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Comparative analysis of chronic
neuropathic pain and pain
assessment in companion
animals and humans

Rell L. Parker*

Department of Small Animal Clinical Sciences, VA-MD College of Veterinary Medicine, Virginia Tech,

Blacksburg, VA, United States

Chronic neuropathic pain is underdiagnosed in companion animals. This

paper will review the definition of pain and how classification and grading of

neuropathic pain can be applied from human to veterinary medicine to increase

the recognition of and the confidence in a neuropathic pain diagnosis. The

mechanisms of nociception and the pathophysiology of the sensory systems that

underlie the transition to chronic pain are described. Potential future methods

for diagnosis and treatment of neuropathic pain in veterinary medicine are

considered, utilizing the theoretical framework of pain behavior from humans

and rodents. By discussing the current state of pain diagnosis in companion

animals and increasing the recognition of chronic neuropathic pain, the goal is

to increase understanding of chronic neuropathic pain in daily clinical practice

and to aid the development of methods to diagnose and treat neuropathic pain.
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1 Introduction

Pain diagnosis and management in human medicine is challenging, but in veterinary

medicine, additional factors compound this inherent challenge. Definitions of pain used in

human medicine can be applied to veterinary medicine (1). The definition of pain from

the International Association for the Study of Pain (IASP) is: “the unpleasant sensory

and emotional experience associated with, or resembling that associated with, actual or

potential tissue damage” (2). The IASP recognizes that the lack of verbal description does

not remove the possibility that pain is experienced and therefore recognizes that pain

occurs in non-human animals (2). In companion animals, veterinarians and veterinary

team members detect and measure pain by observation, examination, and obtaining a

through history from pet-owners.

Differentiating pain from anxiety, cognitive dysfunction, or other behavioral disorders

is an important aspect of diagnosing pain in companion animals (3–5). Once pain is

diagnosed, the goal is to determine the source and type of the pain, for example, separating

neuropathic and musculoskeletal pain (6). In veterinary species, as in human medicine,

there are limited effective treatment options for neuropathic pain (7, 8). New technologies

for diagnosis and treatment of pain in veterinary and human medicine are under

development. However, large gaps remain in our understanding of pain pathophysiology

in all species.

The diagnosis and measurement of chronic pain in clinical companion animal practice

can be improved by refining pain classification, quantifying signs of pain, attempting to

Frontiers in Veterinary Science 01 frontiersin.org

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2024.1520043
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2024.1520043&domain=pdf&date_stamp=2024-12-10
mailto:rell@vt.edu
https://doi.org/10.3389/fvets.2024.1520043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2024.1520043/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Parker 10.3389/fvets.2024.1520043

separate signs of pain and anxiety, and developing markers of pain

that are not based on clinical examination findings (1). Although

several types of pain affect both companion animals and humans,

we will focus here on neuropathic pain in companion animals,

which is likely underdiagnosed and may be better understood

by considering neuropathic pain classification and diagnosis in

humans (1, 6, 9). This review will discuss the physiology and

pathophysiology of chronic neuropathic pain, challenges and

opportunities in veterinary practice, and methods to combine

current clinical practices in veterinary medicine with advances in

human and rodent pain management to better detect and treat pain

in our veterinary species.

2 Classification of neuropathic pain in
humans and probable sources of
neuropathic pain in companion
animals

The perception of pain, or nociception, is normally a

protective mechanism. However, chronic pain can also be a

maladaptive pathologic disorder (10). Chronic pain of neurologic

origin is classified as either peripheral or central in humans

and then is further characterized by origin and mechanism

(Figure 1A) (6). For neuropathic pain, no similar classification

has been established in companion animals. By utilizing this

classification scheme and applying it to companion animals,

we may improve our knowledge of neuropathic pain in

these species.

The neuropathic pain grading system captures information

about the probability that neuropathic pain is present,

using possible, probable, or definite based on the clinical

picture (Figure 1B) (11, 12). This type of classification

scheme was originally proposed in recognition of the

lack of a universal method to diagnose neuropathic pain,

which is a continued problem in veterinary and human

medicine (12). Applying these grading criteria to companion

animals can capture a clinician’s level of certainty that

neuropathic pain is present, which may guide treatment.

Recording neuropathic pain grade may be useful for

deciding when to initiate treatment, determining treatment

effectiveness, or documenting information for future

retrospective studies.

For each of the major neuropathic pain categories that

are described in humans, examples of similar companion

animal disorders are shown (Figure 1A). One cause of

neuropathic pain in companion animals is caudal occipital

malformation (CM) with syringomyelia (SM), which is a chronic

central neuropathic pain associated with spinal cord injury

(4, 7, 8). Another example of neuropathic pain is degenerative

lumbosacral stenosis, which is a painful radiculopathy (13, 14).

However, some sources of neuropathic pain in companion

animals are under-recognized, such as poststroke pain or

painful polyneuropathies. Applying the human classification

and grading of neuropathic pain to companion animals

may improve the recognition, diagnosis, and treatment of

these disorders.

3 Physiology of nociception

The pathways for sensing and processing nociceptive

information are part of the “pain, touch, and temperature” system

that make up the general somatic afferent systems (GSA) (15).

Nociceptive stimuli, such as mechanical or thermal stimuli, are

encoded by activation of nerve endings, which may be located in

the skin, deep tissues, or organs (16). The most common nerve

endings to detect nociceptive signals are free nerve endings,

though other cells such as epithelial cells and Merkel cells may

contribute to the initial encoding step (16). The cell bodies of

these pseudounipolar primary sensory neurons form the dorsal

root (DRG) and trigeminal ganglia (TG) (Figure 2A). Primary

sensory neurons are classified by the type of information they

transmit, axon size, myelination, and conduction velocity. Other

classification systems have also been proposed based on gene

expression patterns or electrophysiologic properties (16, 17).

The axons from the DRG enter the dorsal horn of the spinal

cord via the dorsal root and synapse in the superficial layers of the

spinal cord (Figure 2A) (15–17). Nociceptive information from the

spinal cord is transmitted to reflexive pathways, local processing

occurs, and information is transmitted to the brain. The primary

nociceptive pathway in humans is referred to as the spinothalamic

tract. However, in companion animals, important nociceptive

pathways also include the dorsal column postsynaptic pathway,

the spinocervicothalamic pathway, and the spinomesencephalic

pathway (15). Nociceptive information from the head is primarily

encoded by sensory neurons in the trigeminal nerve. Therefore, the

majority of sensory information from the head is transmitted in

the quintothalamic pathway. These pathways transmit nociceptive

information to several locations in the brain. Together, the GSA

system in companion animals can be called the spinothalamic

system, though that terminology does not fully capture the myriad

pathways of nociceptive transmission (Figure 2B) (15).

While much of the nociceptive information is transmitted via

the spinothalamic tract to the primary sensory cortex via the

thalamus, several other areas of the brain respond to an acute

nociceptive stimulus. These include the insular cortex, cingulate

cortex, prefrontal cortex, posterior parietal cortex, the secondary

somatosensory cortex, the amygdala, hippocampus, and motor

cortex (16, 18, 19). Other areas include the cerebellum, medulla,

and periaqueductal gray region. Some of these regions, such

as the somatosensory cortex, thalamus, and insular cortex, are

important for the sensory aspects of pain, while the cingulate

cortex, insular cortex, and prefrontal cortex process the affective

aspects of pain (18). The regions of the brain that respond to

painful stimuli are sometimes collectively referred to as the Pain

Matrix. This concept emphasizes the complexity of processing of

nociceptive information.

4 Pathophysiology of chronic pain

Alterations in the cellular and network processing of

nociception are thought to underly the development of chronic

pain. It may take days to weeks for chronic pain to develop, and

these alterations in neuronal function often persist even after the

originating tissue damage has resolved (11, 20). These maladaptive
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FIGURE 1

(A) Classification of neuropathic pain, including central and peripheral subtypes, with corresponding examples from humans and proposed

corresponding neuropathic pain disorders in companion animals. (B) Grading system decision tree for confidence in neuropathic pain diagnosis. For

patients presenting with pain, a history of relevant neurologic lesions and a matching distribution is consistent with possible neuropathic pain. The

presence of either sensory signs (loss of sensation or increased/altered sensation) or lesion confirmation based on diagnostics results in the

conclusion of probable or definite neuropathic pain. Created with BioRender.com.

responses occur at several levels in the nociceptive network,

including encoding, transmission, and perception (Figure 2).

In chronic pain states, inflammation or injury to the primary

sensory neurons results in hyperexcitability and increased firing.

Other possible causes of pain may include an imbalance between

ascending and descending signaling pathways (20). Chronic pain

can result in changes in gene transcription and translation in

individual neurons and support/glial cells in the dorsal root ganglia

and spinal cord (21). This may cause altered processing of sensory

information in the spinal cord. Additionally, changes in the brain’s

response to painful stimuli also occur, which can be measured as

difference in regional blood flow (16, 18, 19). Studies have identified

changes in brain volume, including loss of volume in the primary

somatosensory cortex and thalamic gray matter or increased tissue

volume in the cingulate cortex and primary motor cortex (18, 20).

5 Diagnosis of pain in companion
animal clinical practice

The diagnosis of pain for companion animals currently relies

on owner reporting, physical examination findings, and direct

observation of the pet. The diagnosis of pain is complicated by

the inherent limitations of examining animals in the veterinary

setting. The stress of a hospital visit may mask subtle aspects

of pain the owner may appreciate in a home setting. The role

of veterinary visits in anxiety is not well understood (22). The

clinician sometimes must rely upon other factors, including patient

signalment or owner reports or videos.

Observational findings may suggest the presence of pain,

including changes in posture, facial expression, gait, or tone.

During the physical and neurologic examinations, other indicators

of pain may include heart rate, respiratory rate, or muscle

atrophy. Pain or muscle fasciculations may be elicited on palpation.

However, not all animals will respond to palpation, and it can be

difficult to localize pain. Additionally, in referral settings, many

patients have previously received pain medication, which can mask

the clinical manifestations of pain.

Structured assessments, such as owner questionnaires for pain,

include the Canine Brief Pain Inventory (CBPI), Neuropathic Pain

scoring (NeP), and quality of life visual analog scoring (VAS)

(4, 23, 24). These are short questionnaires that can be repeatedly

filled out by owners over time. However, they are underutilized in

practice. Additionally, these forms may rely on animals having a
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FIGURE 2

Schematic diagram of pain pathways showing primary location of reflexive and ascending pain pathways. Mechanisms of chronic pain development

are illustrated as well. (A) Encoding step, illustrating a free nerve ending that is activated due to acutely painful stimulus. (B) Transmission, the

spinothalamic tract is pictured. Not pictured are other sensory pathways, including dorsal column postsynaptic pathway, the spinocervicothalamic

pathway, the spinomesencephalic pathway and quintothalamic pathways. (C) Illustration of the regions of the brain that are associated with painful

stimuli. These may have sensory or a�ective valence. In chronic pain, regions may either be di�erentially active, or there can be changes in brain

volume. S1, primary sensory cortex; S2, secondary sensory cortex; Thal, thalamus; Ins, insula; PC, parietal cortex; CC, cingulate cortex; PfC,

Prefrontal cortex; HP, hippocampus; Amg, amygdala; PaG, periacqueductal gray; Cb, Cerebellum; Med, Medulla. Created with BioRender.com.

clinical diagnosis, as the questions can be biased toward specific

diagnoses, as with the NeP questionnaire. There is little evidence

that one survey is the most accurate or effective, and it can be

difficult to compare responses across questionnaires.

Clinician scoring systems may be useful, particularly in the

context of acute pain. The two most common are the Colorado

acute pain score and the Modified Glasgow scale (25–27).

Behavioral scales have been developed for cats as well (28). Facial

grimace has been validated as a measurement of pain in cats

(29, 30). Limitations of these assessments include their reliance on

user experience, lack of consideration for patient anxiety, and lack

of validation for chronic pain (27, 31).

Studies have validated quantitative measurements of pain,

primarily for clinical research. Quantitative sensory testing (QST)

has been utilized to test allodynia and hyperalgesia in the

context of musculoskeletal and neuropathic pain (32–34). These

methods include Von Frey anesthesiometry and cold latency to

measure a patient’s responses (35–37). These QST techniques can

be challenging to administer reliably and therefore may need

to be validated by each user (38). Additionally, QST outcome

measures are not specific for pain type such as musculoskeletal vs.

neuropathic pain and therefore cannot be used in isolation as a

measure of neuropathic pain (9, 32).

Actigraphy or accelerometry collars can be used to analyze

canine behavior, including to measure aspects of pain (39, 40). In

some cases, a simple step count may be useful (40). However, some

authors have found there is not a strong correlation between the

number of steps and musculoskeletal pain. This may be due to the

relationship between an owner’s activity and a pet’s behavior.

Imaging and electrophysiologic techniques have also been used

for pain detection in dogs and cats. For example, in dogs with

SM, the location, size, and distribution of the syrinx, as visualized

by MRI, can predict the presence of pain (41). In degenerative

lumbosacral stenosis, electrodiagnostics, such as F-waves or cord

dorsum potentials, may be useful for detecting dogs with painful

radiculopathies and confirming a neuropathic pain diagnosis (42).

6 Current research gaps and
opportunities

Utilizing technology such as video cameras, high-speed

internet, and collar accelerometer trackers, we may be able

to incorporate information and observations from the animal’s

daily environment into clinical practice. This is an active area

of study in musculoskeletal research, but there are limited
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studies in neuropathic pain thus far (40, 43, 44). Understanding

similarities and differences between behaviors at home and clinical

observations utilizing these technologies would be a meaningful

first step toward understanding their utility for diagnosing

neuropathic pain in companion animals.

The relationship between sleep and pain is of interest in

humans (see below) as poor sleep and progression of chronic pain

are linked (45, 46). Several recent studies have shown effective

methods to measure sleep in dogs. This includes developing

questionnaires for owners and simplified methods to place

electrodes for polysomnography (47, 48).

Although QST is fairly well described, this group of methods

currently has limitations due to the high interobserver variabliity,

and the variety of techniques used to perform the QST (32, 35,

36, 38, 49). Improving methods of QST and making them more

accessible would be beneficial.

Imaging techniques have already been applied to diagnose pain

in dogs with SM, where specific imaging features are correlated with

chronic pain (50). However, it is difficult to correlate the degree

of pain and relevant imaging findings in dogs with degenerative

lumbosacral stenosis or intervertebral disc disease, though these

both frequently cause neuropathic pain. Perhaps imaging the brain

of animals with neuropathic pain may be useful, even if the brain is

not considered the primary source of the pain. In humans, chronic

pain is correlated with changes in specifics areas of the pain matrix

regions of the brain.

7 Cross-species comparisons and
opportunities

Over 20% of the US human population experiences chronic

pain (51). Chronic pain is defined as pain that occurs either most

days or every day and lasting 3 months or longer. The diagnosis of

chronic pain in human medicine also relies on a through history

including duration of pain, historical injuries, or previous painful

episodes. A visual analog scale or numerical score is solicited to

determine the perceived severity of pain, although the perception

of pain is a subjective measure that differs between individuals

(52). The clinician will also question the human patient as to the

characteristics of pain, such as tingling, sharp pain, numbness,

or burning.

The medical community has recognized the importance of

biopsychosocial factors of pain in humans (53). This indicates

that the experience and impact of pain in humans is not

simply related to tissue trauma. Screening for other psychosocial

factors, such as coping behaviors, drug addiction, social support,

sleep quality/disorders, and environment, is performed (54). The

presence of these risk factors may affect the risk for developing

chronic pain as well as the response to treatment. One specific

example of a biopsychosocial factor from humans that could be

studied in dogs is sleep. Sleep abnormalities are correlated with

chronic pain, and insomnia is common (46). Interestingly, sleep

impairment is also predictive of worsening chronic pain over time

(45). A better understanding of the relationship between sleep and

pain in animal could aid in monitoring chronic pain.

Rodents are the most commonly used model of pain for

translational research. They are utilized for research into the

pathophysiology and treatment of pain. The advantages of rodents

are significant and include accessibility to genetic manipulation

and repeatable pain models. Similar to humans, there are social

and behavioral factors in rodents that affect pain behaviors, such

as social housing, stress, or being housed with other animals that

are in pain (55). These factors may increase (hyperalgesia) or

in some cases decrease a pain response, in the case of stress-

induced analgesia (55). The method of testing may also affect pain

responses. Factors such as habituation time and handler experience

are also important in pain testing. Testing for pain in clinical

practice is subject to variables that are often outside of our control,

such as transportation or being handled by strangers. However,

considering these social factors in pets is likely important when

trying to grade and localize neuropathic pain.

The measurement of pain in rodents is accomplished in several

ways, such as Von Frey Filament testing and temperature testing.

Recent methods of video analysis in rodents have altered the way

that we think about pain measurement, as this has helped us

expand from reflexive or evoked pain behaviors (of which QST is an

example) to also studying spontaneous behaviors. By quantitatively

evaluating spontaneous behaviors, we may better understand pain

behaviors and response to analgesics (57, 60). Specific behavioral

responses such as the trajectory of the paw during withdrawal

assays inmice are strain specific, and this type of behavioral analysis

may be interesting to study pain responses in different breeds of

dogs (56).

8 Discussion

There are opportunities for improving the diagnosis and

treatment of chronic neuropathic pain in dogs and cats. When

we study the well-defined categories of neuropathic pain in

humans, there are some categories that are easily recognized by

veterinarians, such as painful radiculopathies and chronic central

neuropathic pain associated with spinal cord injury. However, other

categories of neuropathic pain reported in humans are not well

understood in veterinary species. It is important to recognize that

other categories of neuropathic pain, for example disorders that

causes painful polyneuropathies, may be present in our veterinary

patients. Currently, we may miss some forms of neuropathic

pain. For example, if animals are experiencing paresthesias or

dysesthesias that cause tingling or numbness, we as clinicians may

fail to recognize those animals as experiencing neuropathic pain

with any of the currently available metrics.

Priorities for improved pain measurement include improving

the detection of pain in the context of anxiety, the stress of

veterinary visits, other behavioral changes, or dysphoria. It is

interesting to consider that anxiety or stress may be associated with

chronic pain in humans while it may mask the diagnosis of chronic

pain in companion animals.

We likely need to develop multiple new methods to measure

chronic pain and neuropathic pain, as there is a diversity of causes

and locations. Ideally, these methods will have high sensitivity, with

the ability to discriminate painful and non-painful animals in a

clinically useful manner, and eachmust be carefully validated. Some

opportunities to improve chronic pain detection include owner

questionnaires, behavioral analysis through video or actigraphy,

advanced imaging, and electrodiagnostic techniques. Ultimately,

we need methods that are easy to implement into clinical practice,
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so that they can be applied to our dog and cat patients and identify

patients that would benefit from treatment.
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