 
information about this gene may be available in future research.

4.4 The advantages of this research 
method over traditional methods

This study is the first in the same research topic to utilize 
machine learning (ML) and WGCNA analysis methods to 
investigate the distinctive characteristics of chickens with varying 
feather pecking (FP) tendencies. Compared with previous analyses 
(such as GWAS or eQTL analysis), the features explained by ML 
and WGCNA are more closely related to phenotypic traits. ML and 
WGCNA were easier to identify for genes closely related to traits, 
even when the changes were not significant.

4.5 The limitations of this study and future 
perspectives

Although our study showed promising results, some limitations 
should be acknowledged. Our sample size was relatively small, and 
even if we reached the required sample size for the analysis, this may 
limit the generalizability of our research results. If the selected 
validation set had an imbalanced sample category, there was a 
possibility of misleading accuracy. Therefore, future research should 
focus on validating our characteristic genes in larger cohorts to evaluate 
their robustness and reliability. In the future, animal models can 
be  constructed through physical or chemical methods to conduct 
experiments and evaluate the functions of characteristic genes in FP.

5 Conclusion

This study is based on WGCNA and three machine learning 
algorithms to identify five feature genes, NUFIP2, ST14, OVM, 
GLULD1, LOC424943, on chickens with different FP tendencies.
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