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As the common foodborne mycotoxins with the highest pollution rate, deoxynivalenol 
(DON, also named “vomitoxin”) can harm the health of humans and animals by 
causing anorectic response. It has four congeners: 3-acetyldeoxynivalenol (3-
ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV), and fusarenon X 
(FX). These five mycotoxins have been associated with the detrimental effect on 
food intake. However, its underlying mechanism of anorexia remains unclear. 
The goal of this research was to compare the anorectic responses to these five 
mycotoxins and relate these effects to proinflammatory cytokines interleukin-18 
(IL-18) and interleukin-6 (IL-6) following intraperitoneal (IP) and oral exposure to 
a common dose at 2.5 mg/kg BW in mice. Plasma IL-18 and IL-6 were elevated 
within 1–2 h and returned to basal levels at 6 h after exposure to DON, 3-ADON 
and 15-ADON. FX promoted IL-18 expression at 6 h. Whereas, FX only promoted 
IL-6 at 6 h. When NIV was injected intraperitoneally, IL-18 started to rise at 1 h and 
peaked at 6 h. Whereas, NIV only promoted IL-18 at 2 h following oral exposure. 
IP exposure to NIV induced an increase in IL-6 that occurred only at 2 h. No 
effect on IL-6 when exposed orally to NIV. In conclusion, the data indicate that 
IL-18 and IL-6 play critical roles in anorectic response induced by DON and its 
four congeners 3-ADON, 15-ADON, NIV, FX.
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1 Introduction

Mycotoxins are harmful products produced by fungi widely contaminating cereals and 
cereals products (1, 2). DON is one of the most frequently contaminated mycotoxins and 
belongs to the type B trichothecene. In addition to DON, the type B trichothecenes also 
include 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol 
(NIV), and fusarenon X (FX). Both 3-ADON and 15-ADON are the acetylated form of DON, 
while FX is the acetylated form of NIV (3–5). 3-ADON, 15-ADON and FX can also 
be converted to their parent forms in vivo. Several mycotoxin contamination surveys (6–8) 
have shown that the coexistence of these trichothecenes is very common. These mycotoxins 
can contaminate a wide range of cereals including maize, wheat, barley and oats. Results from 
8 years of field surveys in wheat cultivated in the Netherlands showed that DON was detected 
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in 54% of the samples (>50 μg/kg) ranging from 19 to 92% depending 
on the year, and the presence of 3-ADON, 15-ADON and NIV were 
up to 8% in some years (9). Ingestion of these contaminated foods and 
feeds by humans and animals can lead to poisoning. Type B 
trichothecenes have a tetracyclic 12,13-epoxy monosporin backbone 
and are able to bind to eukaryotic ribosomes, causing strong 
cytotoxicity to eukaryotic cells, as well as binding and disrupting 
protein synthesis through interaction with peptidyl transferase centers 
(4, 10). Acute and chronic exposure can also lead to anorexia, 
vomiting, immunotoxicity, and genotoxicity (11, 12). Ingestion of feed 
contaminated with these mycotoxins by farm animals can lead to 
reduced intake and slower weight gain, resulting in significant 
economic damage (4, 12, 13). An incident of acute DON poisoning in 
2019 (14) had symptoms that included mainly vomiting, nausea, and 
abdominal pain. In addition, prolonged intake of DON-contaminated 
food can lead to growth retardation in children, and anorexia is an 
essential factor contributing to growth retardation (15–18). Given the 
harmful effects of anorexia caused by DON and its congeners on 
humans and animals, it is necessary to investigate the specific 
mechanisms by which these mycotoxins cause anorexia.

Appetite is the foundation for the body to obtain food and 
maintain normal metabolism (19). Appetite regulation involves many 
aspects, including genetic, physiological, and environmental factors. 
The hypothalamus has long been recognized as a critical site of 
appetite regulation, responding to both peripheral and centrally 
generated orexigenic and anorexic signals (20, 21). As the most 
important part of appetite regulation in the hypothalamic nucleus, the 
arcuate nucleus (ARC) has two neurons with different functions, 
namely neuropeptide Y (NPY)/agouti-related peptide (AgRP) that 
promotes appetite and pro-opiomelanocortin (POMC) that suppresses 
appetite (22–24). The intestinal tract is another key hub for appetite 
regulation, with the secretion of intestinal satiety hormones that link 
signals in the gut to a range of physiological activities via the brain-gut 
axis (25). DON-induced anorexia can indirectly affect appetite by 
inducing a significant release of peripheral satiety hormones, in 
addition to upregulating central anorexigenic molecules such as 
POMC and melanocortin 4 receptor (MC4R) (26, 27). Our previous 
findings (25, 26, 28) suggest that DON and its four congeners 
3-ADON, 15-ADON, NIV, FX induce anorexia in mice by regulating 
intestinal hormones including substance P (SP), glucagon-like 
peptide-17-36 amide (GLP-1), cholecystokinin (CCK). Moreover, 
inflammation also has been reported to be involved in the regulation 
of appetite, and the pro-inflammatory cytokines seems to play a 
critical roles in it (29, 30).

Inflammation is the body’s defensive response to various stimuli. 
However, dysregulated inflammation can disrupt the homeostasis of 
the body, resulting in a variety of acute and chronic diseases (31, 32). 
DON-induced inflammation has been reported in many species, 
including humans, mice, rats, and pigs (15, 33–36). The expression 
and release of various pro-inflammatory cytokines, including IL-6, 
IL-1β, TNF-α, and IL-18 were observed after DON exposure. 
Congeners of DON have also been shown to promote the 
pro-inflammatory cytokines (37–41). DON can promote IL-18 and 
IL-6 in the hypothalamus and intestine, which are closely related to 
the regulation of appetite (27, 42). Moreover, IL-18 and IL-6 are also 
considered to be involved in the regulation of appetite (43, 44). IL-18 
is thought to be associated with poor appetite in acutely ill patients, 
while IL-6 is thought to be involved in the regulation of appetite after 
acute exercise in humans. Our previous findings (45) suggest a link 

between the anorexic induced by oral exposure to DON and the 
release of TNF-α and IL-1β. Both IL-1β and TNF-α receptor 
antagonists could weak the DON-induced anorexia. Furthermore, 
anorectic responses to DON’s four congeners 3-ADON, 15-ADON, 
NIV, FX correspond to secretion of TNF-α and IL-1β following both 
IP and oral exposure. However, whether IL-18 and IL-6 are involved 
in the anorexia induced by DON and its congeners is not clear.

In order to investigate the potential roles of pro-inflammatory 
cytokines IL-18 and IL-6 in anorexia induction, mice were exposed 
with a common anorexigenic dose of 2.5 mg/kg BW DON, 3-ADON, 
15-ADON, NIV and FX by two methods (IP vs. oral) using a 
previously established mouse anorexia model (46). The results 
presented herein indicate that following both IP and oral treatment, 
DON and its four congeners 3-ADON, 15-ADON, NIV, FX evoked 
significant anorectic responses; DON and its four congeners 3-ADON, 
15-ADON, FX, NIV significantly upregulated plasma IL-18 and 
IL-6  in mice; Anorectic response induction by DON and its four 
congeners 3-ADON, 15-ADON, NIV, FX correspond to release of 
plasma IL-18 and IL-6 in mice.

2 Materials and methods

2.1 Toxins

Both DON and 3-ADON was produced, identified by nuclear 
magnetic resonance (NMR) and supplied by Dr. Tony Durst 
(University of Ottawa, Canada). 15-ADON was isolated from culture, 
identified by high performance liquid chromatography (HPLC) and 
provided by Dr. James J. Pestka (Michigan State University, USA) (41). 
FX and NIV were purified from cultures and supplied by Dr. Yoshiko 
Sugita-Konishi (Azabu University, Japan). The purity of the five 
trichothecene toxins used in the experiments was analyzed using LC–
MS and elemental analysis to ensure that the toxin concentrations 
were > 98%. Five toxins were all dissolved in sterile PBS.

2.2 Animals

11–12 week-old female B6C3F1 mice were obtained from Vital 
River Laboratory Animal (Beijing, China) and housed individually in 
polycarbonate cages. Room temperature and humidity maintained at 
19–23°C and 30–70%, respectively. Mice were fed and watered ad 
libitum and given a 12 h light/dark cycle. High fat diet (45 kcal% fat 
diets, Jiangsu Medicine Company, Yangzhou, China) put in 2 inch 
high glass jars was employed for feeding bioassay and sifted aspen 
chips used for bedding. No deaths were eliminated during the whole 
period. All animal handling in the experiments followed the guidelines 
of the Nanjing Agricultural University Institutional Animal Care and 
Use Committee (Certification No: SYXK (Su) 2011–0036).

2.3 Experimental design

Figure 1 summarizes the general experimental design based on 
preliminary experiments in this study. All handling procedures are 
consistent and fast to minimize stress on the mouse. The study of 
reducing the number of animals requires a flushing period of at least 
1 week after the cessation of the IP mouse experiment treated with a 
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separate toxin, and then randomized for subsequent oral challenge 
studies on the same toxin. The effectiveness of this method is based on 
our previous research (46), which showed that the response to DON 
was the same in mice given a 1-week flushing cycle, without significant 
DON attenuation or enhanced anorectic response.

2.3.1 Experiment 1: anorectic response of five 
trichothecene toxins by IP and oral treatment

The experimental design is based on the previously established 
mouse anorexia model (46). Briefly, all mice were acclimatized for 
1 week prior to the start of the experiment (Figure 1A). Randomly 
group mice based on their body weight the day before the experiment 
(n = 6). Fasting of mice from 10:00–18:00 on the day of the experiment 
but not water. Mice were given 100 μL of PBS containing 2.5 mg/kg 
BW of toxin by gavage and intraperitoneal injection at 18:00. The 
control group was given 100 μL of PBS. Mice were then immediately 
offered food pellets (approximately 7 g) and food intake was measured 
at 1 h, 2 h and 6 h.

2.3.2 Experiment 2: effect of DON and its 
congeners on IL-18 and IL-6

The exposure pattern and dose of toxin in mice are the same as in 
experiment 1 except not providing food pellets (Figure 1B). Mice were 
anesthetized using sodium pentobarbital as per ethical considerations 
and sacrificed 0, 1, 2, 6 h after exposure to the toxin. Blood was 
collected using an EDTA-containing blood collection tube, followed 
by centrifugation for 10 min (3,500 × g, 4°C) to collect plasma. Plasma 
IL-18 and IL-6 levels were measured by enzyme-linked immunoassay 
kits (R & D systems).

2.4 Statistics

SigmaPlot (Jandel Scientific; San Rafael, CA) was used to conduct 
data calculation. All the data are expressed as mean ± SEM, with 
p-values less than 0.05 to be considered as significant differences. A 
two-way repeated ANOVA with one factor using Holm-Sidak Method 
was used to calculate significant differences in food consumption. 
Besides, the kinetics of IL-18 and IL-6 concentrations in the mouse 
plasma was analyzed by a 2-way ANOVA using Bonferroni t-test to 
assess the significant differences.

3 Results

3.1 DON exposure evokes rapid and 
transient anorectic response as well as 
pro-inflammatory cytokine release

Compared to the PBS group, either oral or IP administration of 
DON significantly reduced the cumulative food intake of the mice 
within 2 h (Figures 2A,D). At 6 h, the cumulative food intake of the 
DON-exposed group returned to normal levels. The expression of the 
pro-inflammatory cytokines IL-18 (Figures 2B,E) and IL-6 in the both 
groups showed the same pattern of gradual increase over 2 h, reaching 
a peak at 2 h (Figures 2C,F). No effect of DON exposure on IL-18 and 
IL-6 at 6 h. In summary, the temporal relationship between 
pro-inflammatory cytokines IL-18 and IL-6 and cumulative food 
intake showed an opposite trend, suggesting that IL-18 and IL-6 may 
be involved in the DON-induced food refusal response.

3.2 3-ADON exposure also evokes rapid 
and transient anorectic response as well as 
pro-inflammatory cytokine release

The temporal relationship of 3-ADON to cumulative food intake 
and pro-inflammatory cytokine expression followed the pattern of 
DON. 3-ADON cumulative food intake also decreased at 1 h and at 
2 h and reached a nadir at 2 h, returning to normal levels at 6 h. IL-18 
and IL-6 increased significantly at 2 h and gradually returned to basal 
levels at 6 h (p > 0.05). The above results express that the cumulative 
food intake due to 3-ADON shows an opposite trend concerning the 
temporal relationship between the pro-inflammatory cytokines IL-18 
and IL-6, which may indicate that IL-18 and IL-6 are equally involved 
in 3-ADON-induced food refusal (Figure 3).

3.3 15-ADON exposure also causes rapid 
and transient anorectic response as well as 
pro-inflammatory cytokine release

After 15-ADON was administered intraperitoneally, cumulative 
food intake was significantly reduced for within 2 h and reached a 
nadir at 2 h (Figure 4A). After oral exposure with 15-ADON, the 
cumulative food intake at 2 h, although also significantly lower than 
in the PBS group, tended to increase compared to 1 h (Figure 4D). 
Cumulative food intake returned to normal at 6 h for both oral and IP 
groups (p > 0.05). The release of IL-18 (Figures  4B,E) and IL-6 
(Figures 4C,F) increased from 1 h, peaked at 2 h and returned to 

FIGURE 1

(A) Experimental design for anorectic response bioassay in the 
mouse. Mice were given IP injection or oral gavage of DON and its 
four congeners 3-ADON, 15-ADON, FX, NIV immediately before the 
dark feeding cycle. Food intake was measured at 1, 2, and 6 h post 
administration. (B) Experimental design for IL-18 and IL-6 induction 
by DON and its four congeners 3-ADON, 15-ADON, FX, NIV in the 
mouse plasma. Plasma was analyzed for IL-18 and IL-6 at 0, 1, 2, and 
6 h post administration.
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normal levels at 6 h (p > 0.05). These results are similar to those 
described above for DON and 3-ADON, suggesting that IL-18 and 
IL-6 may also be involved in food refusal due to 15-ADON.

3.4 FX exposure induces prolonged 
anorectic response and pro-inflammatory 
cytokine release

As shown in Figures 5A,D, the FX-induced food refusal response 
may be  stronger than the DON congeners described above. The 
cumulative food intake induced by FX at 6 h remained significantly 

lower than in the PBS group, whether exposure methods. With the 
IP group, IL-18 release gradually increased from 1 h, peaking at 6 h, 
and was significantly higher than in the PBS group at 2 h as well as at 
6 h (Figure  5B). During gavage, IL-18 expression increased 
significantly at 1 h, 2 h, and 6 h, reaching a peak at 2 h (Figure 5E). 
The overall expression of IL-6 showed an increasing trend, reaching 
a peak and significance at 6 h (Figures  5C,F). In addition, the 
cumulative food intake decreased significantly at 6 h, while the 
expression of inflammatory cytokines increased significantly at this 
time. This also suggests a close relationship between the 
pro-inflammatory cytokines IL-18 and IL-6 and the food refusal 
effect caused by FX.

FIGURE 2

DON-induced anorexia and expression of IL-18 and IL-6. Mice were administered with PBS or DON (2.5 mg/kg BW). IP (A) and Oral (D) exposure to 
DON induced a rapid anorexia response in mice. Effect of DON on plasma IL-18 (B,E) and IL-6 (C,F) levels, % Cumulative food consumed by 
PBS = Cumulative food intake of mice administered with DON / Cumulative food intake of mice administered with PBS, IL-18 released (% 
control) = Plasma IL-18 in the mice administered with DON / Plasma IL-18 in the mice administered with PBS, IL-6 released (% control) = Plasma IL-6 in 
the mice administered with DON / Plasma IL-6 in the mice administered with PBS, the same as below. *p<0.05, compared to the control at a specific 
time point. p<0.05 compared to the control at 0 h.
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3.5 NIV exposure also induces prolonged 
anorectic response and pro-inflammatory 
cytokine release

The different exposure modes of NIV showed similar trends for 
cumulative food intake. The difference was that with IP group, the 
cumulative food intake was significantly reduced at 1 h. At 6 h, 
although it increased compared to 2 h, it was still significantly reduced 
compared to the PBS group (Figure 6A). With gavage exposure, only 
at 2 h was there a significant down-regulation of cumulative food 
intake (Figure 6D). With the IP group, IL-18 release gradually increased 
to a peak at 6 h and was significantly upregulated at all three-time 
points compared to the PBS group (Figure 6B). IL-18 release peaked at 
2 h (Figure 6E) and returned to normal levels at 6 h (p > 0.05) when 
exposed by gavage. In comparison, IL-6 release was only significantly 

upregulated at 2 h when NIV was administered intraperitoneally and 
was not significantly different at all time points when oral exposure 
(p  > 0.05) (Figures  6C,F). These data suggest that the effect of 
NIV-induced food refusal may be primarily related to IL-18.

4 Discussion

Mycotoxins are common contaminants in food, affecting 
approximately 25% of food crops and causing damage to nearly 100 
million tonnes of food globally yearly (47). As one of the most 
common mycotoxins, DON has been widely reported for its toxicity 
and mechanism. In contrast to DON, the toxic effects of its congeners 
have rarely been reported. Several investigations of mycotoxin 
contamination in cereals have shown that contamination by DON 

FIGURE 3

3-ADON-induced anorexia (A,D) corresponds to plasma IL-18 (B,E) and IL-6 (C,F) elevation. Mice were administered with either PBS or 3-ADON 
(2.5 mg/kg BW). *p<0.05, compared to the control at a specific time point. p<0.05 compared to the control at 0 h.

https://doi.org/10.3389/fvets.2024.1521424
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhou et al.� 10.3389/fvets.2024.1521424

Frontiers in Veterinary Science 06 frontiersin.org

congeners is also widespread (6–8, 48). Anorexia, as an important 
point in their toxicity, endangers the health of humans and animals. 
However, the mechanism by which they cause anorexia is not yet clear. 
In this study, we focused on two common pro-inflammatory cytokines 
(IL-18, IL-6), and investigated the anorexigenic potency of DON and 
its congeners and the release of IL-18 and IL-6  in plasma under 
different methods (oral vs. IP) based on anorexia models in mice. The 
data showed that exposure to DON and its congeners at 2.5 mg/kg 
BW significantly elevated plasma IL-18 and IL-6 levels associated with 
toxin-induced anorexia.

All five toxins significantly induced anorexia in mice within 2 h. 
Regardless of the exposure mode, the cumulative food intake of DON, 
3-ADON, and 15-ADON had returned to normal levels in mice at 6 h 
(p > 0.05). The difference is that FX still induced food refusal at 6 h. 
NIV only returned to normal levels of cumulative food intake at 6 h 

when exposed orally. These results are similar to those previously 
reported (26, 49). In mice, the elimination half-lives of NIV, FX, and 
DON were 14.3 h, 37.6 h, and 11.8 h, respectively. This difference may 
help explain the significant anorexia induced by NIV and FX at 6 h 
(50). Poapolathep (5) reported that FX has higher oral toxicity than 
NIV in mice. Furthmore, the oral bioavailability of FX was higher than 
that of NIV in mice (51). It has been reported (52) that using small-
molecule drugs by IP leads to faster and more complete absorption 
compared to oral exposure. This is similar to the previous results (53) 
that IP of these aforementioned mycotoxins induced a stronger 
anorexic than oral exposure.

IL-6 is a multifunctional inflammatory cytokine that functions 
in combination with the IL-6 receptor and glycoprotein 130 to form 
a hexameric complex. This complex can participate in the 
pathophysiological processes of the body by activating multiple 

FIGURE 4

15-ADON-induced anorexia (A,D) corresponds to plasma IL-18 (B,E) and IL-6 (C,F) elevation. Mice were administered with either PBS or 15-ADON 
(2.5 mg/kg BW). *p<0.05, compared to the control at a specific time point. p<0.05 compared to the control at 0 h.
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signaling pathways (54). IL-18 belongs to the IL-1 cytokine family 
and is structurally related to IL-1β. The precursor of IL-18 is cleaved 
by caspase-1 to produce the active form, and upon binding to the 
corresponding receptor, IL-18 further causes a signaling cascade to 
activate NF-κB and MAPK signaling pathways (55, 56). DON 
promoted inflammatory cytokines such as IL-6, IL-1β, TNF-α, and 
IL-18 has been well reported (36, 42, 57). The data from this study 
also showed that both oral and IP of DON resulted in significant 
IL-18 as well as IL-6 expression, and this was an early process. In 
addition, 3-ADON and 15-ADON induced IL-6 expression similar 
to DON. Both exposure modes of FX significantly upregulated IL-6 
at 6 h. NIV significantly upregulated IL-6 only after oral exposure at 
2 h. Previously, the expression of inflammatory cytokines induced 
by DON congeners focused on IL-6, IL-1β, and TNF-α (37, 41). The 
present study may be the first systematic report of DON congeners-
induced IL-18 expression. The effects of 3-ADON, as well as 

15-ADON on IL-18, were similar to those of DON, with FX still 
significantly upregulating IL-18 expression at 6 h. Whereas NIV 
only had a significant difference at 6 h when injected 
intraperitoneally, when exposed orally, the IL-18 expression was 
significant only at 2 h.

In addition, the temporal relationship of DON and its 
congeners-induced IL-18, as well as IL-6 expression, was found to 
be  consistent with their resulting anorexia. Inflammation has 
been reported to have a negative impact on the regulation of 
appetite and thus on food intake (44). Cytokines may reduce 
appetite by interacting with the hypothalamus thus leading to 
anorexia (58). Previous studies have shown that TNF-α and IL-1β 
play an important role in the induction of anorexia by DON and 
its congeners and that the use of antagonists of the TNF-α 
receptor as well as the IL-1β receptor also attenuates 
DON-induced anorexia (45, 49). DON crosses the blood–brain 

FIGURE 5

FX-induced anorexia (A,D) corresponds to plasma IL-18 (B,E) and IL-6 (C,F) elevation. Mice were administered with either PBS or FX (2.5 mg/kg BW). 
*p<0.05, compared to the control at a specific time point. p<0.05 compared to the control at 0 h.
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barrier and acts directly on the hypothalamus to induce the 
expression of the inflammatory cytokine (27, 59). Inflammatory 
cytokines IL-18 and IL-6 can further activate the NF-κB signaling 
pathway, regulating POMC activity to cause anorexia (27, 55, 60). 
In addition, it has been reported that inflammation-induced 
anorexia is due to elevated levels of circulating leptin. 
Pro-inflammatory cytokines can increase OB gene expression, 
leading to elevated plasma leptin levels (61, 62). In turn, leptin 
coordinates the control of food intake and energy expenditure 
(63). IL-6 may be  involved in appetite regulation after acute 
exercise in humans (43). IL-6 produced during exercise may alter 
leptin in the ARC, affecting post-exercise eating behavior (64) 
IL-18 knockdown mice cause hyperphagia, obesity, and insulin 
resistance (65, 66). Insulin, in turn, can be involved in appetite 
regulation by regulating levels of neuropeptides (NPY and 

POMC) (67). IL-18 may inhibit feeding by suppressing the activity 
of bed nucleus of the stria terminalis (BST) type III GABAergic 
neurons (68).

There is often a complex interaction between inflammation 
and intestinal flora, with dysbiosis leading to intestinal 
inflammation and intestinal inflammation changing the intestinal 
microbiota (69). IL-22 has a dual role in the progression of 
inflammation, with IL-22-deficient mice altering the expression 
of antimicrobial peptides as well as microbial diversity in the 
colon (70, 71). IL-18 supplementation in NLRP6, ASC, and 
Caspase 1/11 knockout mice significantly alters the intestinal 
microbiota of mice (72). The relationship between intestinal flora 
and appetite has also been well reported, and intestinal microbial 
metabolites and components can act as appetite-related signaling 
molecules to regulate appetite-related hormone secretion or act 

FIGURE 6

NIV-induced anorexia (A,D) corresponds to plasma IL-18 (B,E) and IL-6 (C,F) elevation. Mice were administered with either PBS or NIV (2.5 mg/kg BW). 
*p<0.05, compared to the control at a specific time point. p<0.05 compared to the control at 0 h.
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directly on hypothalamic neurons (73). In addition, E. coli can 
produce an anorexigenic bacterial protein, caseinolytic protease 
B homolog protein (ClpB), which acts as an antigenic mimic of 
α-melanocyte-stimulating hormone (α-MSH) to trigger the 
production of α-MSH across reactive autoantibodies, which in 
turn can bind to MC4R and play an important role in satiety (74). 
In turn, exposure to DON disrupts the intestinal microbial 
structure of mice leading to ecological dysregulation (75, 76). 
Based on this, we  hypothesized that the expression of 
inflammatory cytokines (IL-18, IL-6) induced by DON and its 
congeners may lead to anorexia by altering the composition of the 
intestinal flora and consequently. However, this still needs to 
be explored in further experiments. Moreover, we speculate that 
IL-18 and IL-6 in the toxin-induced anorexia response directly 
acts on the hypothalamus to regulate the appetite center. On the 
other hand, may indirectly regulate appetite through some key 
molecules such as leptin, eventually leading to anorexia. 
Moreover, intestinal flora may also play a role. However, these 
require further research to verify.

5 Conclusion

In summary, this study shows that both IP and oral treatment of 
DON and its four congeners 3-ADON, 15-ADON, FX, NIV 
significantly upregulated IL-18 and IL-6 expression in mouse plasma. 
Moreover, the temporal relationship between the expression of IL-18 
and IL-6 was consistent with the anorexia caused by these mycotoxins. 
Future research should focus on exploring how these pro-inflammatory 
cytokines regulate appetite as well as the interaction between 
pro-inflammatory cytokines and brain-gut peptides such as GLP-1, 
CCK and SP. Especially, the potential roles of calcium sensing receptor 
(CaSR), transient receptor potential ankyrin 1 (TRPA1), transient 
receptor potential channel M5 (TRPM5) and transient receptor 
potential vanilloid subtype 1 (TRPV1) in the regulation of 
pro-inflammatory cytokines release. From veterinary and public 
health perspectives, studies such as this will improve our 
understanding the adverse effects of mycotoxins and provide a 
theoretical basis for the prevention and treatment of DON and its 
congeners poisoning.
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